Breadth-First Search

Version of September 23, 2016
Representations of Graphs: Adjacency List

- V: set of vertices, E: set of edges. (We will sometimes also simultaneously use V to denote the number of vertices, and E to denote the number of edges.)

- **Adjacency list representation**: $O(V + E)$ storage
 - $\text{Adj}[u]$ — linked list of all v such that $(u, v) \in E$.
 - $\text{Adj}[0] = \{1, 3, 9\}$; $\text{Adj}[1] = \{0, 9, 2\}$; ...

- Can retrieve all the neighbors of u in $O(\text{degree}(u))$ time.
Adjacency matrix representation: $O(V^2)$ storage

$A = [a_{ij}], a_{ij} = 1$ if $(v_i, v_j) \in E$;

$a_{ij} = 0$ if $(v_i, v_j) \not\in E$.

For undirected graph, adjacency matrix is always symmetric.

Can check if u and v are connected in $O(1)$ time.
The Breadth-First Search (BFS) Algorithm

What does Breadth-First Search (BFS) do?

- Traverse all vertices in graph, and thereby
- Reveal properties of the graph.

Three arrays are used to keep information gathered during traversal

1. `color[u]`: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. `pred[u]`: the predecessor pointer
 - pointing back to the vertex from which `u` was discovered

3. `d[u]`: the distance from the source to vertex `u`
BFS Algorithm

BFS(G)

// Initialize
define the visited array
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time = 0;
define the time counter
foreach u in V do
 // start a new tree
 if color[u] = WHITE then
 BFSVisit(u);
 end
end
BFSVisit(s)

color[s] = GRAY; pred[s] = NULL; d[s] = 0;
Q = ∅; Enqueue(Q,s);
while Q \neq ∅ do
 u = Dequeue(Q);
 foreach v ∈ Adj[u] do
 if color[v] = WHITE then
 color[v] = GRAY;
 d[v] = d[u]+1 ;
 pred[v] = u;
 Enqueue(Q,v);
 end
 end
 color[u] = BLACK;
end
The BFS Algorithm

The outputs of BFS:

1. Distance array: \(d[v] \)
2. Predecessor array \(\text{pred}[v] \)

The BFS Forest:

- Use \(\text{pred}[v] \) to define a graph \(F = (V, E_f) \) as follows:
 \[
 E_f = \{ (\text{pred}[v], v) | v \in V, \text{pred}[v] \neq \text{NULL} \}
 \]

- This graph has no cycles (why?), and is therefore a forest, i.e. a collection of trees. We call it a BFS Forest.
- In each tree, \(d[v] \) gives the shortest distance to the initial vertex of the tree.
- Following \(\text{pred}[v] \) gives a shortest path to the initial vertex of the tree.
Running Time of BFS

On each vertex u, we spend time $T_u = O(1 + \text{degree}(u))$

The total running time is

$$\sum_{u \in V} T_u \leq \sum_{u \in V} (O(1 + \text{degree}(u))) = O(V + E)$$

Hence, the running of BFS on a graph with V vertices and E edges is $O(V + E)$

Applications:

1. Shortest paths in a graph
 - What if the graph is weighted?
2. Finding connected components