Depth-First Search

Version of September 23, 2016
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?

- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal:

1. $color[u]$: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. $pred[u]$: predecessor pointer
 - pointing back to the vertex from which u was discovered

3. $d[u]$: discovery time
 - a counter indicating when vertex u is discovered

4. $f[u]$: finishing time
 - a counter indicating when the processing of vertex u (and all its descendants) is finished
How does DFS work?

- It starts from an initial vertex.
- After visiting a vertex, it recursively visits \textit{all} of its neighbors.
- The strategy is to search “deeper” in the graph whenever possible.
DFS Algorithm

DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time= 0;

foreach u in V do
 // start a new tree
 if color[u] = WHITE then
 DFSVisit(u);
 end
end
DFSVisit(u)

color[u] = GRAY; // u is discovered

d[u] = time = time + 1; // u’s discovery time

foreach v in Adj(u) do

 // Visit undiscovered vertex
 if color[v] = WHITE then
 pred[v] = u;
 DFSVisit(v);
 end

end

color[u] = BLACK; // u has finished

f[u] = time = time + 1; // u’s finish time
DFS Example
The DFS Algorithm

The outputs of DFS:
1. The time stamp arrays: \(d[v], f[v]\)
2. The predecessor array \(pred[v]\)

The DFS Forest:
- Use \(pred[v]\) to define a graph \(F = (V, E_f)\) as follows:
 \[
 E_f = \{(pred[v], v) | v \in V, pred[v] \neq NULL\}
 \]
- This is a graph with no cycles, and hence a forest, i.e. a collection of trees.
- Called a DFS Forest.
- Vertices in the subtree rooted at \(u\) are those discovered while \(u\) is gray.
The procedure DFSVisit is called exactly once for each vertex \(u \in V \) — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray.

During an execution of DFSVisit\((u)\),
the for loop is executed \(|\text{Adj}(u)| = \text{degree}(u)\) times.

On each vertex \(u \), we spend time \(T_u = O(1 + \text{degree}(u)) \).

The total running time is

\[
\sum_{u \in V} T_u \leq \sum_{u \in V} (O(1 + \text{degree}(u))) = O(V + E)
\]

Hence, the running of DFS on a graph with \(V \) vertices and \(E \) edges is \(O(V + E) \).
Time-Stamp Structure

Depth-First Search
u is a descendant (in DFS trees) of v, if and only if $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$ (Example).

u is an ancestor of v, if and only if $[d[u], f[u]]$ contains $[d[v], f[v]]$ (Example).

u is unrelated to v, if and only if $[d[u], f[u]]$ and $[d[v], f[v]]$ are disjoint intervals (Example).
The idea is to consider every case.
We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray)
 $\Rightarrow u$ is a descendant of v
 - u is discovered later than v $\Rightarrow u$ should finish before v
 - Hence we have $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$

2. If $f[v] < d[u]$, then
 - obviously $[d[v], f[v]]$ and $[d[u], f[u]]$ are disjoint
 - It means that when u or v is discovered, the others are not marked gray
 - Hence neither vertex is a descendant of the other

The argument for other case, where $d[v] > d[u]$, is similar.
Tree Structure

- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
- Consider $(u, v) \in E$
 - tree edge: if $(u, v) \in E_f$ or equivalently $u = \text{pred}[v]$, i.e. u is the predecessor of v in the DFS tree
 - back edge: if v is an ancestor (excluding predecessor) of u in the DFS tree
Theorem

An edge in an undirected graph is either a *tree edge* or a *back edge*.

Proof:

- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
- Then \(v\) is discovered while \(u\) is gray (why?).
- Hence \(v\) is in the DFS subtree rooted at \(u\).
 - If \(pred[v] = u\), then \((u, v)\) is a tree edge.
 - If \(prev[v] \neq u\), then \((u, v)\) is a back edge.
Question

Given an undirected graph G, how to determine whether or not G contains a cycle?

Lemma

G is acyclic if and only if a DFS of G yields no back edges.

Proof.

\implies: Suppose that there is a back edge (u, v). Then, vertex v is an ancestor (excluding predecessor) of u in the DFS trees. There is thus a path from v to u in G, and the back edge (u, v) completes a cycle.

\impliedby: If there is no back edge, then since an edge in an undirected graph is either a tree edge or a back edge, there are only tree edges, implying that the graph is a forest, and hence is acyclic.
Cycle Finding

Cycle(G)

```plaintext
foreach u in V do
    color[u] = WHITE;
    pred[u] = NULL;
end

foreach u in V do
    if color[u] = WHITE then
        Visit(u);
    end
end

output "No Cycle";
```

Visit(u)

```plaintext
color[u] = GRAY;
foreach v in Adj(u) do
    // consider (u, v)
    if color[v] = WHITE then
        // v unvisited
        pred[v] = u;
        Visit(v); // visit v
    else if v != pred[u] then
        // back edge detected
        output "Cycle found!";
        exit; // terminate
    end
end

color[u] = BLACK;
```

Running time: \(O(V) \)

- only traverse tree edges, until the first back edge is found
- at most \(V - 1 \) tree edges