
Deterministic Linear Time Selection

Revised October 7, 2014

Problem. Given a sequence of numbers
a1, . . . , an and an integer i ∈ [1, n], find the
ith smallest element. When i = ⌈n/2⌉, this is
called the median problem.
A trivial O(n log n) algorithm is to first sort the

numbers in O(n log n) time and then find the ith
number in either O(1) time or O(n) time depending
on whether the sorted sequence is stored in an array
or linked list. We already saw an O(n) expected
time randomized algorithm for this problem. In
this lecture we develop an O(n) worst-case time
algorithm.

Partition. Recall the partition subroutine that
was already used in Quicksort and randomized se-
lection. Given an array A[1..n] of distinct numbers,
two indices p ≤ r and x = A[i] for some i ∈ [p, r],
rearrange the subarray A[p..r] into two (possibly
empty) subarrays A[p..q− 1] and A[q+1..r] where
now x = A[q] and

A[k] ≤ A[q] < A[l]

for any p ≤ k ≤ q − 1 and q + 1 ≤ l ≤ r. The
value in A[q] is called the pivot. Recall that Quick-
sort worked by first calling partition and then re-
cursively sorting the two subarrays A[p..q− 1] and
A[q + 1, r], while randomized selction worked by
calling partition and then recursing on either the
left or right subarray as appropriate.
In deterministic Quicksort we always chose A[r]

as the pivot. In randomized Quicksort and selec-
tion we chose a random item as the pivot.

A first attempt. A straightforward application
of partition in a divide-and-conquer algorithm for
the selection problem would work by always choos-
ing A[r] as the pivot. That is, suppose that we want
to select the ith smallest number in the subarray
A[p, r].

• First run partition on A[p..r] and let A[p..q−1]
and A[q + 1..r] be the rearranged subarrays
returned. The rank of the entry A[q] within
A[p..r] is q − p+ 1.

• If i = q − p + 1, the pivot A[q] is the answer;
return it and stop.

• If i < q − p + 1, then A[p..q − 1] contains the
requested entry, which is also the ith smallest
number in A[p..q − 1]. So we can recurse on
A[p..q − 1].

• If i > q − p + 1, we recurse on A[q + 1, r] to
look for the (i− q + p− 1)th smallest number
in A[q + 1, r].

The disadvantage of this method is that it runs in
O(n2) time in the worst case on A[1..n]. Consider
the following example. The array A[1..n] contains
the numbers in increasing order and we are looking
for the smallest number in A[1..n]. The first call of
partition does nothing and then we recurse on the
subarray A[1..n − 1]. The second call of partition
also does nothing and we recurse on A[1..n − 2]
afterward. This gives a recurrence T (n) = T (n −
1) + O(n), which solves to T (n) = O(n2). The
quadratic running time stems from the imbalanced
division in the worst case.

An improvement. The intuition is to find a
pivot so that the resulting division is roughly bal-
anced, i.e., there exists a constant α ∈ (0, 1) such
that at least αn numbers are less than the pivot
and at least αn numbers are greater than the pivot.
The algorithm finds the ith smallest number within
A[p..q] as follows.

1. Divide the n = r−p+1 items into ⌈n/5⌉ sets in
which each, except possibly the last, contains
5 items.

2. Find the median of each of the ⌈n/5⌉ sets.
This can be done by, e.g., insertion sorting
each set.

3. Take these ⌈n/5⌉ medians and put them in an-
other array. Recursively calculate the median
of these medians. Call this x.

4. Partition the original array using x as the
pivot. Let q be index of x.

1



5. If i = q − p + 1, return x. If i < q − p +
1, recursively find the ith smallest number in
A[p..q − 1]. If i > k, recursively find the (i −
q + p− 1)th smallest number in A[q + 1..r].

To visualize the algorithm’s steps, it helps to
form a matrix with each of the n/5 sets as columns,
each column sorted in increasing order from top to
bottom. The median of each column is the mid-
dle element in the column. The median x of the
medians of the n/5 sets is the “middle” element of
the matrix. If we remove the row and the column
containing this “middle” element x , the remain-
ing parts form four quadrants. The numbers in the
upper left quadrant are less than x and the num-
bers in the lower right qudrant are greater than x.
Hence, we roughly ensures that at least n/4 num-
bers are less than x and at least n/4 are greater
than x. We give a more precise analysis below.

Lemma 1 At least 3n/10− 6 numbers are greater
(less) than the pivot.

Proof. At least half of the ⌈n/5⌉ medians in step
2 are greater than or equal to to x. Ignoring the
group to which x belongs and the final group (con-
taining possibly fewer than 5 numbers), we have
1
2⌈n/5⌉− 2 groups whose medians are greater than
x. Each such group has at least three numbers
greater than x. Hence, at least 3

2⌈n/5⌉ − 6 ≥
3n/10 − 6 are greater than x. A symmetric ar-
gument shows that at least 3n/10− 6 numbers are
less than x.

The above results implies that the algorithm re-
curses on at most 7n/10 + 6 numbers.
To construct the recurrence first note that step

2 can be implemented using ≤ a′n comparisons for
some constant a′. If, for example, we use Insertion
sort, a′ = 2 (why?).
Step 4 requires ≤ n comparisons so, setting a =

a′ + 1, gives the following recurrence:

T (1) = 0.

T (n) ≤ T (⌈n/5⌉) + T (7n/10 + 6) + an.

We verify by induction that T (n) ≤ cn for some
constant c as follows.

T (n) ≤ T (⌈n/5⌉) + T (7n/10 + 6) + an

≤ c⌈n/5⌉+ c(7n/10 + 6) + an

≤ cn/5 + c+ 7cn/10 + 6c+ an

= 9cn/10 + 7c+ an

= cn+ (−cn/10 + 7c+ an)

To prove T (n) ≤ cn by induction we need to find
N ≥ 0 and a condition on c such that,
for all n > 0, −cn/10+7c+an < 0 or, equivalently,

∀n > N, c ≥ 10a
n

n− 70
.

If we set N = 70 this will be true if we set c ≥ 710a.
If we set N = 140 this will be true if we set c ≥ 20a.

Note that this only guarantees that the induction
will work. We still need to set the initial conditions
by having T (n) ≤ c(n) for all n > 0. This can be

satisfied by also requiring that c ≥ maxi≤N

T (n)
n

.
That is, we can set

c = max

(

max
n≤70

T (n)

n
, 710a

)

or

c = max

(

max
n≤140

T (n)

n
, 20a

)

.

More generally, any c of the form

c ≥ max

(

max
n≤N

T (n)

n
, 10α

N

N − 69

)

.

with N ≥ 70 would work.

Final Notes. Note that this algorithm is a very
different type of divide-and-conquer recursion. In
all of the previous divide and conquer algorithms
we solved subproblems and built the larger solu-
tion directly out of the subproblem solutions. The
solution to this problem added a new twist. It first
solved a small subproblem to find the pivot x. Only
after that (using the x), did it recurse to solve a
subproblem whose solution would give us the real
solution.

Historically, whether selection could be solved
(deterministically) in less than sorting time was a
big open question. The publication of this algo-
rithm in 1971 [1] was an eye-opener for algorithm
design.

References

[1] Manuel Blum, Robert W. Floyd, Vaughan
Pratt, Ronald L. Rivest, and Robert E. Tarjan,
Time bounds for selection, Journal of computer
and system sciences, 7(4), (1973), pp. 448–461

Note: This document was written by M J.

Golin, revised from an original by S.W. Cheng, for

COMP3711H, HKUST.

2


