Your solutions should contain (i) your name, (ii) your student ID #, and (iii) your email address.

Information:

- Please write clearly and briefly.
- Please follow the guidelines on doing your own work and avoiding plagiarism given on the class home page. In particular, don’t forget to acknowledge individuals who assisted you, or sources where you found solutions. Failure to do so will be considered plagiarism.
- Please make a copy of your assignment before submitting it. If we can’t find your answers, we will ask you to resubmit the copy.
- The default base for logarithms will be 2, i.e., log \(n \) will mean log\(_2\) \(n \). If another base is intended, it will be explicitly stated, e.g., log\(_3\) \(n \).
- As in the previous assignment, you must submit both a hardcopy and a PDF softcopy. The hardcopy should be submitted to the COMP3711H assignment box and the softcopy via the CASS system. The PDF can be generated by Latex, from Word or a scan of a (legible) handwritten solution.
Problem 1: [20 points]

The Fan Graph F_n of Figure (A) has $n + 1$ vertices $v_0, v_1, \ldots v_n$ with node v_0 connected to all of the other nodes and nodes v_1, \ldots, v_n forming a straight line, each vertex connected to its left and right neighbors on the line (if the neighbors exist).

The graph edges will have the following costs.

$$c(v_0, v_i) = n, \quad i = 1, 2, \ldots, n,$$

and

$$c(v_i, v_{i+1}) = 1, \quad i = 1, 2, \ldots, n - 1$$

(edges with no defined costs are not in the graph).

In the problems below solve for all $n \geq 2$.

(a) Describe a Minimum Spanning Tree of F_n. To describe the tree draw a picture and list its edges. What is the cost of the Minimum Spanning Tree as a function of n?

(b) Describe a Shortest Path Tree of F_n with source node v_0. To describe the tree draw a picture and list its edges. What is the cost of the Shortest Path Tree as a function of n?

(c) Describe a Shortest Path Tree of F_n with source node v_2. To describe the tree draw a picture and list its edges. What is the cost of the Shortest Path Tree as a function of n?

Recall that the cost of a tree is the sum of the costs of the weights of its edges. For example, the tree in Figure (B), which is neither a minimum spanning tree or a shortest path tree, has cost 16.
Problem 2: [20 points]

We saw in class that if up-trees with union-by-height are used to implement UNIONs and FINDs then a sequence of m UNION/FIND operations on a universe of n items will take at most $O(m \log n)$ time. In this problem you will show that that bound is tight.

Assume that you start with n items each in their own separate tree. Describe a sequence of $n - 1$ UNIONs and n FINDs that requires $\Omega(m \log n)$ time where $m = 2n - 1$. (Note that your construction must work for an infinite number of n’s.) Justify your answer.

Note: You have complete freedom to choose the order in which the operations are performed.

Problem 3: [20 points]

Recall that Kruskal’s algorithm starts by sorting the edges by non-decreasing cost. If some edges have the same cost, that’s a tie, and ties can be broken arbitrarily. Since the spanning tree produced depends upon the initial order of the edges, different tie-breaking rules may result in different spanning trees being produced. As an example, consider the graph below: with

```
c(e_5) = 1, c(e_1) = 2, c(e_3) = c(e_4) = 3 and c(e_2) = c(e_6) = 5. Note that there are 4 ways of sorting the edges:


Note that for the first two orders Kruskal’s algorithm produces the MST \{e_5, e_1, e_3\}; for the last two orders Kruskal’s algorithm produces \{e_5, e_1, e_4\}. These are the ONLY two possible MSTs for this graph (convince yourself).

For this problem you must prove that for each minimum spanning tree $T$ of $G$ that exists, there is a way to sort the edges of $G$ (with appropriate tie-breaking) so that Kruskal’s algorithm returns $T$.```
Note: This immediately implies that if all edges have different weights the graph has a unique minimum spanning tree (since there are no ties to break).
Problem 4: [10 points] Let $G = (V, E)$ be a connected undirected graph in which all edges have weight either 1 or 2. Give an $O(V + E)$-time algorithm to compute a minimum spanning tree of $G$. Justify the running time of your algorithm. (Note: You may either present a new algorithm or just show how to modify an algorithm taught in class.)

Problem 5: [30 points]

Let $G = (V, E)$ be an undirected weighted graph (each edge $(u, v)$ is given weight $w(u, v)$ as part of the input) with no negative edge costs. The bottleneck value of a path

$$(u_0, u_1), (u_1, u_2), \ldots, (u_{n-2}, u_{n-1}), (u_{n-1}, u_n)$$

is $\min_{1 \leq i \leq n} w(u_{i-1}, u_i)$.

For intuition, think of the edges as being water pipes and the weights as the maximum-flow that can pass through a pipe every hour. The maximum amount that can flow through a path in an hour is the value of the minimum-weight edge on the path. This is the bottleneck value of the path.

Design an algorithm that, given $s$ and $t$, finds a path from $s$ to $t$ with maximum bottleneck value among all $s - t$ paths.

Argue the correctness of your algorithm and analyze its running time.

*Hint: There are multiple ways of solving this problem. One of them requires using a Max-Heap. A Max-Heap is like a Min-heap except that it allows extracting the largest item rather than the smallest one. It can be implemented almost exactly like a Min-heap with the same running times. If your solution uses a Max-Heap you can assume its existence and running times and not have to develop it from scratch.*