Kruskal’s MST Algorithm
CLRS Chapter 23, DPV Chapter 5
Version of October 11, 2016

Main Topics of This Lecture

- Kruskal’s algorithm
 Another, but different, greedy MST algorithm

- Introduction to UNION-FIND data structure.
 Used in Kruskal’s algorithm
 Will see implementation in next lecture.
Idea of Kruskal’s Algorithm

Build a forest.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not create a cycle.

Continue until the forest is a single tree.
(Why is a single tree created?)

This is a \textit{minimum} spanning tree
(we must prove this).
Outline by Example

original graph

edge weight
3 5
7
10
12
9
2
{d, c} 2
{a, e} 3
{a, d} 5
{e, d} 7
{b, c} 9
{a, b} 10
{b, d} 12

Forest (V, A)

A={}

3
Outline of Kruskal’s Algorithm

Step 0: Set $A = \emptyset$ and $F = E$, the set of all edges.

Step 1: Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.

- If “yes”, remove e from F.
- If “no”, move e from F to A.

Step 2: If $F = \emptyset$, stop and output the minimal spanning tree (V, A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V, A) is a subgraph of a MST.
Outline of Kruskal’s Algorithm

Implementation Questions:

- How does algorithm choose edge $e \in F$ with minimum weight?

- How does algorithm check whether adding e to A creates a cycle?
How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge $e \in F$ with minimum weight?

Answer: Start by sorting edges in E in order of increasing weight.
Walk through the edges in this order.
(Once edge e causes a cycle it will always cause a cycle so it can be thrown away.)
How to Check for Cycles

Observation: At each step of the outlined algorithm, \((V, A)\) is acyclic so it is a forest.

If \(u\) and \(v\) are in the same tree, then adding edge \{\(u, v\)\} to \(A\) creates a cycle.

If \(u\) and \(v\) are not in the same tree, then adding edge \{\(u, v\)\} to \(A\) does not create a cycle.

Question: How to test whether \(u\) and \(v\) are in the same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if \(\text{Find-Set}(u) = \text{Find-Set}(v)\)?

Low-Level Answer:
The \text{UNION-FIND} data structure implements this:
The UNION-FIND Data Structure

UNION-FIND supports three operations on collections of disjoint sets: Let n be the size of the universe.

Create-Set(u): $O(1)$
Create a set containing the single element u.

Find-Set(u): $O(\log n)$
Find the set containing the element u.

Union(u, v): $O(\log n)$
Merge the sets respectively containing u and v into a common set.

For now we treat UNION-FIND as a black box. Will see implementation in next lecture.
Kruskal’s Algorithm: the Details

Sort E in increasing order by weight w; $O(|E| \log |E|)$
/* After sorting $E = \langle \{u_1, v_1\}, \{u_2, v_2\}, \ldots, \{u_{|E|}, v_{|E|}\} \rangle */$

$A = \{ \}$;
for (each u in V) CREATE-SET(u); $O(|V|)$

for i from 1 to $|E|$ do $O(|E| \log |E|)$
 if (FIND-SET(u_i) \neq FIND-SET(v_i))
 { add $\{u_i, v_i\}$ to A;
 UNION(u_i, v_i);
 }
return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s algorithm has running time $O(|E| \log |E|)$.

Correctness of Kruskal’s Algorithm

Sort the graph edges in nondecreasing order so that
\[w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m) \]

Let \(A_i \) be \(A \) in Kruskal’s algorithm after processing \(e_i \).

Set \(A_0 = \emptyset \). Then

If \(e_{i+1} \) forms a cycle with \(A_i \), \(A_{i+1} = A_i \)
If \(e_{i+1} \) doesn’t form a cycle with \(A_i \), \(A_{i+1} = A_i \cup \{e_{i+1}\} \)

We will prove that, \(\forall i, \exists \text{MST } T_i \) such that \(A_i \subseteq T_i \).

In particular, this means that
\[A_0 \subseteq A_1 \cdots \subseteq A_m \subseteq T_m \]
which implies (why?) Kruskal’s algorithm produces MST \(T_m \).
Correctness of Kruskal’s Algorithm

Need to prove that \(\forall i, \exists \text{ MST } T_i \text{ such that } A_i \subseteq T_i \).

Proof will be by induction on \(i \)

Obviously true for base \(i = 0 \). If \(i \geq 0 \),
(a) If \(e_{i+1} \) forms a cycle with \(A_i \), \(A_{i+1} = A_i \)
(b) If \(e_{i+1} \) doesn’t form a cycle with \(A_i \), \(A_{i+1} = A_i \cup \{e_{i+1}\} \)

Claim is true for case (a).
To prove for case (b)
note that \(T_i \) is forest on \(n \) nodes.
Let \(C_1, C_2, C_K \), be connected components (trees) of forest.
Let \(V_1, V_2, \ldots, V_k \), be their vertices.

Without loss of generality,
let \(V_1 \) contain one of the endpoints of \(e_{i+1} \).
Note that the other endpoint is not in \(V_1 \).
Correctness of Kruskal’s Algorithm

Recall Lemma proved previously

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some MST for G.

Let

- $(S, V - S)$ be any cut of G that respects A
- e be a light edge crossing the cut $(S, V - S)$

Then, $A \cup \{e\}$ is included in some MST for G.

Now plug in the information from previous slide.

Let $S = V_1$, $A = A_i$ and $e = e_{i+1}$

Induction hypothesis is that A_i is in some MST.

Since V_1 is CC of A_i, $(V_1, V - V_1)$ respects A_i.

Easy to see (how?) that e_{i+1} is a light edge crossing the cut.

So, $A_{i+1} = A_i \cup \{e_{i+1}\}$ is included in some MST for G, and claim is proven.
On previous slide we stated that it’s easy to see that e_{i+1} is a light edge crossing the cut.

Suppose that this was not true
Then \exists some e_j with $w(e_j) < w(e_{i+1})$ that crosses the cut.
By definition, if edge crosses the cut, its endpoints are in different connected components of T_i (and therefore A_i) so it can’t form a cycle with A_i.

$w(e_j) < w(e_{i+1})$ so $j < i + 1$ and e_j is processed before e_{i+1}.
Since $A_{j-1} \subseteq A_i$ and e_j doesn’t form a cycle with A_i, e_j also doesn’t form a cycle with A_{j-1}.

Thus, e_j would have been added to A_j by Kruskal’s algorithm!
But this contradicts fact that e_j can not be in A_i since it connects two items that are not connected in A_i.