1. The following is the pseudo-code for a sorting procedure known as Bubble sort for sorting an array of \(n \) integers in ascending order.

 \hspace{2cm} \textbf{for} i = n-1 \textbf{downto} 1 \textbf{do}
 \hspace{2.5cm} \{ \text{ swapped := false;}
 \hspace{3cm} \textbf{for} j = 1 \textbf{to} i \textbf{do}
 \hspace{4cm} \textbf{if} A[j] > A[j+1] \textbf{then} swap them and set swapped to true;
 \hspace{4cm} \textbf{if} swapped \text{ is false} \textbf{then} halt;
 \}

 (a) Run bubble sort on the sequence 10 12 8 9 5 7.
 (b) Prove that Bubble sort correctly sorts its input.
 (c) What is the worst-case input for bubble sort? Use it to derive a lower bound on the time complexity of bubble sort in the worst case.
 (d) What is the best-case input for bubble sort? What is the time complexity of bubble sort for sorting this best-case input?

2. Run the Mergesort Algorithm described in class on the sequence 8 6 4 5 3 7.
 If \(n \) is odd let the left set have size \(\lfloor n/2 \rfloor \) and the right side have size \(\lceil n/2 \rceil \).

3. You are given an (implicit) infinite array \(A[1, 2, 3, \ldots] \).
 You are told that, for some unknown \(n \), the first \(n \) items in the array are positive integers sorted in increasing order while, for \(i > n \), \(A[i] = \infty \).
 Give an \(O(\log n) \) algorithm for finding the largest non-\(\infty \) value in \(A \).

4. \(a_1, a_2, \ldots, a_n \) is a sequence that has the following property:
 \textit{There exists some} \(k \) such that
 \[\forall i : 1 \leq i < k, \quad a_i > a_{i+1} \quad \forall i : k \leq i < n, \quad a_i < a_{i+1}. \]
 Such a sequence is \textit{unimodal} with unique minimum \(a_k \).
 Design an \(O(\log n) \) algorithm for finding \(k \).
5. Extra Problem. *The limits of comparison-based lower bounds*
Let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of integers or real numbers. Let y_1, y_2, \ldots, y_n be the same numbers sorted in increasing order. The MAX-GAP of the original set is the value
\[
\text{Max}_{1 \leq i < n}(y_{i+1} - y_i).
\]

Using a more advanced form of the $\Theta(n \log n)$ proof of the lower bound for sorting it can be proven that calculating MAX-GAP requires $\Theta(n \log n)$ operations if only comparisons and algebraic calculations are used. In this problem, we will see that, if the floor (truncate) operator $\lfloor x \rfloor$ can also be used, the problem can be solved using only $O(n)$ operations!

- Find y_1 and y_n, the minimum and maximum values in S.
- Let $\Delta = \frac{y_n - y_1}{n - 1}$. Let B_i be the half-closed half-open interval defined by
 \[
 B_i = [y_1 + (i - 1)\Delta, y_1 + i\Delta)
 \]
 for $i = 1, 2, \ldots, n - 1$ and set $B_n = \{y_n\}$.
- Prune S as follows. For every B_i throw away all items in $S \cap B_i$ except for the smallest and largest. Let S' be the remaining set.
- Find the Max-Gap of S' by sorting S' and running through the items in S' in sorted order. Output this value.

Prove that this algorithm outputs the correct answer and show that every step can be implemented in $O(n)$ time.