Outline:

- **Introduction**
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Already saw some divide and conquer algorithms

Divide
- Divide a given problem into a or more subproblems (ideally of approximately equal size n/b)

Conquer
- Solve each subproblem (directly if small enough or recursively)

 $$a \cdot T(n/b)$$

Combine
- Combine the solutions of the subproblems into a global solution $f(n)$

Cost satisfies $T(n) = aT(n/b) + f(n)$.
Two major examples so far
 - Maximum Contiguous Subarray
 - Mergesort
Both satisfied $T(n) = 2T(n/2) + O(n)$
 $\Rightarrow T(n) = O(n \log n)$

Also saw Quicksort
 - Divide and Conquer, but unequal size problems
Divide and Conquer Analysis

Main tool is the *Master Theorem* for solving recurrences of form

\[T(n) = aT(n/b) + f(n) \]

where

- \(a \geq 1 \) and \(b \geq 1 \) are constants and
- \(f(n) \) is a (asymptotically) positive function.
- Note: Initial conditions \(T(1), T(2), \ldots, T(k) \) for some \(k \). They don’t contribute to asymptotic growth
- \(n/b \) could be either \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \Theta(n^c) \)
The Master Theorem

\[T(n) = aT\left(\frac{n}{b}\right) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta \left(n^{c-\epsilon} \right) \) for some \(\epsilon > 0 \) then \(T(n) = \Theta(n^c) \)
- If \(T(n) = 4T\left(\frac{n}{2}\right) + n \) then \(T(n) = \Theta(n^2) \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58...}) \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \Theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}) \)

- If \(f(n) = \Theta(n^c) \) then \(T(n) = \Theta(n^c \log n) \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}) \)

- If \(f(n) = \Theta(n^c) \) then \(T(n) = \Theta(n^c \log n) \)
 - If \(T(n) = 2T(n/2) + n \) then \(T(n) = \Theta(n \log n) \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58...}) \)

- If \(f(n) = \Theta(n^c) \) then \(T(n) = \Theta(n^c \log n) \)
 - If \(T(n) = 2T(n/2) + n \) then \(T(n) = \Theta(n \log n) \)

- If \(f(n) = \Theta(n^{c+\epsilon}) \) for some \(\epsilon > 0 \)
 and if \(af(n/b) \leq df(n) \) for some \(d < 1 \) and large enough \(n \)
 then \(T(n) = O(f(n)) \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}) \)

- If \(f(n) = \Theta(n^c) \) then \(T(n) = \Theta(n^c \log n) \)
 - If \(T(n) = 2T(n/2) + n \) then \(T(n) = \Theta(n \log n) \)

- If \(f(n) = \Theta(n^{c+\epsilon}) \) for some \(\epsilon > 0 \) and if \(af(n/b) \leq df(n) \) for some \(d < 1 \) and large enough \(n \) then \(T(n) = O(f(n)) \)
 - If \(T(n) = T(n/2) + n \) then \(T(n) = \Theta(n) \)
There are many variations of the Master Theorem. Here’s one...

- If $T(n) = T(3n/4) + T(n/5) + n$ then $T(n) = \Theta(n)$
There are many variations of the Master Theorem. Here’s one...

- If \(T(n) = T(3n/4) + T(n/5) + n \) then \(T(n) = \Theta(n) \)

- More generally, given constants \(\alpha_i > 0 \) with \(\sum_i \alpha_i < 1 \),
 if \(T(n) = n + \sum_{i=1}^{k} T(\alpha_i n) \)
 then \(T(n) = \Theta(n) \).
Objective and Outline

Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

\[A(x) = a_0 + a_1x + \cdots + a_nx^n \]
\[B(x) = b_0 + b_1x + \cdots + b_mx^m \]

Compute the product \(A(x)B(x) \)
The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

\[A(x) = a_0 + a_1 x + \cdots + a_n x^n \]
\[B(x) = b_0 + b_1 x + \cdots + b_m x^m \]

Compute the product \(A(x)B(x) \)

Example

\[A(x) = 1 + 2x + 3x^2 \]
\[B(x) = 3 + 2x + 2x^2 \]
\[A(x)B(x) = 3 + 8x + 15x^2 + 10x^3 + 6x^4 \]
The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

\[A(x) = a_0 + a_1 x + \cdots + a_n x^n \]
\[B(x) = b_0 + b_1 x + \cdots + b_m x^m \]

Compute the product \(A(x)B(x) \)

Example

\[A(x) = 1 + 2x + 3x^2 \]
\[B(x) = 3 + 2x + 2x^2 \]
\[A(x)B(x) = 3 + 8x + 15x^2 + 10x^3 + 6x^4 \]

- Assume that the coefficients \(a_i \) and \(b_i \) are stored in arrays \(A[0 \ldots n] \) and \(B[0 \ldots m] \)
The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

\[
A(x) = a_0 + a_1x + \cdots + a_nx^n
\]

\[
B(x) = b_0 + b_1x + \cdots + b_mx^m
\]

Compute the product \(A(x)B(x) \)

Example

\[
A(x) = 1 + 2x + 3x^2
\]

\[
B(x) = 3 + 2x + 2x^2
\]

\[
A(x)B(x) = 3 + 8x + 15x^2 + 10x^3 + 6x^4
\]

- Assume that the coefficients \(a_i \) and \(b_i \) are stored in arrays \(A[0 \ldots n] \) and \(B[0 \ldots m] \)
- **Cost:** number of scalar multiplications and additions
What do we need to compute exactly?

Define

- \[A(x) = \sum_{i=0}^{n} a_i x^i \]
- \[B(x) = \sum_{i=0}^{m} b_i x^i \]

Then

\[c_k = \sum_{0 \leq i \leq n, 0 \leq j \leq m, i+j = k} a_i b_j \]

for all \(0 \leq k \leq m+n \)

Definition

The vector \((c_0, c_1, \ldots, c_{m+n})\) is the convolution of the vectors \((a_0, a_1, \ldots, a_n)\) and \((b_0, b_1, \ldots, b_m)\)

While polynomial multiplication is interesting, the real goal is to calculate convolutions. Major subroutine in digital signal processing.
What do we need to compute exactly?

Define

- \(A(x) = \sum_{i=0}^{n} a_i x^i \)
- \(B(x) = \sum_{i=0}^{m} b_i x^i \)
- \(C(x) = A(x)B(x) = \sum_{k=0}^{n+m} c_k x^k \)
What do we need to compute exactly?

Define

- \(A(x) = \sum_{i=0}^{n} a_i x^i \)
- \(B(x) = \sum_{i=0}^{m} b_i x^i \)
- \(C(x) = A(x)B(x) = \sum_{k=0}^{n+m} c_k x^k \)

Then

\[
c_k = \sum_{0 \leq i \leq n, \ 0 \leq j \leq m, \ i+j=k} a_i b_j \quad \text{for all} \ 0 \leq k \leq m + n
\]

Definition

The vector \((c_0, c_1, \ldots, c_{m+n})\) is the **convolution** of the vectors \((a_0, a_1, \ldots, a_n)\) and \((b_0, b_1, \ldots, b_m)\)
Define

- \(A(x) = \sum_{i=0}^{n} a_i x^i \)
- \(B(x) = \sum_{i=0}^{m} b_i x^i \)
- \(C(x) = A(x)B(x) = \sum_{k=0}^{n+m} c_k x^k \)

Then

\[
c_k = \sum_{0 \leq i \leq n, \ 0 \leq j \leq m, \ i+j=k} a_i b_j \quad \text{for all } 0 \leq k \leq m + n
\]

Definition

The vector \((c_0, c_1, \ldots, c_{m+n})\) is the convolution of the vectors \((a_0, a_1, \ldots, a_n)\) and \((b_0, b_1, \ldots, b_m)\)

While polynomial multiplication is interesting, real goal is to calculate convolutions. *Major* subroutine in digital signal processing
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
To ease analysis, assume $n = m$.
To ease analysis, assume $n = m$.

- $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{n} b_i x^i$
- $C(x) = A(x)B(x) = \sum_{k=0}^{2n} c_k x^k$ with

 $$c_k = \sum_{0 \leq i, j \leq n, i + j = k} a_i b_j, \quad \text{for all } 0 \leq k \leq 2n$$
To ease analysis, assume $n = m$.

- $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{n} b_i x^i$
- $C(x) = A(x)B(x) = \sum_{k=0}^{2n} c_k x^k$ with

 \[
c_k = \sum_{0 \leq i, j \leq n, i+j=k} a_i b_j, \quad \text{for all } 0 \leq k \leq 2n
 \]

Direct approach:
Direct (Brute Force) Approach

To ease analysis, assume \(n = m \).

- \(A(x) = \sum_{i=0}^{n} a_i x^i \) and \(B(x) = \sum_{i=0}^{n} b_i x^i \)

- \(C(x) = A(x)B(x) = \sum_{k=0}^{2n} c_k x^k \) with

\[
 c_k = \sum_{0 \leq i, j \leq n, i+j=k} a_i b_j, \quad \text{for all } 0 \leq k \leq 2n
\]

Direct approach: Compute all \(c_k \)'s using the formula above
Direct (Brute Force) Approach

To ease analysis, assume $n = m$.

- $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{n} b_i x^i$

- $C(x) = A(x)B(x) = \sum_{k=0}^{2n} c_k x^k$ with

 $$c_k = \sum_{0 \leq i, j \leq n, i + j = k} a_i b_j, \quad \text{for all } 0 \leq k \leq 2n$$

Direct approach: Compute all c_k's using the formula above

- Total number of multiplications: $\Theta(n^2)$
- Total number of additions: $\Theta(n^2)$
- Complexity: $\Theta(n^2)$
Outline:
- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Assume n is a power of 2

Define

$$A_0(x) = a_0 + a_1 x + \cdots + a_{\frac{n}{2} - 1} x^{\frac{n}{2} - 1}$$

$$A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2} + 1} x + \cdots + a_n x^{\frac{n}{2}}$$

$$A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}$$
Assume n is a power of 2
Define

\[
A_0(x) = a_0 + a_1x + \cdots + a_{n/2-1}x^{n/2-1}
\]
\[
A_1(x) = a_{n/2} + a_{n/2+1}x + \cdots + a_nx^{n/2}
\]
\[
A(x) = A_0(x) + A_1(x)x^{n/2}
\]

Similarly, define $B_0(x)$ and $B_1(x)$ such that

\[
B(x) = B_0(x) + B_1(x)x^{n/2}
\]
Assume n is a power of 2
Define

\[
A_0(x) = a_0 + a_1 x + \cdots + a_{n/2 - 1} x^{n/2 - 1} \\
A_1(x) = a_{n/2} + a_{n/2 + 1} x + \cdots + a_n x^{n/2} \\
A(x) = A_0(x) + A_1(x) x^{n/2}
\]

Similarly, define $B_0(x)$ and $B_1(x)$ such that

\[
B(x) = B_0(x) + B_1(x) x^{n/2}
\]

$A(x)B(x) =$
Divide and Conquer: Divide

Assume \(n \) is a power of 2

Define

\[
A_0(x) = a_0 + a_1 x + \cdots + a_{\frac{n}{2} - 1} x^{{\frac{n}{2} - 1}}
\]

\[
A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2} + 1} x + \cdots + a_n x^{\frac{n}{2}}
\]

\[
A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}
\]

Similarly, define \(B_0(x) \) and \(B_1(x) \) such that

\[
B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}
\]

\[
A(x)B(x) = A_0(x)B_0(x) +
\]
Assume \(n \) is a power of 2

Define

\[
A_0(x) = a_0 + a_1 x + \cdots + a_{n/2 - 1} x^{n/2 - 1}
\]

\[
A_1(x) = a_{n/2} + a_{n/2 + 1} x + \cdots + a_n x^{n/2}
\]

\[
A(x) = A_0(x) + A_1(x) x^{n/2}
\]

Similarly, define \(B_0(x) \) and \(B_1(x) \) such that

\[
B(x) = B_0(x) + B_1(x) x^{n/2}
\]

\[
A(x)B(x) = A_0(x)B_0(x) + A_0(x)B_1(x) x^{n/2} +
\]
Assume n is a power of 2
Define

$$A_0(x) = a_0 + a_1x + \cdots + a_{\frac{n}{2}-1}x^{\frac{n}{2}-1}$$
$$A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2}+1}x + \cdots + a_nx^\frac{n}{2}$$
$$A(x) = A_0(x) + A_1(x)x^\frac{n}{2}$$

Similarly, define $B_0(x)$ and $B_1(x)$ such that

$$B(x) = B_0(x) + B_1(x)x^\frac{n}{2}$$

$$A(x)B(x) = A_0(x)B_0(x) + A_0(x)B_1(x)x^\frac{n}{2} + A_1(x)B_0(x)x^\frac{n}{2} +$$
Assume n is a power of 2
Define

$$A_0(x) = a_0 + a_1 x + \cdots + a_{\frac{n}{2}-1} x^{\frac{n}{2}-1}$$

$$A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2}+1} x + \cdots + a_n x^{\frac{n}{2}}$$

$$A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}$$

Similarly, define $B_0(x)$ and $B_1(x)$ such that

$$B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}$$

$$A(x)B(x) = A_0(x)B_0(x) + A_0(x)B_1(x) x^{\frac{n}{2}} + A_1(x)B_0(x) x^{\frac{n}{2}} + A_1(x)B_1(x) x^n$$
Assume n is a power of 2

Define

\[A_0(x) = a_0 + a_1 x + \cdots + a_{\frac{n}{2}-1} x^{\frac{n}{2}-1} \]

\[A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2}+1} x + \cdots + a_n x^{\frac{n}{2}} \]

\[A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}} \]

Similarly, define $B_0(x)$ and $B_1(x)$ such that

\[B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}} \]

\[A(x)B(x) = A_0(x)B_0(x) + A_0(x)B_1(x) x^{\frac{n}{2}} + A_1(x)B_0(x) x^{\frac{n}{2}} + A_1(x)B_1(x) x^n \]

The original problem (of size n) is divided into 4 problems of input size $n/2$
Example

\[A(x) = 2 + 5x + 3x^2 + x^3 - x^4 \]
\[B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \]
\[A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]

\[A_0(x) = 2 + 5x, A_1(x) = 3 + x - x^2, A(x) = A_0(x) + A_1(x)x^2 \]
Example

\[A(x) = 2 + 5x + 3x^2 + x^3 - x^4 \]
\[B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \]
\[A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]

\[A_0(x) = 2 + 5x, A_1(x) = 3 + x - x^2, A(x) = A_0(x) + A_1(x)x^2 \]
\[B_0(x) = 1 + 2x, B_1(x) = 2 + 3x + 6x^2, B(x) = B_0(x) + B_1(x)x^2 \]
Example

\[
A(x) = 2 + 5x + 3x^2 + x^3 - x^4
\]
\[
B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4
\]
\[
A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8
\]

\[
A_0(x) = 2 + 5x, \quad A_1(x) = 3 + x - x^2, \quad A(x) = A_0(x) + A_1(x)x^2
\]
\[
B_0(x) = 1 + 2x, \quad B_1(x) = 2 + 3x + 6x^2, \quad B(x) = B_0(x) + B_1(x)x^2
\]

\[
A_0(x)B_0(x) = 2 + 9x + 10x^2
\]
\[
A_1(x)B_1(x) = 6 + 11x + 19x^2 + 3x^3 - 6x^4
\]
\[
A_0(x)B_1(x) = 4 + 16x + 27x^2 + 30x^3
\]
\[
A_1(x)B_0(x) = 3 + 7x + x^2 - 2x^3
\]
Example

\[A(x) = 2 + 5x + 3x^2 + x^3 - x^4 \]
\[B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \]
\[A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]

\[A_0(x) = 2 + 5x, \ A_1(x) = 3 + x - x^2, \ A(x) = A_0(x) + A_1(x)x^2 \]
\[B_0(x) = 1 + 2x, \ B_1(x) = 2 + 3x + 6x^2, \ B(x) = B_0(x) + B_1(x)x^2 \]

\[A_0(x)B_0(x) = 2 + 9x + 10x^2 \]
\[A_1(x)B_1(x) = 6 + 11x + 19x^2 + 3x^3 - 6x^4 \]
\[A_0(x)B_1(x) = 4 + 16x + 27x^2 + 30x^3 \]
\[A_1(x)B_0(x) = 3 + 7x + x^2 - 2x^3 \]

\[A_0(x)B_1(x) + A_1(x)B_0(x) = 7 + 23x + 28x^2 + 28x^3 \]

\[A_0(x)B_0(x) + (A_0(x)B_1(x) + A_1(x)B_0(x))x^2 + A_1(x)B_1(x)x^4 \]
Example

\[A(x) = 2 + 5x + 3x^2 + x^3 - x^4 \]
\[B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \]
\[A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]

\[A_0(x) = 2 + 5x, \ A_1(x) = 3 + x - x^2, \ A(x) = A_0(x) + A_1(x)x^2 \]
\[B_0(x) = 1 + 2x, \ B_1(x) = 2 + 3x + 6x^2, \ B(x) = B_0(x) + B_1(x)x^2 \]

\[A_0(x)B_0(x) = 2 + 9x + 10x^2 \]
\[A_1(x)B_1(x) = 6 + 11x + 19x^2 + 3x^3 - 6x^4 \]
\[A_0(x)B_1(x) = 4 + 16x + 27x^2 + 30x^3 \]
\[A_1(x)B_0(x) = 3 + 7x + x^2 - 2x^3 \]
\[A_0(x)B_1(x) + A_1(x)B_0(x) = 7 + 23x + 28x^2 + 28x^3 \]

\[A_0(x)B_0(x) + (A_0(x)B_1(x) + A_1(x)B_0(x))x^2 + A_1(x)B_1(x)x^4 = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]
Conquer: Solve the four subproblems

- compute

\[A_0(x)B_0(x), \quad A_0(x)B_1(x), \quad A_1(x)B_0(x), \quad A_1(x)B_1(x) \]
Conquer: Solve the four subproblems

- compute

\[A_0(x)B_0(x), \quad A_0(x)B_1(x), \quad A_1(x)B_0(x), \quad A_1(x)B_1(x) \]

by recursively calling the algorithm 4 times
Conquer: Solve the four subproblems

- compute

\[A_0(x)B_0(x), \quad A_0(x)B_1(x), \quad A_1(x)B_0(x), \quad A_1(x)B_1(x) \]

by recursively calling the algorithm 4 times

Combine
Conquer: Solve the four subproblems
- compute
 \[A_0(x)B_0(x), \ A_0(x)B_1(x), \ A_1(x)B_0(x), \ A_1(x)B_1(x) \]
 by recursively calling the algorithm 4 times

Combine
- adding the following four polynomials
 \[A_0(x)B_0(x) + A_0(x)B_1(x)x^{\frac{n}{2}} + A_1(x)B_0(x)x^{\frac{n}{2}} + A_1(x)B_1(x)x^n \]
- takes \(O(n) \) operations (Why?)
The First Divide-and-Conquer Algorithm

PolyMulti1(A(x), B(x))

begin

\[A_0(x) = a_0 + a_1x + \cdots + a_{\frac{n}{2} - 1}x_{\frac{n}{2} - 1}; \]

\[A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2} + 1}x + \cdots + a_nx_{\frac{n}{2}}; \]

\[B_0(x) = b_0 + b_1x + \cdots + b_{\frac{n}{2} - 1}x_{\frac{n}{2} - 1}; \]

\[B_1(x) = b_{\frac{n}{2}} + b_{\frac{n}{2} + 1}x + \cdots + b_nx_{\frac{n}{2}}; \]

end
PolyMulti1(A(x), B(x))

begin

\[
\begin{align*}
A_0(x) &= a_0 + a_1 x + \cdots + a_{\frac{n}{2} - 1} x_{\frac{n}{2} - 1}; \\
A_1(x) &= a_{\frac{n}{2}} + a_{\frac{n}{2} + 1} x + \cdots + a_n x_{\frac{n}{2}}; \\
B_0(x) &= b_0 + b_1 x + \cdots + b_{\frac{n}{2} - 1} x_{\frac{n}{2} - 1}; \\
B_1(x) &= b_{\frac{n}{2}} + b_{\frac{n}{2} + 1} x + \cdots + b_n x_{\frac{n}{2}}; \\
U(x) &= PolyMulti1(A_0(x), B_0(x)); \\
V(x) &= PolyMulti1(A_0(x), B_1(x)); \\
W(x) &= PolyMulti1(A_1(x), B_0(x)); \\
Z(x) &= PolyMulti1(A_1(x), B_1(x));
\end{align*}
\]
The First Divide-and-Conquer Algorithm

PolyMulti1(A(x), B(x))

begin
\[
\begin{align*}
A_0(x) &= a_0 + a_1 x + \cdots + a_{\frac{n}{2}-1} x^{\frac{n}{2}-1}; \\
A_1(x) &= a_{\frac{n}{2}} + a_{\frac{n}{2}+1} x + \cdots + a_n x^{\frac{n}{2}}; \\
B_0(x) &= b_0 + b_1 x + \cdots + b_{\frac{n}{2}-1} x^{\frac{n}{2}-1}; \\
B_1(x) &= b_{\frac{n}{2}} + b_{\frac{n}{2}+1} x + \cdots + b_n x^{\frac{n}{2}}; \\
U(x) &= PolyMulti1(A_0(x), B_0(x)); \\
V(x) &= PolyMulti1(A_0(x), B_1(x)); \\
W(x) &= PolyMulti1(A_1(x), B_0(x)); \\
Z(x) &= PolyMulti1(A_1(x), B_1(x)); \\
\text{return} \ (U(x) + [V(x) + W(x)] x^{\frac{n}{2}} + Z(x) x^n)
\end{align*}
\]
end
Assume that n is a power of 2

$$T(n) = \begin{cases}
4T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases}$$

By the Master Theorem for recurrences

$$T(n) = \Theta(n^2).$$
Assume that n is a power of 2

$$T(n) = \begin{cases}
4T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases}$$

By the Master Theorem for recurrences

$$T(n) = \Theta(n^2).$$

Same order as the brute force approach!

No improvement!
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Two Observations

Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]
Two Observations

Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[Y = (A_0 + A_1)(B_0 + B_1), \ U = A_0 B_0, \ Z = A_1 B_1! \]
Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[
\begin{align*}
Y &= (A_0 + A_1)(B_0 + B_1) \\
U &= A_0 B_0 \\
Z &= A_1 B_1
\end{align*}
\]
Two Observations

Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[Y = (A_0 + A_1)(B_0 + B_1) \]
\[U = A_0 B_0 \]
\[Z = A_1 B_1 \]

● *We need U and Z and*
Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[
\begin{align*}
Y &= (A_0 + A_1)(B_0 + B_1) \\
U &= A_0 B_0 \\
Z &= A_1 B_1
\end{align*}
\]

*We need U and Z and
\[A_0 B_1 + A_1 B_0 = \]
Observation 1:

We said that we need the 4 terms:

\[A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ A_1 B. \]

What we really need are the 3 terms:

\[A_0 B_0, \ A_0 B_1 + A_1 B_0, \ A_1 B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[Y = (A_0 + A_1)(B_0 + B_1) \]
\[U = A_0 B_0 \]
\[Z = A_1 B_1 \]

- We need U and Z and
- $A_0 B_1 + A_1 B_0 = Y - U - Z$
The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

begin

\[A_0(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{\frac{n}{2} - 1}; \]
\[A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2} + 1} x + \cdots + a_n x^{n - \frac{n}{2}}; \]
\[B_0(x) = b_0 + b_1 x + \cdots + b_{\frac{n}{2} - 1} x^{\frac{n}{2} - 1}; \]
\[B_1(x) = b_{\frac{n}{2}} + b_{\frac{n}{2} + 1} x + \cdots + b_n x^{n - \frac{n}{2}}; \]

end
The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

begin
\begin{align*}
A_0(x) &= a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}; \\
A_1(x) &= a_n + a_{n+1} x + \cdots + a_{n} x^{n-1}; \\
B_0(x) &= b_0 + b_1 x + \cdots + b_{n-1} x^{n-1}; \\
B_1(x) &= b_n + b_{n+1} x + \cdots + b_{n} x^{n-1}; \\
Y(x) &= \text{PolyMulti2}(A_0(x) + A_1(x), B_0(x) + B_1(x)); \\
U(x) &= \text{PolyMulti2}(A_0(x), B_0(x)); \\
Z(x) &= \text{PolyMulti2}(A_1(x), B_1(x)); \\
\text{return} &\left(U(x) + [Y(x) - U(x) - Z(x)] x^{n/2} + Z(x) x^{2n/2} \right)
\end{align*}
end
Running Time of the Modified Algorithm

\[T(n) = \begin{cases}
3T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases} \]
Running Time of the Modified Algorithm

\[T(n) = \begin{cases}
3T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases} \]

By the Master Theorem for recurrences

\[T(n) = \Theta(n^{\log_3 3}) = \Theta(n^{1.58...}). \]
Running Time of the Modified Algorithm

\[T(n) = \begin{cases}
3T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases} \]

By the Master Theorem for recurrences

\[T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}). \]

Much better than previous \(\Theta(n^2) \) algorithms!
Objective and Outline

Outline:
- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Remarks

- This algorithm can also be used for (long) integer multiplication
 - Really designed by Karatsuba (1960, 1962) for that purpose.
 - Response to conjecture by Kolmogorov, founder of modern probability, that this would require \(\Theta(n^2) \).
- Similar to technique developed by Strassen a few years later to multiply \(2n \times n \) matrices in \(O(n^{\log_2 7}) \) operations, instead of the \(\Theta(n^3) \) that a straightforward algorithm would use.
- Takeaway from this lesson is that divide-and-conquer doesn’t always give you faster algorithm. Sometimes, you need to be more clever.
- **Coming up.** An \(O(n \log n) \) solution to the polynomial multiplication problem
Remarks

- This algorithm can also be used for (long) integer multiplication
 - Really designed by Karatsuba (1960, 1962) for that purpose.
 - Response to conjecture by Kolmogorov, founder of modern probability, that this would require $\Theta(n^2)$.

- Similar to technique developed by Strassen a few years later to multiply $2 \times n \times n$ matrices in $O(n^{\log_2 7})$ operations, instead of the $\Theta(n^3)$ that a straightforward algorithm would use.

- Takeaway from this lesson is that divide-and-conquer doesn’t always give you faster algorithm. Sometimes, you need to be more clever.

- Coming up. An $O(n \log n)$ solution to the polynomial multiplication problem
 - It involves strange recasting of the problem and solution using the Fast Fourier Transform algorithm as a subroutine
 - The FFT is another classic D & C algorithm that we will learn soon.