
Dynamic Programming: Odds & Ends

Introduction In this set of notes we will see how
to

• Find max-cost paths in a DAG in O(|V |+ |E|)
time

• Construct Longest Common Subsequences in
O(mn) time using only O(m+ n) space.

Max-Cost Paths in DAGS Let G = (V,E) be
a weighted directed graph. Dijkstra’s algorithm
constructs a shortest path tree rooted at (any ver-
tex) s in O(|E| log |V |) time (or O(|E|+ |V | log |V |)
with more sophisticated data structures) as long as
the algorithm does not contain any negative cycles.

Surprisingly, the corresponding max-cost prob-
lem, i.e., finding a maximum cost simple path tree
rooted at s, is not known to be solvable in poly-
nomial time. As we will now see, though, this
problem is solvable using a dynamic programming
approach in O(E| + |V |) time if G is a Directed
Acyclic Graph (DAG).

First preprocess the graph by performing an
O(|V | + |E|) topological sort. When running the
sort let s, the tree root, be the first item outputted
by the sort (this is possible since, by asking for it
to be the root, we are requiring that it have no in-
coming edges). In O(|V |) time relable the vertices
as v1, v2, . . . , vn where v1 = s and if i < j then vi
preceeds vj in the topological order.

Note that we usually implicitly assume that di-
rected digraphs are represented via out-adjacency
lists, i.e., for each vertex, a list of the edges leav-
ing that vertex. For our solution we will need in-
adjacency lists that, for each vertex, lists the edges
leaving that vertex. These can be built from the
out-list in O(|E|+ |V |) time (how?).

Now consider the max-cost path from v1 to any
vertex v. Suppose this path has length t−1. Label
the path vertices as

v1 = u1, u2, u3, . . . , ut−1, ut = v.

Because G is a DAG, no path from v1 to ut−1 can
contain v. Furthermore, u1, u2, u3, . . . , ut−1 must
be a max cost path from s to ut−1 (since other-
wise we could replace that subpath with a more

expensive subpath to ut−1, building an even more
expensive path to ut = v).

Setting di to be the cost of the max path from s
to vi we find that d1 = 0 and for i > i

di = max
j : (vj ,vi)∈E

(dj + wj,i) (1)

where wi,j is the weight of the edge from vj to vi.
By the properties of the topological ordering we
can rewrite this as

di = max
j<i : (vj ,vi)∈E

(dj + wj,i) . (2)

This immediately gives us a dynamic programming
algorithm

1. Set d[i] = 0 for all i

2. For i = 2 to n do

3. Set d[i] = maxj :(vj ,vi)∈E (d[j] + wj,i)

Note that in line 3, when calculating d[j] + wj,i,
we have j < i. S,o by induction, the value in d[j]
is already the correct max-cost path value. Thus,
d[i] is set to be the correct max-cost path value.

The running time of this algorithm is O(|V | +
|E|) since line 3 can be implemented in time equal
to the indegree of node vj .

Note that to actually find the path we will need
to keep another array, pred[i], that stores the value
of j that maximizes the expression in (1).

Return to Longest Common Subsequence
Recall that the LCS problem is to find the LCS of
two strings X and Y, respectively of length n and
m. The DP algorithm calculates di,j , the length
of the longest common subsequence of the first i
characters in X and the first j characters in Y with
dn,m being the actual length sought.

The DP equation was di,0 = d0,j = 0 for all i, j
and, when i or j not 0,

di,j =

{
di−1,j−1 + 1 if x[i] = y[j]
max (di−1,j , di,j−1) if x[i] 6= y[j]

We can replace this with the following recurrence
(why?)

di,j = max (di−1,j , di,j−1, di,j + δi,j)

1

where

δi,j =

{
1 if x[i] = y[j]
0 if x[i] 6= y[j].

Now consider the directed grid graph with (m+
1)(n+ 1) vertices vi,j , 0 ≤ i ≤ n and 0 ≤ j ≤ m.

• For i 6= 0, there is an edge of cost zero from
vi−1,j → vi,j .

• For j 6= 0, there is an edge of cost zero from
vi,j−1 → vi,j .

• For i 6= 0, j 6= 0 there is an edge of cost δi,j
from vi−1,j−1 → vi,j .

. . .

. . .

. . .

. . .

... ...

...

...

...

...

v0,0

v1,0

v2, 0

vn,0

vn−1,0

v0,1 v0,2 v0,m−1 v0,m

vn,m

di,j is now exactly the cost of a max-cost path from
v0,0 to vi,j . The LCS problem is now the problem
of finding a max cost path from v0,0 to vn,m. The
cost of that path (dn,m) is the LCS length and the
actual LCS can be constructed by walking through
the path edges consecutively, finding, in order, the
edges di−1,j−1 → vi,j with weight 1 and returning
their corresponding x[i].

Note that the graph that we built is a DAG with
“source” v0,0 and the order in which we processed
the di,j in the LCS algorithms is actually a topo-
logical order on the vertices. The LCS algorithm
is thus just implementing the DAG max-cost path
algorithm we developed above, restricted to a par-
ticular type of graph with a known topological or-
der.

Saving Space in the LCS algorithm In class
we noted that calculating dn,m required O(mn)
time but only O(n+m) space. Finding the actual
LCS, though, required keeping an O(mn) space
predecessor table, where pred[i, j] was the prede-
cessor (arrow) pointing to the item that achieved
the max value of di,j . To find the LCS we

walked through the predecssor arrow backwords
from dn,m, reporting the diagonal arrows.

We will now see how to find the LCS using only
O(m+ n) space.

We actually solve a slightly more general prob-
lem. Let G = (V,E) be the (m+ 1)× (n+ 1) grid
graph described above

• For i 6= 0, there is an edge from vi−1,j → vi,j .

• For j 6= 0, there is an edge from vi,j−1 → vi,j .

• For i 6= 0, j 6= 0 there is an edge from
vi−1,j−1 → vi,j .

We are only told that the graph exists but we
don’t actually build it. We are also given an O(1)
way of calculating the cost of any edge on the fly.
In the LCS case, we can do this by setting all edge
costs equal to zero except for vi−1,j−1 → vi,j which
has cost δi,j .

Let i ≤ i′ and j ≤ j′, i.e., vi,j is to the upper
left of vi′,j′ . We are going to design an algorithm
BP (i, j, i′, j′) which returns a max-cost path from
vi,j to vi′,j′ in O((i′− i+1)× (j′− j+1)) time and
O((i′ − i+ 1) + (j′ − j + 1)) space.

Note that based on our discussion above this
immediately builds the LCS in O(mn) time using
O(m+ n) space.

We need the following facts

• If i ≤ i′ and j ≤ j′, then, because all edges
go down one step and/or right one step, any
path between vi,j and vi′,j′ falls fully within
the box

Box(i, j, i′, j′) = {(u, t) | i ≤ u ≤ i′, j ≤ v ≤ j′}

• If vu,t is an item on some max cost path
between vi,j and vi′,j′ then we can find a max
cost path between them by concatenating (i)
any max cost path between vi,j and vu,t and
(ii) any max cost path between vu,t and vi′,j′ ,
i.e., returning

BP (i, j, u, t) BP (u, t, i′, j′)

• If j′ = j, Box(i, j, i′, j′) is a vertical path walk-
ing from vi,j to vi′,j . This can be found and
returned by BP (i, j, i, j′) in O(i′− i+ 1) time

• If i′ = i, Box(i, j, i′, j′) is a horizontal path
walking from vi,j to vi′,j′ . This can be found
and returned by BP (i, j, i, j′) in O(j′ − j + 1)
time

2

vi,j

v′i,j′

vu,t

Figure 1: If vu,t is on a max-cost vi,j-vi′,j′

path then the concatenation of BP (i, j, u, t) and
BP (u, t, i′, j′) is a max-cost vi,j-vi′,j′ path. In our
algorithm we will ensure that u = b(i+ i′)/2c.

• if i′ = i + 1, the associated graph is a two
layer DAG with 2(j′ − j + i) vertices and
≤ 4(j′ − j + 1) edges. It is easy to see that
BP (i, j, i+1, j′) can return the associated max
cost path in time O(j′ − j + 1), e.g., by using
the DAG max-cost path algorithm in the first
part of these notes (or a special purpose sim-
pler algorithm)

Note that any path between vi,j and vi′,j′ must

contain at least one vertex (u, t) with u = b i+i′

2 c.
Suppose we have a procedure Mid(i, j, i+1, j′) that
is guaranteed to return a vertex on some max cost
path between vi,j and vi′,j′ . Then the second bullet
point above implies that we can recurse by finding
a max cost path from vi,j to vu,t and a max cost
path from vu,v to vi′,j′ and concatenate them. If
i′−i+1 ≥ 3 (and j 6= j) then the depths of the new
graphs constructed will be less than the originals.
We stop the recursion (using the third, fourth and
fifth bullet points) if the new graphs are only one
or two levels deep or one level wide.

Formally, the algorithm is

1. BP (i, j, i, j′)

2. if j′ = j then

3. return BP (i, j, i′, j) by writing the
verticle path in O(i′ − i+ 1) time

4. if i′ = i then

5. return BP (i, j, i, j′) by writing the
horizontal path in O(j′ − j + 1) time

6. else if i′ = i+ 1

7. return BP (i, j, i, j′) by running
the DAG algorithm in O(j′ − j + 1) time

8. else

9. Run Mid(i, j, i+ 1, j′)

to find (u, v) with u = b i+i′

2 c

10. return BP (i, j, u, v) BP (u, v, i′, j′)

Note the following

1. The correctness of the algorithm follows from
the discussion above.

2. If Mid(i, j, i′, j′) uses
O((i′ − i + 1) + (j′ − j + 1)) space then
BP (i, j, i, j′) also uses
O((i′ − i+ 1) + (j′ − j + 1)) space

3. If Mid(i, j, i′, j′) uses
O((i′ − i+ 1)× (j′ − j + 1)) time then
BP (i, j, i, j′) also uses
O((i′ − i+ 1)× (j′ − j + 1)) time

(1) and (2) are obvious. We will see a proof of (3)
in the final section of these notes.

Given the above, all that is left to finish
our algorithm is to is show how to implement
Mid(i, j, i′, j′) in O((i′ − i+ 1)× (j′ − j + 1)) time
and O((i′ − i+ 1) + (j′ − j + 1)) space

Implementing Mid(i, j, i′, j′)

Let G′ be the induced subgraph of G containing
all of the

{vs,t | i ≤ s ≤ v′, j ≤ t ≤ j′}

and u = b i+i′

2 c. Mid(i, j, i′, j′) has to find a point
(u, v) on a max cost path in G′ from vi,j to vi′,j′

in G′

Start by creating two new subgraphs G1 and Ḡ2.

G1 is the induced subgraph of G′ containing all
vs,t with s ≤ u. Let d1s,t be the cost of a max
cost path from vi,j to vs,t in G1. Using the same
approach used for the LCS algorithm we can walk
down row by row calculating d1s,∗ (i.e., the entire s
row’s values) from d1s−1,∗. This uses

O

(
1

2
(i′ − i+ 1)× (j′ − j + 1)

)
time

and

O

(
1

2
(i′ − i+ 1) + (j′ − j + 1)

)
space

3

and, when finished, we have stored (only) all of the
values d1u,∗

G2 is the induced subgraph of G′ containing all
vs,t with s ≥ u. For vs,t in G2 let d2s,t be the cost
in G2 of the max cost path from vs,t to vi′,j′

Now define Ḡ2 be G2 with all edges reversed in
direction (keeping the same costs) and d̄2s,t to be

the cost in Ḡ2 of a max cost path from vi′,j′ to
vs,t. Note that, because of the edge reversals, every
path in G2 corresponds to a reversed path in Ḡ2

with the same cost. In particular d̄2s,t = d2s,t for all
s, t.

Using the same approach as for G1 we can start
from row j′ and walk up, calculating d̄2s,∗ from

d̄2s+1,∗. This uses

O

(
1

2
(i′ − i+ 1)× (j′ − j + 1)

)
time

and

O

(
1

2
(i′ − i+ 1) + (j′ − j + 1)

)
space

and, when finished, we have stored (only) all of the
values d̄2u,∗ which is equivalent to having the values
d2u,∗.

Now note that, for every j ≤ t ≤ j′, d1u,t +d2u,t is
the cost of max cost path from vi,j to vi′,j′ passing
through vu,t. Since a max cost path from vi,j to
vi′,j′ must pass through at least one node vu,t the
value

max
t

(
d1u,t + d2u,t

)
is the cost of a max-cost path from from vi,j to
vi′,j′ . If t′ is the index t at which the maximum
occurs then all our procedure needs to do is return
the node (u, t′).

Note that this last step only used
O (j′ − j + 1) time and O (j′ − j + 1) space
so the entire procedure for Mid(i, j, i′, j′) only
used

O

(
1

2
(i′ − i+ 1)× (j′ − j + 1)

)
time

and

O

(
1

2
(i′ − i+ 1) + (j′ − j + 1)

)
space.

Running time of BP (i, j, i′, j′)

We now conclude by explaining how to calculate
the running time of BP (..) given the running time
of Mid(..).

When we write below “the work **** done re-
cursively by procedure BP (i, j, i′, j′)” we mean the
work done by the procedure at its top level and the
work done recursively by all the procedures it and
it’s recusively called subroutines call.

Now note that the output of BP (i, j, i′, j′) is a
path of length Θ(i′ − i + 1) + (j′ − j + 1)). Lines
3, 5, and 7 of the algorithm end the recursion by
printing out some edges of the solution path. Note
that every edge of the solution path is only printed
out once. Therefore, the total amount of work
at lines 3,5 and 7 done recursively by procedure
BP (i, j, i′, j′) is Θ(i′ − i + 1) + (j′ − j + 1)). So,
when calculating the total work done recursively by
procedure BP (i, j, i′, j′), it only remains to calcu-
late the work done in the Mid(...) calls recursively.
For the purposes of the analysis we can rewrite the
procedure as

1. BP (i, j, i′, j′)

2. if (i′ > i+ 1) and j′ 6= j then

3. Run Mid(i, j, i+ 1, j′)

to find (u, v) with u = b i+i′

2 c

4. Call BP (i, j, u, v) BP (u, v, i′, j′)

Set w = j′ − j, k = i′ − i be the width and
height of the grid graph defined by BP (i, j, i, j′)
Define T (w, h) to be the running time of BP (...)
when the graph it defines has width w and height
h, i.e., when we call BP (i, j, i+h, j+w). Our goal
is to show that T (w, h) = O(wh) since that implies
BP (i, j, i, j′) in O((i′ − i+ 1)× (j′ − j + 1)) time.
The reason we write it this way is that wh is the
area of the grid graph defined by BP (i, j, i, j′) and
it will help our intuition to think of the running
time of the algorithm as being linear in the area of
the graph.

Note that we have already seen that Mid(i, j, i+
h, j + w) requires O(hw) time. Let c > 0 be a
constant such that the running time of Mid(i, j, i+
h, j + w) is ≤ c hw. Our work recurrence relation
is then

T (w, h) ≤ T (x,
h

2
) + T (w − x, h

2
) + chw

where x = v − i and we have initial conditions
T (0, h) = T (w, 0) = T (w, 1) = 0.

4

Let c′ = 2c. We prove by induction that
T (w, h) ≤ c′wh. This is obviously true if h = 1.
Suppose we have proven the statement by induc-
tion for h = 1, 2, 3, . . . , k− 1. Note that k

2 ≤ k− 1.
So we know by induction that, for any value of x

T (w, h) ≤ T (x,
h

2
) + T (w − x, h

2
) + cwh

≤ c′x
h

2
+ c′(w − x)

h

2
+ cwh

≤ c′
1

2
wh+ cwh

= (
c′

2
+ c)wh = c′wh

and we are done.

5

