
A Quick and Dirty Review of Binary Search Trees

The Basic Problem To maintain a dynamic or-
dered set S, supporting the following dictionary
operations

• Search(x): Find if x ∈ S.

• Insert(x): Add x to S.

• Delete(x): Delete x from S

• Pred(x): Find the predecessor in S of x. x is
assumed to be in S

• Succ(x): Find the successor of in S of x in S.
x is assumed to be in S

• MIN and MAX: Finding the minimum and
maximum items in S.

In what follows we let n = |S|.

The Binary Search Tree Solution
A BST is a data structure in which each node is an
object that contains three fields: Key, Left, and
Right. Key is the key of the item being stored
at the node (which might also contain a record or
pointer to a record associated with the key). Left
and Right are pointers pointing to to the left/right
children of the node. These fields contain NIL if
the associated child doesn’t exist.

A BST contains a specified root node; the top of
the tree. The keys in S are stored satisfying the
Binary Search Tree Property: Let r be a node in
the tree. If L is its left child and R its right child,
then key[L] ≤ key[r] and key[r] ≤ key[R].

Notes:

• Internal nodes in a BST may have one or two chil-
dren. Nodes with no children are called leaves.

• We emphasize storing a key in the tree. In ap-
plications, the key might be the key associated
with a record. The tree node might contain an ex-
tra pointer to the actual record or, alternatively,
might store the extra data in the tree node itself.

• For convenience, we also provide each node one
more field p[r], which points to the parent of r.
By convention, the parent of the root is itself.

20

10

5 15 25

30

35

Figure 1: A BST

Walking In Trees There are three well-known
types of walks in trees. Each can be implemented
in O(n) time. All the walks terminate when they
reach a NIL node.

• Inorder(x). Inorder (Left[x]); Print key[x];
Inorder(Right[x]).

• Preorder(x). Print key[x]; Preorder
(Left[x]); Preorder(Right[x]).

• Postorder(x). Postorder (Left[x]); Pos-
torder(Right[x]); Print key[x];

Note that if r is the root of the tree, then
Inorder(r) prints out the elements in S is sorted
order. Preorder(r) recursively prints the root be-
fore the preordering of its left and then right sub-
trees; Postorder(r) recursively prints the left and
then right subtrees before the root.

Searching for x in a BST rooted at r

• If key[r] == NIL then x is not in the tree

• If x == key[r] then return r (successful
search)

• If x < key[r] then Search(x) in Left[r]

• Otherwise, Search(x) in Right[r].

Note that this walks a path down the tree un-
til either x is found or the bottom of the tree is
reached. So, the running time of the algorithm is
O(h) where h is the height of the tree.

1

Finding Min and Max Let r be a node. Con-
sider S(r) the subset of items in the subtree rooted
at r. To find the minimum item in S(r) just fol-
low the left pointers down from r until reaching the
last non-NIL item (this could be r itself). To find
the maximum item in S(r) follow the right pointers
similarly. Note that if r is the root of the actual
tree then S(r) = S and this finds MIN and MAX.

Note that these two operations also run in O(h)
time.

Searching for Succ(x) in a BST rooted at r.
First Search for X in S. Suppose this is node r.

If Right[r] 6= NIL,
⇒ return the Minimum item in the subtree rooted
at Right[r].
If Right[r] == NIL and r is the left child of p[r],
⇒ return key[p[r]].
If Right[r] == NIL and r is the right child of p[r]
⇒ walk up the tree from x until traversing a left
edge, and return its parent.

The above can only fail if x is the largest item
in the tree, in which case there is no successor.
Alternatively, one can add an artificial value ∞ to
S to guarantee that every item will always have a
successor

Finding Pred(x) is symmetric.
Note that Succ(x) and Pred(x) also require

O(h) time.
Question: The above assumed that x was in S.

How could we modify the operations to work prop-
erly even if x 6∈ S.

Insertion Inserting x is very simple. Search for
x and find the location where x would be if it had
existed. As you are moving down the tree keep
track of the last pointers seen so that you know
(i) who the parent p of x would have been and
(ii) whether x would be the left or right child of
p. Create the new node containing x and set the
appropriate left/right pointer from p to point to
the new node.

Note that this also runs in O(h) time.

Deletion This is the most complicated opera-
tion. Let z be the node to be delete with key[z] =
x.

• If z has no children at all, delete z.

• If z has only one child, set z’s parent p to point
to z’s child and delete z
(Note the special case when z is the root)

20

10

5 15 25

30

35

21

20

10

5 15 25

30

35

21

40

Figure 2: Figure 1, after adding “21” and then
“40”.

• If z has two children. Let y be the node con-
taining x’s successor.
First note that y has no left child (why?).

– if y is z’s immediate right child then just
replace z by y, keeping y’s pointers.

– if y is not z’s right child then y is the left
child of y’s parent p Make the left child
of y the new left child of p
Set key[z] = key[y] and delete the old
node y.

This too runs in O(h) time.

Odds and Ends

• All the operations discussed require O(h) time.
Unfortunately, h can be as bad as Θ(n) for
regular BSTs. Balanced BSTs maintain h =
O(log n) which immediately implies O(log n)
time for all of the operations. The balanced
trees we will see are AVL trees but there are
many others, e.g., red-black trees, 2-3-4 trees
and treaps.

• In our description, information was kept in the
internal nodes. There are variations in which
all data is kept in the leaves and the inter-
nal nodes only contain routing information (to
move left or right).

• There are also exist other non-BST data struc-
tures structures that can implement O(log n)
dictionary functionality, e.g., skip-lists.

2

20

10

5 15 25

30

35

21

40

22

23

24

20

10

5 15 25

30

35

21

40

22

23

24

20

10

5 15 25

30

35

22

23

24

21

20

10

5 15 25

30

35

22

23

24

21

Figure 3: Removing “40” from the first tree is the
first case. Removing “20” is the 3rd case with “20”
being replaced by its successor “21” and “21”s par-
ent, “25” repointed to “21”s child, “23”. Remov-
ing “35” is the 2nd case, with “35”s parent “21”
repointing to “35”s unique child, “21”.

• BST’s as discussed were comparison based.
Similar to sorting, where we saw both com-
parison based sorts and representation depen-
dent sorts, e.g., radix sort, there are also repre-
sentation based search trees. These are called
tries or digital search trees. In binary tries,
the root represents the entire set. As you
walk down the trie, subsets at level i are split
into left and right subtrees depending upon
whether their i’th bit is zero or one.

3

