More Applications of Max Flow
Edge Disjoint Paths

Disjoint path problem. Given a directed graph \(G = (V, E) \) and two nodes \(s \) and \(t \), find the max number of edge-disjoint \(s \)-\(t \) paths.

Def. Two paths are **edge-disjoint** if they have no edge in common.

Application: Communication networks.
Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Proof. ≤

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k.
- Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$.
- Since paths are edge-disjoint, f is a flow of value k.
Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Proof. \geq

- Let f be a max flow in G' of value k computed by Ford-Fulkerson
- $f(e) = 1$ or 0 for every edge e (integrality property).
- Consider any edge (s, u) with $f(s, u) = 1$.
 - By conservation, there exists an edge (u, v) with $f(u, v) = 1$
 - Continue to find the next unused edge out of v until reaching t.
- After finding one path, flow value decreases by 1.
- Repeat the process k times to find k edge-disjoint paths.
- The proof above also provides an algorithm.
Circulation with Demands

Input: A directed connected graph $G = (V, E)$, where

- every edge $e \in E$ has a capacity $c(e)$;
- a number of source vertices s_1, s_2, \ldots, each with a supply of $\text{sup}(s_i)$ and a number of target vertices t_1, t_2, \ldots, each with a demand of $\text{dem}(t_i)$;
- $\sum_i \text{sup}(s_i) \geq \sum_i \text{dem}(t_i)$

Output: A flow f that meets capacity and conservation conditions, and

- At each source vertex s_i, $\sum e \text{ out of } s_i \text{ f}(e) - \sum e \text{ into } s_i \text{ f}(e) \leq \text{sup}(s_i)$;
- At each target vertex t_i, $\sum e \text{ into } t_i \text{ f}(e) - \sum e \text{ out of } t_i \text{ f}(e) = \text{dem}(s_i)$.

![Circulation Diagram](image_url)
Solving Circulation with Demands using Max Flow

Algorithm:
- Add a “super source” \(s \) and a “super target” \(t \).
- Add an edge from \(s \) to each \(s_i \) with capacity \(\text{sup}(s_i) \).
- Add an edge from each \(t_i \) to \(t \) with capacity \(\text{dem}(t_i) \).
- Compute the max flow \(f \).
- If \(|f| = \sum_i \text{dem}(t_i) \), then return \(f \); else return “no solution”.

\[G' : \]

\[\begin{align*}
\text{supply} & : \\
\text{demand} & :
\end{align*} \]
Baseball Elimination

<table>
<thead>
<tr>
<th>Team i</th>
<th>Wins w_i</th>
<th>To play r_i</th>
<th>Remaining Against = r_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule: Order teams by the number of wins.

Q: Does Team 4 still have a chance to finish in the first place (tie is OK)?

A: No, obviously.
Q: Does Team 4 still have a chance to finish in the first place (tie is OK)?

A: No, because

- Team 4 has to win both remaining games against team 2 and 3.
- Team 1 has to lose both remaining games against team 2 and 3.
- Then 2 and 3 will both have 3 wins.
- The game between team 2 and 3 will give one of them one more win.

Suppose you need to do this for MLB / Premier League...
Baseball Elimination: Formal Definition

Input:
- \(n \) teams: 1, 2, \ldots, \(n \)
- One particular team, say \(n \) (without loss of generality)
- Team \(i \) has won \(w_i \) games already
- Team \(i \) and \(j \) still need to play \(r_{ij} \) games, \(r_{ij} = 0 \) or 1.
- Team \(i \) has a total of \(r_i = \sum_j r_{ij} \) games to play

Output:
- “Yes”, if there is an outcome for each remaining game such that team \(n \) finishes with the most wins (tie is OK).
- “No”, if no such possibilities.

Brute-force algorithm:
- For each remaining game, consider two possible outcomes.
- Try all \(2^r \) possible combinations, where \(r = \sum_{i,j} r_{ij} \)
Can team \(n \) finish with most wins?

- Assume team \(n \) wins all remaining games \(\Rightarrow w_n + r_n \) wins.
- All other teams must have \(\leq w_n + r_n \) wins.

Flow network construction:

- A source \(s \) and a target \(t \)
- A node for each remaining game \((i, j)\); and an edge from \(s \) to it with capacity 1
- A node for each team \(i = 1, 2, \ldots, n - 1 \); and an edge from it to \(t \) with capacity \(w_n + r_n - w_i \)
- Game node \((i, j)\) has edges to team node \(i \) and \(j \), with capacity 1

Baseball Elimination: Max Flow Formulation
Baseball Elimination: Max Flow Formulation

Claim: There is a way for team \(n \) to finish in the first place iff the max flow has value \(r = \sum_{i,j} r_{ij} \).

Proof: “⇒”: Suppose there is an outcome for each remaining game such that team \(n \) finishes the first. First set \(f(s, (i, j)) = 1 \) for all \((i, j) \).

For each remaining game \((i, j)\):
- if \(i \) wins, set \(f((i, j), i) = 1 \) and \(f((i, j), j) = 0 \);
- if \(j \) wins, set \(f((i, j), j) = 1 \) and \(f((i, j), i) = 0 \).

Team \(i \) wins \(\leq w_n + r_n - w_i \) games, so it can send all incoming flow to \(t \).
Proof: “⇐”: Suppose the max flow f has $|f| = r$. It must saturate all edges out of s.

Look at each game node (i, j). Exactly one of its outgoing edges must have 1 unit of flow (integrality property):

- If $f((i, j), i) = 1$, let i win the game;
- If $f((i, j), j) = 1$, let j win the game.

Team node i receives $\leq w_n + r_n - w_i$ units of flow, each corresponding to one win, so it cannot beat team n.

Baseball Elimination: Max Flow Formulation

game nodes

team nodes
Baseball Elimination: Extensions

Q: What if r_{ij} can be more than 1?

Q: Can this be used for football (soccer) leagues?
 - Using the old rule: Winner takes 2 points, loser 0 point; each team gets 1 point in case of a tie.