All-Pairs Shortest Paths

Version of October 28, 2016
Another example of dynamic programming
Will see **two** different dynamic programming formulations for the same problem.

Outline

- The all-pairs shortest path problem.
- A first dynamic programming solution.
- The Floyd-Warshall algorithm
- Extracting shortest paths.
The All-Pairs Shortest Paths Problem

Input: weighted digraph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$

Find: lengths of the shortest paths (i.e., distance) between all pairs of vertices in G.

- we assume that there are no cycles with zero or negative cost.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The All-Pairs Shortest Paths Problem

Input: weighted digraph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$

Find: lengths of the shortest paths (i.e., distance) between all pairs of vertices in G.

- we assume that there are no cycles with zero or negative cost.

without negative cost cycle with negative cost cycle
Solution 1: Using Dijkstra’s Algorithm

- Where there are no negative cost edges.
 - Apply Dijkstra’s algorithm \(n \) times, once with each vertex (as the source) of the shortest path tree.
 - Recall that Dijkstra algorithm runs in \(\Theta(e \log n) \)
 - \(n = |V| \) and \(e = |E| \).
 - This gives a \(\Theta(ne \log n) \) time algorithm
 - If the digraph is dense, this is a \(\Theta(n^3 \log n) \) algorithm.

- When negative-weight edges are present:
 - Run the Bellman-Ford algorithm from each vertex.
 - \(O(n^2 e) \), which is \(O(n^4) \) for dense graphs.
 - We don’t learn Bellman-Ford in this class.
The all-pairs shortest path problem.
The all-pairs shortest path problem.

A first dynamic programming solution.
The all-pairs shortest path problem.
A first dynamic programming solution.
The Floyd-Warshall algorithm
Extracting shortest paths.
Input Format:

- To simplify the notation, we assume that $V = \{1, 2, \ldots, n\}$.
- Adjacency matrix: graph is represented by an $n \times n$ matrix containing edge weights

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E, \end{cases}$$
Input Format:

- To simplify the notation, we assume that $V = \{1, 2, \ldots, n\}$.
- Adjacency matrix: graph is represented by an $n \times n$ matrix containing edge weights

$$w_{ij} = \begin{cases}
0 & \text{if } i = j, \\
 w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E,
\end{cases}$$
Input Format:

- To simplify the notation, we assume that $V = \{1, 2, \ldots, n\}$.
- Adjacency matrix: graph is represented by an $n \times n$ matrix containing edge weights

\[w_{ij} = \begin{cases}
0 & \text{if } i = j, \\
w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\
\infty & \text{if } i \neq j \text{ and } (i, j) \notin E.
\]
Input Format:

- To simplify the notation, we assume that $V = \{1, 2, \ldots, n\}$.
- Adjacency matrix: graph is represented by an $n \times n$ matrix containing edge weights

\[
w_{ij} = \begin{cases}
0 & \text{if } i = j, \\
w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\
\infty & \text{if } i \neq j \text{ and } (i, j) \notin E.
\end{cases}
\]

Output Format: an $n \times n$ matrix $D = [d_{ij}]$ in which d_{ij} is the length of the shortest path from vertex i to j.
For $m = 1, 2, 3 \ldots$,

- Define $d^{(m)}_{ij}$ to be the length of the shortest path from i to j that contains at most m edges.
Step 1: Space of Subproblems

For $m = 1, 2, 3 \ldots$,

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges.
- Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.
Step 1: Space of Subproblems

For $m = 1, 2, 3 \ldots$,

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges.
- Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.

We will see (next page) that solution D satisfies $D = D^{n-1}$.
Step 1: Space of Subproblems

For $m = 1, 2, 3 \ldots$,

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges.
- Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.

We will see (next page) that solution D satisfies $D = D^{n-1}$.

Subproblems: (Iteratively) compute $D^{(m)}$ for $m = 1, \ldots, n - 1$.
For $m = 1, 2, 3 \ldots$,

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges.
- Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.

We will see (next page) that solution D satisfies $D = D^{n-1}$.

Subproblems: (Iteratively) compute $D^{(m)}$ for $m = 1, \ldots, n - 1$.
Lemma

\[D^{(n-1)} = D \]
Step 1: Space of Subproblems

Lemma

\[D^{(n-1)} = D, \ i.e. \]
\[d^{(n-1)}_{ij} = \text{true distance from } i \text{ to } j \]
Step 1: Space of Subproblems

Lemma

\[D^{(n-1)} = D, \text{ i.e.} \]
\[d_{ij}^{(n-1)} = \text{true distance from } i \text{ to } j \]

Proof.

We prove that any shortest path \(P \) from \(i \) to \(j \) contains at most \(n - 1 \) edges.
Lemma

\[D^{(n-1)}(i,j) = D(i,j), \text{ i.e.} \]
\[d^{(n-1)}_{ij} = \text{true distance from } i \text{ to } j \]

Proof.

We prove that any shortest path \(P \) from \(i \) to \(j \) contains at most \(n - 1 \) edges.

First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).
Lemma

\[D^{(n-1)} = D, \text{ i.e.} \]
\[d_{ij}^{(n-1)} = \text{true distance from } i \text{ to } j \]

Proof.

We prove that any shortest path \(P \) from \(i \) to \(j \) contains at most \(n - 1 \) edges.

First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).

A path without cycles can have length at most \(n - 1 \) (since a longer path must contain some vertex twice, that is, contain a cycle).
Consider a shortest path from i to j that contains at most m edges. Let k be the vertex immediately before j on the shortest path (possibly $k = i$).

Let $d^{(m-1)}_{ik}$ be the length of the sub-path from i to k, and w_{kj} the weight of the edge from k to j. Then

$$d^{(m)}_{ij} = d^{(m-1)}_{ik} + w_{kj}$$

Since we don't know k, we try all possible choices: $1 \leq k \leq n$. The final value of $d^{(m)}_{ij}$ is the minimum of all such paths.
Consider a **shortest path** from i to j that contains at most m edges.

Let k be the vertex immediately before j on the shortest path (k could be i).

The sub-path from i to k must be the shortest 1-k path with at most $m - 1$ edges. Then $d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}$.

$$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}.$$
Consider a shortest path from i to j that contains at most m edges.

Let k be the vertex immediately before j on the shortest path (k could be i).

The sub-path from i to k must be the shortest 1-k path with at most $m-1$ edges. Then

$$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}.$$

Since we don’t know k, we try all possible choices: $1 \leq k \leq n$.

\[\text{Step 2: Building } D^{(m)} \text{ from } D^{(m-1)}. \]
Step 2: Building $D^{(m)}$ from $D^{(m-1)}$.

Consider a shortest path from i to j that contains at most m edges.

Let k be the vertex immediately before j on the shortest path (k could be i).

The sub-path from i to k must be the shortest 1-k path with at most $m-1$ edges. Then

$$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}.$$

Since we don’t know k, we try all possible choices: $1 \leq k \leq n$.

$$d_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}$$
Step 3: Bottom-up Computation of $D^{(n-1)}$

- Initialization: $D^{(1)} = [w_{ij}]$, the weight matrix.

- Iteration step: Compute $D^{(m)}$ from $D^{(m-1)}$, for $m = 2, \ldots, n-1$, using

$$d^{(m)}_{ij} = \min_{1 \leq k \leq n} \left\{ d^{(m-1)}_{ik} + w_{kj} \right\}$$
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

\[
D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0 \\
\end{bmatrix}
\]

$D^{(2)}$ gives the distances between any pair of vertices.

\[
D^{(2)} = \begin{bmatrix}
0 & 3 & 7 & 14 & 15 & 0 & 4 & 11 \\
11 & 0 & 7 & 12 & 4 & 7 & 11 & 0 \\
\end{bmatrix}
\]

\[
D^{(3)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & 14 & 0 & 7 \\
4 & 7 & 11 & 0 \\
\end{bmatrix}
\]
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$
D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0 \\
\end{bmatrix}
$$

$$
d_{ij}^{(2)} = \min_{1 \leq k \leq 4} \{ d_{ik}^{(1)} + w_{kj} \}
$$
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0
\end{bmatrix}$$

$d_{ij}^{(2)} = \min_{1 \leq k \leq 4} \left\{ d_{ik}^{(1)} + w_{kj} \right\}$

$D^{(2)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & \infty & 0 & 7 \\
4 & 7 & 12 & 0
\end{bmatrix}$
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0
\end{bmatrix}$$

$$d_{ij}^{(2)} = \min_{1 \leq k \leq 4} \left\{ d_{ik}^{(1)} + w_{kj} \right\}$$

$$D^{(2)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & \infty & 0 & 7 \\
4 & 7 & 12 & 0
\end{bmatrix}$$

$$d_{ij}^{(3)} = \min_{1 \leq k \leq 4} \left\{ d_{ik}^{(2)} + w_{kj} \right\}$$

$$D^{(3)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & 14 & 0 & 7 \\
4 & 7 & 11 & 0
\end{bmatrix}$$

$D^{(3)}$ gives the distances between any pair of vertices.
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$
D^{(1)} = egin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0
\end{bmatrix}
$$

$$
d_{ij}^{(2)} = \min_{1 \leq k \leq 4} \left\{ d_{ik}^{(1)} + w_{kj} \right\}
$$

$$
D^{(2)} = egin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & \infty & 0 & 7 \\
4 & 7 & 12 & 0
\end{bmatrix}
$$

$$
d_{ij}^{(3)} = \min_{1 \leq k \leq 4} \left\{ d_{ik}^{(2)} + w_{kj} \right\}
$$

$$
D^{(3)} = egin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & 14 & 0 & 7 \\
4 & 7 & 11 & 0
\end{bmatrix}
$$

$D^{(3)}$ gives the distances between any pair of vertices.
\[d_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\} \]

for \(m = 1 \) to \(n - 1 \) do
 for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 \[\text{min} = \infty; \]
 for \(k = 1 \) to \(n \) do
 \[\text{new} = d_{ik}^{(m-1)} + w_{kj}; \]
 if \(\text{new} < \text{min} \) then
 \[\text{min} = \text{new} \]
 end
 end
 \[d_{ij}^{(m)} = \text{min}; \]
 end
 end
end
Running time \(O(n^4)\), much worse than the solution using Dijkstra’s algorithm.
Running time $O(n^4)$, much worse than the solution using Dijkstra’s algorithm.

Question

Can we improve this?
Repeated Squaring

We use the recurrence relation:
- Initialization: \(D^{(1)} = [w_{ij}] \), the weight matrix.

From equation, can calculate \(D^{(2i)} \) from \(D^{(2i-1)} \) in \(O(n^3) \) time.

We can therefore calculate all of \(D^{(2)} \), \(D^{(4)} \), \(D^{(8)} \), ..., \(D^{(2 \lceil \log_2 n \rceil)} = D^{(n-1)} \) in \(O(n^3 \log n) \) time, improving our running time.

Repeated Squaring

We use the recurrence relation:

- Initialization: \(D^{(1)} = [w_{ij}] \), the weight matrix.
- For \(s \geq 1 \) compute \(D^{(2s)} \) using

\[
d_{ij}^{(2s)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(s)} + d_{kj}^{(s)} \right\}
\]

From equation, can calculate \(D^{(2s)} \) from \(D^{(2s-1)} \) in \(O(n^3) \) time.

We have shown earlier that the shortest path between any two vertices contains no more than \(n - 1 \) edges. So \(D_i = D_{n-1} \) for all \(i \geq n \).

We can therefore calculate all of

\[
D^{(2)} , D^{(4)} , D^{(8)} , \ldots , D^{(2 \lceil \log_2 n \rceil)} = D^{(n-1)}
\]

in \(O(n^3 \log n) \) time, improving our running time.
Repeated Squaring

We use the recurrence relation:

- Initialization: $D^{(1)} = [w_{ij}]$, the weight matrix.
- For $s \geq 1$ compute $D^{(2s)}$ using
 \[
 d_{ij}^{(2s)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(s)} + d_{kj}^{(s)} \right\}
 \]
- From equation, can calculate $D^{(2^i)}$ from $D^{(2^{i-1})}$ in $O(n^3)$ time.
Repeated Squaring

We use the recurrence relation:

- Initialization: \(D^{(1)} = [w_{ij}] \), the weight matrix.
- For \(s \geq 1 \) compute \(D^{(2s)} \) using
 \[
 d^{(2s)}_{ij} = \min_{1 \leq k \leq n} \left\{ d^{(s)}_{ik} + d^{(s)}_{kj} \right\}
 \]
- From equation, can calculate \(D^{(2^i)} \) from \(D^{(2^{i-1})} \) in \(O(n^3) \) time.
- have shown earlier that the shortest path between any two vertices contains no more than \(n - 1 \) edges. So
 \[
 D^i = D^{(n-1)} \text{ for all } i \geq n.
 \]
Repeated Squaring

We use the recurrence relation:

- Initialization: $D^{(1)} = [w_{ij}]$, the weight matrix.
- For $s \geq 1$ compute $D^{(2s)}$ using

$$d_{ij}^{(2s)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(s)} + d_{kj}^{(s)} \right\}$$

- From equation, can calculate $D^{(2^i)}$ from $D^{(2^{i-1})}$ in $O(n^3)$ time.
- have shown earlier that the shortest path between any two vertices contains no more than $n - 1$ edges. So

$$D^i = D^{(n-1)} \text{ for all } i \geq n.$$

We can therefore calculate all of

$$D^{(2)}, D^{(4)}, D^{(8)}, \ldots, D^{(2^{\lceil \log_2 n \rceil})} = D^{(n-1)}$$

in $O(n^3 \log n)$ time, improving our running time.
The all-pairs shortest path problem.
The all-pairs shortest path problem.
A first dynamic programming solution.
• The all-pairs shortest path problem.
• A first dynamic programming solution.
• The Floyd-Warshall algorithm
• Extracting shortest paths.
Step 1: Space of subproblems

- The vertices $v_2, v_3, ..., v_{l-1}$ are called the intermediate vertices of the path $p = \langle v_1, v_2, ..., v_{l-1}, v_l \rangle$.
The vertices $v_2, v_3, \ldots, v_{l-1}$ are called the intermediate vertices of the path $p = \langle v_1, v_2, \ldots, v_{l-1}, v_l \rangle$.

For any $k=0, 1, \ldots, n$, let $d_{ij}^{(k)}$ be the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set $\{1, 2, \ldots, k\}$.
Step 1: Space of subproblems

- The vertices $v_2, v_3, \ldots, v_{l-1}$ are called the intermediate vertices of the path $p = \langle v_1, v_2, \ldots, v_{l-1}, v_l \rangle$.

- For any $k=0, 1, \ldots, n$, let $d_{ij}^{(k)}$ be the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set $\{1, 2, \ldots, k\}$.
$d_{ij}^{(k)}$ is the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set $\{1, 2, \ldots, k\}$.
Step 1: Space of subproblems

- \(d^{(k)}_{ij} \) is the **length of the shortest path** from \(i \) to \(j \) such that all intermediate vertices on the path (if any) are in the set \(\{1, 2, \ldots, k\} \).

- Let \(D^{(k)} \) be the \(n \times n \) matrix \([d^{(k)}_{ij}]\).
Step 1: Space of subproblems

- $d_{ij}^{(k)}$ is the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set \{1, 2, \ldots, k\}.
- Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.
- **Subproblems:** compute $D^{(k)}$ for $k = 0, 1, \ldots, n$.
Step 1: Space of subproblems

- $d_{ij}^{(k)}$ is the **length of the shortest path** from i to j such that all intermediate vertices on the path (if any) are in the set \{1, 2, \ldots, k\}.

- Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.

- **Subproblems**: compute $D^{(k)}$ for $k = 0, 1, \cdots, n$.

- **Original Problem**: $D = D^{(n)}$, i.e. $d_{ij}^{(n)}$ is the shortest distance from i to j.
Observation: For a shortest path from i to j with intermediate vertices from the set $\{1, 2, \ldots, k\}$, there are two possibilities:

1. k is not a vertex on the path:
 \[d(k)_{ij} = d(k-1)_{ij} \]

2. k is a vertex on the path:
 \[d(k)_{ij} = d(k-1)_{ik} + d(k-1)_{kj} \]

(Impossible for k to appear in path twice. Why?) So:

\[d(k)_{ij} = \min\{ d(k-1)_{ij}, d(k-1)_{ik} + d(k-1)_{kj} \} \]
Step 2: Relating Subproblems

Observation: For a shortest path from \(i\) to \(j\) with intermediate vertices from the set \(\{1, 2, \ldots, k\}\), there are two possibilities:

1. \(k\) is not a vertex on the path:

\[
\text{Observation: For a shortest path from } i \text{ to } j \text{ with intermediate vertices from the set } \{1, 2, \ldots, k\}, \text{ there are two possibilities:}

1. \(k\) is not a vertex on the path:

\[
\text{Sample Text: }
\]
Observation: For a shortest path from \(i\) to \(j\) with intermediate vertices from the set \(\{1, 2, \ldots, k\}\), there are two possibilities:

1. \(k\) is not a vertex on the path: \(d_{ij}^{(k)} = d_{ij}^{(k-1)}\)

2. \(k\) is a vertex on the path: \(d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\)

(Impossible for \(k\) to appear in path twice. Why?) So:

\[
\begin{align*}
d_{ij}^{(k)} &= \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}
\end{align*}
\]
Step 2: Relating Subproblems

Observation: For a shortest path from i to j with intermediate vertices from the set \{1, 2, \ldots, k\}, there are two possibilities:

1. k is not a vertex on the path: \[d_{ij}^{(k)} = d_{ij}^{(k-1)} \]

2. k is a vertex on the path: \[d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \]
Step 2: Relating Subproblems

Observation: For a shortest path from i to j with intermediate vertices from the set $\{1, 2, \ldots, k\}$, there are two possibilities:

1. k is not a vertex on the path: $d_{ij}^{(k)} = d_{ij}^{(k-1)}$

2. k is a vertex on the path: $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

(Impossible for k to appear in path twice. Why?) So:

$$d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}$$
Step 2: Relating Subproblems

Proof.

Consider a shortest path from i to j with intermediate vertices from the set $\{1, 2, \ldots, k\}$. Either it contains vertex k or it does not.

- If it does not contain vertex k, then its length must be $d_{ij}^{(k-1)}$.
- Otherwise, it contains vertex k, and we can decompose it into a subpath from i to k and a subpath from k to j.
- Each subpath can only contain intermediate vertices in...
Step 2: Relating Subproblems

Proof.

- Consider a shortest path from \(i \) to \(j \) with intermediate vertices from the set \(\{1, 2, \ldots, k\} \). Either it contains vertex \(k \) or it does not.

- If it does not contain vertex \(k \), then its length must be \(d_{ij}^{(k-1)} \).

- Otherwise, it contains vertex \(k \), and we can decompose it into a subpath from \(i \) to \(k \) and a subpath from \(k \) to \(j \).

- Each subpath can only contain intermediate vertices in \(\{1, \ldots, k - 1\} \), and must be as short as possible. Hence they have lengths

\[
\text{min}\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}
\]
Proof.

Consider a shortest path from i to j with intermediate vertices from the set $\{1, 2, \ldots, k\}$. Either it contains vertex k or it does not.

- If it does not contain vertex k, then its length must be $d_{ij}^{(k-1)}$.
- Otherwise, it contains vertex k, and we can decompose it into a subpath from i to k and a subpath from k to j.

Each subpath can only contain intermediate vertices in $\{1, \ldots, k-1\}$, and must be as short as possible. Hence they have lengths $d_{ik}^{(k-1)}$ and $d_{kj}^{(k-1)}$.

Hence the shortest path from i to j has length $\min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}$.
Step 3: Bottom-up Computation

- Initialization: $D^{(0)} = [w_{ij}]$, the weight matrix.

- Compute $D^{(k)}$ from $D^{(k-1)}$ using

$$d_{ij}^{(k)} = \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)$$

for $k = 1, \ldots, n$.
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\): \[d_{ij}^{(k)} = \]

```plaintext
Floyd-Warshall(\(w, n\)):
\[
d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})
\]
for \(i = 1\) to \(n\) do
  for \(j = 1\) to \(n\) do
    \(d_{0}[i, j] = w[i, j];\)\(\text{pred}[i, j] = \text{nil}\);\ // initialize
  end
end // dynamic programming
for \(k = 1\) to \(n\) do
  for \(i = 1\) to \(n\) do
    for \(j = 1\) to \(n\) do
      if \((d_{k-1}[i, k] + d_{k-1}[k, j]) < d_{k-1}[i, j]\) then
        \(d_{k}[i, j] = d_{k-1}[i, k] + d_{k-1}[k, j];\)
        \(\text{pred}[i, j] = k;\)
      else
        \(d_{k}[i, j] = d_{k-1}[i, j];\)
      end
    end
  end
end return \(d_{n}[1,..n,1,..n]\)
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall($w, n$): $d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)$

for $i = 1$ to $n$ do
  for $j = 1$ to $n$ do
    $d^{(0)}[i, j] = w[i, j]$; $pred[i, j] = nil$; // initialize
  end
end
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\): 
\[ d^{(k)}_{ij} = \min \left( d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right) \]

for \( i = 1 \) to \( n \) do
  for \( j = 1 \) to \( n \) do
    \( d^{(0)}[i,j] = w[i,j]; \ pred[i,j] = nil; \) // initialize
  end
end

// dynamic programming
for \( k = 1 \) to \( n \) do
  for \( i = 1 \) to \( n \) do
    for \( j = 1 \) to \( n \) do
      if \( d^{(k-1)}[i,k] + d^{(k-1)}[k,j] < d^{(k-1)}[i,j] \) then
        \( d^{(k)}[i,j] = d^{(k-1)}[i,k] + d^{(k-1)}[k,j] \);
        \( \text{pred}[i,j] = k \);
      end
end
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\): \(d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)\)

\[
\begin{align*}
\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad \text{for } j = 1 \text{ to } n \text{ do} \\
&\quad & d^{(0)}[i, j] = w[i, j]; \ pred[i, j] = nil; \quad // \text{initialize} \\
&\quad \text{end} \\
&\text{end} \\
&\quad \text{// dynamic programming} \\
&\text{for } k = 1 \text{ to } n \text{ do} \\
&\quad \text{for } i = 1 \text{ to } n \text{ do} \\
&\quad & \text{for } j = 1 \text{ to } n \text{ do} \\
&\quad & \quad \text{if } \left(d^{(k-1)}[i, k] + d^{(k-1)}[k, j] < d^{(k-1)}[i, j]\right) \text{ then} \\
&\quad & \quad & d^{(k)}[i, j] = d^{(k-1)}[i, k] + d^{(k-1)}[k, j]; \\
&\quad & \quad & \ pred[i, j] = k; \\
&\quad & \quad \text{else} \\
&\quad & \quad \text{end} \\
&\quad \text{end} \\
&\text{end} \\
&\text{return } d^{(n)}[1..n, 1..n]
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\): \(d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)\)

\[
\text{for } i = 1 \text{ to } n \text{ do }
\quad \text{for } j = 1 \text{ to } n \text{ do }
\quad \quad d^{(0)}[i, j] = w[i, j]; \text{ pred}[i, j] = \text{nil}; \quad // \text{ initialize}
\quad \text{end}
\text{end}
\]

// dynamic programming
\[
\text{for } k = 1 \text{ to } n \text{ do }
\quad \text{for } i = 1 \text{ to } n \text{ do }
\quad \quad \text{for } j = 1 \text{ to } n \text{ do }
\quad \quad \quad \text{if } \left( d^{(k-1)}[i, k] + d^{(k-1)}[k, j] < d^{(k-1)}[i, j] \right) \text{ then}
\quad \quad \quad \quad d^{(k)}[i, j] = d^{(k-1)}[i, k] + d^{(k-1)}[k, j];
\quad \quad \quad \quad \text{pred}[i, j] = k;
\quad \quad \quad \text{else}
\quad \quad \quad \text{end}
\quad \quad \text{end}
\quad \text{end}
\]
\[
\text{end}
\]
\[
\text{return } d^{(n)}[1..n, 1..n];
\]
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\):
\[
d^{(k)}_{ij} = \min\left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\right)
\]

for \(i = 1\) to \(n\) do
    for \(j = 1\) to \(n\) do
        \(d^{(0)}[i, j] = w[i, j];\) pred\([i, j]\) = nil; // initialize
    end
end

// dynamic programming
for \(k = 1\) to \(n\) do
    for \(i = 1\) to \(n\) do
        for \(j = 1\) to \(n\) do
            if \(d^{(k-1)}[i, k] + d^{(k-1)}[k, j] < d^{(k-1)}[i, j]\) then
                \(d^{(k)}[i, j] = d^{(k-1)}[i, k] + d^{(k-1)}[k, j];\)
                pred\([i, j]\) = \(k\);
            else
                end
end
\(d^{(k)}[i, j] = d^{(k-1)}[i, j]\);
end
end
return \(d^{(n)}[1..n, 1..n]\)
The algorithm’s running time is clearly $\Theta(n^3)$. 
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i, j]$ can be used to extract the shortest paths.
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i, j]$ can be used to extract the shortest paths (see later).
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i, j]$ can be used to extract the shortest paths (see later).

**Problem:** the algorithm uses $\Theta(n^3)$ space.
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i,j]$ can be used to extract the shortest paths (see later).

**Problem**: the algorithm uses $\Theta(n^3)$ space.

- It is possible to reduce this to $\Theta(n^2)$ space by keeping only one matrix instead of $n$. 
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i, j]$ can be used to extract the shortest paths (see later).

**Problem:** the algorithm uses $\Theta(n^3)$ space.

- It is possible to reduce this to $\Theta(n^2)$ space by keeping only one matrix instead of $n$.
- Algorithm is on next page. Convince yourself that it works.
The Floyd-Warshall Algorithm: Version 2

\[ d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \]

Floyd-Warshall(w, n)

\[
\begin{align*}
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad \quad d[i,j] = w[i,j]; \ pred[i,j] = nil; \ // \ \text{initialize} \\
\quad \end{align*}
\]

end
The Floyd-Warshall Algorithm: Version 2

\[ d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \]

Floyd-Warshall(w, n)

\[
\begin{align*}
\text{for } & i = 1 \text{ to } n \text{ do } \\
& \quad \text{for } j = 1 \text{ to } n \text{ do } \\
& \quad \quad d[i,j] = w[i,j]; \ pred[i,j] = nil; \ // \ initialize \\
& \quad \text{end } \\
& \text{end } \\
& \text{// dynamic programming } \\
& \text{for } k = 1 \text{ to } n \text{ do } \\
& \quad \text{for } i = 1 \text{ to } n \text{ do } \\
& \quad \quad \text{for } j = 1 \text{ to } n \text{ do } \\
& \quad \quad \quad \text{if } (d[i,k] + d[k,j] < d[i,j]) \text{ then } \\
& \quad \quad \quad \quad d[i,j] = d[i,k] + d[k,j]; \\
& \quad \quad \quad \quad \text{pred}[i,j] = k; \\
& \quad \quad \text{end } \\
& \quad \text{end } \\
& \text{end } \\
& \text{return } d[1..n, 1..n]; \\
\end{align*}
\]
The Floyd-Warshall Algorithm: Version 2

\[ d^{(k)}_{ij} = \min \left( d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right) \]

Floyd-Warshall\((w, n)\)

```plaintext
for i = 1 to n do
 for j = 1 to n do
 \(d[i,j] = w[i,j]; \ pred[i,j] = \text{nil} \); // initialize
 end
end

// dynamic programming
for k = 1 to n do
 for i = 1 to n do
 for j = 1 to n do
 if \(d[i,k] + d[k,j] < d[i,j] \) then
 \(d[i,j] = d[i,k] + d[k,j] \);
 \(\text{pred}[i,j] = k \);
 end
 end
 end
end
return \(d[1..n, 1..n] \);
```
The all-pairs shortest path problem.
The all-pairs shortest path problem.
A first dynamic programming solution.
- The all-pairs shortest path problem.
- A first dynamic programming solution.
- The Floyd-Warshall algorithm
- Extracting shortest paths.
predecessor pointers \( \text{pred}[i, j] \) can be used to extract the shortest paths.

Idea: Whenever we discover that the shortest path from \( i \) to \( j \) passes through an intermediate vertex \( k \), we set \( \text{pred}[i, j] = k \).

If the shortest path does not pass through any intermediate vertex, then \( \text{pred}[i, j] = \text{nil} \).

To find the shortest path from \( i \) to \( j \), we consult \( \text{pred}[i, j] \).

1. If it is \( \text{nil} \), then the shortest path is just the edge \( (i, j) \).

2. Otherwise, we recursively construct the shortest path from \( i \) to \( \text{pred}[i, j] \) and the shortest path from \( \text{pred}[i, j] \) to \( j \).
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$. 
predecessor pointers \( \text{pred}[i, j] \) can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from \( i \) to \( j \) passes through an intermediate vertex \( k \), we set \( \text{pred}[i, j] = k \).
- If the shortest path does not pass through any intermediate vertex, then \( \text{pred}[i, j] = \)
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$. 
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$.
  - If it is nil, then the shortest path is
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

Idea:

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$.
  - If it is nil, then the shortest path is just the edge $(i, j)$. 
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

Idea:

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$.
  1. If it is nil, then the shortest path is just the edge $(i, j)$.
  2. Otherwise, we recursively construct the shortest path from
predecessor pointers \( \text{pred}[i, j] \) can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from \( i \) to \( j \) passes through an intermediate vertex \( k \), we set \( \text{pred}[i, j] = k \).
- If the shortest path does not pass through any intermediate vertex, then \( \text{pred}[i, j] = \text{nil} \).
- To find the shortest path from \( i \) to \( j \), we consult \( \text{pred}[i, j] \).
  1. If it is nil, then the shortest path is just the edge \( (i, j) \).
  2. Otherwise, we recursively construct the shortest path from \( i \) to
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$.
  1. If it is nil, then the shortest path is just the edge $(i, j)$.
  2. Otherwise, we **recursively** construct the shortest path from $i$ to $\text{pred}[i, j]$ and the shortest path from
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

Idea:

- Whenever we discover that the shortest path from $i$ to $j$ passes through an intermediate vertex $k$, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from $i$ to $j$, we consult $\text{pred}[i, j]$.
  1. If it is nil, then the shortest path is just the edge $(i, j)$.
  2. Otherwise, we recursively construct the shortest path from $i$ to $\text{pred}[i, j]$ and the shortest path from $\text{pred}[i, j]$ to
predecessor pointers \( \text{pred}[i, j] \) can be used to extract the shortest paths.

**Idea:**

- Whenever we discover that the shortest path from \( i \) to \( j \) passes through an intermediate vertex \( k \), we set \( \text{pred}[i, j] = k \).
- If the shortest path does not pass through any intermediate vertex, then \( \text{pred}[i, j] = \text{nil} \).
- To find the shortest path from \( i \) to \( j \), we consult \( \text{pred}[i, j] \).
  1. If it is nil, then the shortest path is just the edge \((i, j)\).
  2. Otherwise, we recursively construct the shortest path from \( i \) to \( \text{pred}[i, j] \) and the shortest path from \( \text{pred}[i, j] \) to \( j \).
The Algorithm for Extracting the Shortest Paths

Path\((i,j)\)

\[
\begin{align*}
\text{if } \text{pred}[i,j] &= \text{nil} \text{ then} \\
\quad & // \text{ single edge} \\
\quad & \text{output } (i,j); \\
\text{else} \\
\quad & // \text{ compute the two parts of the path} \\
\quad & \text{Path}(i, \text{pred}[i,j]); \\
\quad & \text{Path}(\text{pred}[i,j], j); \\
\text{end}
\end{align*}
\]
Find the shortest path from vertex 2 to vertex 3.
Find the shortest path from vertex 2 to vertex 3.

2..3 \quad \text{Path}(2,3) \quad \text{pred}[2,3] = 6
Find the shortest path from vertex 2 to vertex 3.

2..3  Path(2, 3)  $pred[2, 3] = 6$
2..6..3  Path(2, 6)  $pred[2, 6] = 5$
Find the shortest path from vertex 2 to vertex 3.

2..3 Path(2, 3) \(\text{pred}[2, 3] = 6\)
2..6..3 Path(2, 6) \(\text{pred}[2, 6] = 5\)
2..5..6..3 Path(2, 5) \(\text{pred}[2, 5] = \text{nil}\) Output
Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2..3 \hspace{1cm} \text{Path}(2, 3) \hspace{1cm} pred[2, 3] = 6

2..6..3 \hspace{1cm} \text{Path}(2, 6) \hspace{1cm} pred[2, 6] = 5

2..5..6..3 \hspace{1cm} \text{Path}(2, 5) \hspace{1cm} pred[2, 5] = nil \hspace{1cm} \text{Output}(2,5)
Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2..3  Path(2, 3)  pred[2, 3] = 6
2..6..3 Path(2, 6)  pred[2, 6] = 5
2..5..6..3 Path(2, 5)  pred[2, 5] = nil  Output(2,5)
25..6..3 Path(5, 6)  pred[5, 6] = nil  Output
Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2..3 Path(2, 3) $pred[2, 3] = 6$
2..6..3 Path(2, 6) $pred[2, 6] = 5$
2..5..6..3 Path(2, 5) $pred[2, 5] = nil$ Output(2,5)
25..6..3 Path(5, 6) $pred[5, 6] = nil$ Output(5,6)
Find the shortest path from vertex 2 to vertex 3.

- Path(2, 3) \( pred[2, 3] = 6 \)
- Path(2, 6) \( pred[2, 6] = 5 \)
- Path(2, 5) \( pred[2, 5] = \text{nil} \)  \( \text{Output}(2,5) \)
- Path(5, 6) \( pred[5, 6] = \text{nil} \)  \( \text{Output}(5,6) \)
- Path(6, 3) \( pred[6, 3] = 4 \)
Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2..3 \hspace{1cm} \text{Path}(2, 3) \hspace{1cm} pred[2, 3] = 6
2..6..3 \hspace{1cm} \text{Path}(2, 6) \hspace{1cm} pred[2, 6] = 5
2..5..6..3 \hspace{1cm} \text{Path}(2, 5) \hspace{1cm} pred[2, 5] = nil \hspace{1cm} \text{Output}(2,5)
25..6..3 \hspace{1cm} \text{Path}(5, 6) \hspace{1cm} pred[5, 6] = nil \hspace{1cm} \text{Output}(5,6)
256..3 \hspace{1cm} \text{Path}(6, 3) \hspace{1cm} pred[6, 3] = 4
256..4..3 \hspace{1cm} \text{Path}(6, 4) \hspace{1cm} pred[6, 4] = nil \hspace{1cm} \text{Output}
Find the shortest path from vertex 2 to vertex 3.

2..3 Path(2, 3) \( \text{pred}[2, 3] = 6 \)
2..6..3 Path(2, 6) \( \text{pred}[2, 6] = 5 \)
2..5..6..3 Path(2, 5) \( \text{pred}[2, 5] = \text{nil} \) Output(2,5)
25..6..3 Path(5, 6) \( \text{pred}[5, 6] = \text{nil} \) Output(5,6)
256..3 Path(6, 3) \( \text{pred}[6, 3] = 4 \)
256..4..3 Path(6, 4) \( \text{pred}[6, 4] = \text{nil} \) Output(6,4)
Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2..3 Path(2, 3) $pred[2, 3] = 6$
2..6..3 Path(2, 6) $pred[2, 6] = 5$
2..5..6..3 Path(2, 5) $pred[2, 5] = nil$ Output(2,5)
25..6..3 Path(5, 6) $pred[5, 6] = nil$ Output(5,6)
256..3 Path(6, 3) $pred[6, 3] = 4$
256..4..3 Path(6, 4) $pred[6, 4] = nil$ Output(6,4)
2564..3 Path(4, 3) $pred[4, 3] = nil$ Output
Find the shortest path from vertex 2 to vertex 3.

2..3  Path(2, 3)  $pred[2, 3] = 6$

2..6..3  Path(2, 6)  $pred[2, 6] = 5$

2..5..6..3  Path(2, 5)  $pred[2, 5] = nil$  Output(2,5)

25..6..3  Path(5, 6)  $pred[5, 6] = nil$  Output(5,6)

256..3  Path(6, 3)  $pred[6, 3] = 4$

256..4..3  Path(6, 4)  $pred[6, 4] = nil$  Output(6,4)

2564..3  Path(4, 3)  $pred[4, 3] = nil$  Output(4,3)
Find the shortest path from vertex 2 to vertex 3.

2..3  Path(2, 3)  \text{pred}[2, 3] = 6
2..6..3 Path(2, 6)  \text{pred}[2, 6] = 5
2..5..6..3 Path(2, 5)  \text{pred}[2, 5] = \text{nil}  \text{ Output}(2,5)
25..6..3 Path(5, 6)  \text{pred}[5, 6] = \text{nil}  \text{ Output}(5,6)
256..3 Path(6, 3)  \text{pred}[6, 3] = 4
256..4..3 Path(6, 4)  \text{pred}[6, 4] = \text{nil}  \text{ Output}(6,4)
2564..3 Path(4, 3)  \text{pred}[4, 3] = \text{nil}  \text{ Output}(4,3)
25643