Quicksort

Revision of September 11, 2014
Reference: Chapter 7 of CLRS
Reference: Chapter 7 of CLRS

Outline:
- Partitions
- Quicksort
- Analysis of Quicksort
Given: An array of numbers
Partition: Rearrange the array \(A[p..r] \) in place into two (possibly empty) subarrays \(A[p..q-1] \) and \(A[q+1..r] \) such that

\[A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r \]

\[p \quad \underbrace{\quad \underbrace{x} \quad \overbrace{\quad x} \quad \overbrace{\cdots \quad r}} \quad \underbrace{\quad \underbrace{x} \quad \overbrace{\quad x} \quad \overbrace{\cdots \quad r}} \]

\[x = A[r] \]
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q - 1]$ and $A[q + 1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$x = A[r]$

x is called the pivot. Assume $x = A[r]$; if not, swap first
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

x is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q-1 \text{ and } q+1 \leq v \leq r$$

x is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q-1 \text{ and } q+1 \leq v \leq r$$

$x = A[r]$ is called the pivot. Assume $x = A[r]$; if not, swap first
Quicksort works by:

1. calling partition first
2. recursively sorting $A[\quad]$ and $A[\quad]$
Partition

Given: An array of numbers

Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q - 1]$ and $A[q + 1..r]$ such that

$$A[u] < A[q] < A[v], \text{ for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$x = A[r]$ is called the **pivot**. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting $A[p..q - 1]$ and $A[]$
Given: An array of numbers

Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \text{ for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$A[r]$ is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting $A[p..q-1]$ and $A[q+1..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations

- $O(r - p)$ time but needs extra space.
Use $A[r]$ as the pivot, and grow partition from left to right.

i will be largest index of processed item $\leq x$.

j will be smallest index of unprocessed item.

Initially $(i, j) = (p - 1, p)$

Increase j by 1 each time to find a place for $A[j]$. At the same time increase i when necessary.

Stops when $j = r$
Use $A[r]$ as the pivot, and grow partition from left to right.

- i will be largest index of processed item $\leq x$.
- j will be smallest index of unprocessed item.

Initially $(i, j) = (p - 1, p)$
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right.

- i will be largest index of processed item $\leq x$.
- j will be smallest index of unprocessed item.

1. Initially $(i, j) = (p - 1, p)$
2. Increase j by 1 each time to find a place for $A[j]$.
 At the same time increase i when necessary.
Use $A[r]$ as the pivot, and grow partition from left to right.

- i will be largest index of processed item $\leq x$.
- j will be smallest index of unprocessed item.

1. Initially $(i, j) = (p - 1, p)$
2. Increase j by 1 each time to find a place for $A[j]$
 At the same time increase i when necessary
3. Stops when $j = r$
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(A) $A[j] > x$

(B) $A[j] \leq x$
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(A) $A[j] > x$

(B) $A[j] \leq x$

1. Only increase j by 1
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$.

At the same time increase i when necessary.

1. Only increase j by 1
2. $i = i + 1$.

(A) $A[j] > x$

(B) $A[j] \leq x$
Increase \(j \) by 1 each time to find a place for \(A[j] \)

At the same time increase \(i \) when necessary

1. Only increase \(j \) by 1
2. \(i = i + 1 \). \(A[i] \leftrightarrow A[j] \).
One Iteration of the Procedure Partition

Increase \(j \) by 1 each time to find a place for \(A[j] \)

At the same time increase \(i \) when necessary

1. Only increase \(j \) by 1
2. \(i = i + 1. \) \(A[i] \leftrightarrow A[j]. \) \(j = j + 1 \)
Example: The Operation of Partition(A, p, r)

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p, j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(1)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(2)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(3)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(4)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(5)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(6)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(7)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>(8)</td>
</tr>
<tr>
<td>p, i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>(9)</td>
</tr>
</tbody>
</table>
Partition(A, p, r)

\begin{verbatim}
begin
 x = A[r]; // A[r] is the pivot element
end
\end{verbatim}
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 exchange $A[i + 1]$ and $A[r]$; // put pivot in position
end

return $i + 1$ // $q = i + 1$
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 $x = A[r];$ // $A[r]$ is the pivot element
 $i = p - 1;$
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1;$
 exchange $A[i]$ and $A[j]$;
 end
 end

 exchange $A[i + 1]$ and $A[r]$;
 // put pivot in position

 return $i + 1$ // $q = i + 1$
The Partition(A, p, r) Algorithm

Partition(A, p, r)

```plaintext
begin
  \( x = A[r]; \) // \( A[r] \) is the pivot element
  \( i = p - 1; \)
  for \( j = p \) to \( r - 1 \) do
    if \( A[j] \leq x \) then
      \( i = i + 1; \)
      exchange \( A[i] \) and \( A[j] \);
  end
end
```
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 end
end

; // put pivot in position
The Partition\((A, p, r)\) Algorithm

\textbf{Partition}(A, p, r)

\begin{algorithm}
begin
\hspace{1em} x = A[r]; // A[r] is the pivot element
\hspace{1em} i = p - 1;
\hspace{1em} for j = p to r - 1 do
\hspace{2em} if A[j] \leq x then
\hspace{3em} i = i + 1;
\hspace{3em} exchange A[i] and A[j];
\hspace{2em} end
\hspace{1em} end
\hspace{1em} exchange A[i + 1] and A[r]; // put pivot in position
end
\end{algorithm}
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin

 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;

 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 end

 exchange $A[i + 1]$ and $A[r]$; // put pivot in position

return
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 end
 exchange $A[i + 1]$ and $A[r]$; // put pivot in position
 return $i + 1$ // $q = i + 1$
end
Running Time of Partition\((A, p, r)\)

Partition\((A, p, r)\)

\begin{verbatim}
begin
 x = A[r];
 i = p - 1;
 for j = p to r - 1 do
 if A[j] ≤ x then
 i = i + 1;
 exchange A[i] and A[j]; // O(r - p)
 end
 end
 exchange A[i + 1] and A[r];
return i + 1
end
\end{verbatim}

Running time is \(O(r - p)\) linear in the length of the array \(A[p..r]\)
Partition \((A, p, r)\)

\[
\begin{array}{l}
\text{begin} \\
\quad x = A[r]; \\
\quad i = p - 1; \\
\quad \textbf{for } j = p \textbf{ to } r - 1 \textbf{ do} \\
\quad \quad \textbf{if } A[j] \leq x \textbf{ then} \\
\quad \quad \quad i = i + 1; \\
\quad \quad \quad \text{exchange } A[i] \text{ and } A[j]; \quad // \quad O(r - p) \\
\quad \textbf{end} \\
\textbf{end} \\
\text{exchange } A[i + 1] \text{ and } A[r]; \\
\textbf{return} \ i + 1 \\
\text{end}
\end{array}
\]

Running time is \(O(\quad)\)
Running Time of Partition(A, p, r)

Partition(A, p, r)

\begin{algorithm}

\begin{algorithmic}
\Statex \begin{align*}
\text{begin} \\
\quad x &= A[r]; \\
\quad i &= p - 1; \\
\quad \text{for } j = p \text{ to } r - 1 \text{ do} \\
\quad \quad \text{if } A[j] \leq x \text{ then} \\
\quad \quad \quad i &= i + 1; \\
\quad \quad \quad \text{exchange } A[i] \text{ and } A[j]; \quad \text{/* } O(r - p) \text{ */} \\
\quad \text{end} \\
\text{end} \\
\text{exchange } A[i + 1] \text{ and } A[r]; \\
\text{return } i + 1
\end{align*}
\end{algorithmic}
\end{algorithm}

Running time is $O(r - p)$
Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
 x = A[r];
 i = p − 1;
 for $j = p$ to $r − 1$ do
 if $A[j] \leq x$ then
 i = i + 1;
 exchange $A[i]$ and $A[j]$; // $O(r − p)$
 end
 end
 exchange $A[i + 1]$ and $A[r]$;
return $i + 1$
end

Running time is $O(r − p)$
- linear in the length of the array $A[p..r]$
Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
 $x = A[r]$;
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$; // $O(r - p)$
 end
 end
 exchange $A[i + 1]$ and $A[r]$;
 return $i + 1$
end

Running time is $O(r - p)$

- linear in the length of the array $A[p..r]$
Quicksort

Quicksort(\(A, p, r\))

\[
\begin{align*}
\text{begin} & \quad \text{if} \ p < r \ \text{then} \\
& \quad q = \text{Partition}(A, p, r); \\
& \quad \text{Quicksort}(A, \ q); \\
& \quad \text{Quicksort}(A, \ r); \\
\text{end} & \quad \text{end}
\end{align*}
\]

If we could always partition the array into halves, then we have the recurrence

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + O(n),
\]

hence

\[
T(n) = O(n \log n).
\]

However, if we always get unlucky with very unbalanced partitions, then

\[
T(n) \leq T(n - 1) + O(n),
\]

hence

\[
T(n) = O(n^2).
\]
Quicksort

Quicksort(A, p, r)

begin
 if $p < r$ then
 $q = \text{Partition}(A, p, r)$;
 Quicksort($A, p, q - 1$);
 Quicksort(A, q, r);
 end
end

If we could always partition the array into halves, then we have the recurrence

$$T(n) \leq 2T(n/2) + O(n),$$

hence

$$T(n) = O(n \log n).$$

However, if we always get unlucky with very unbalanced partitions, then

$$T(n) \leq T(n - 1) + O(n),$$

hence

$$T(n) = O(n^2).$$
Quicksort

Quicksort(A, p, r)

begin
 if p < r then
 q = Partition(A, p, r);
 Quicksort(A, p, q - 1);
 Quicksort(A, q + 1, r);
 end
end

If we could always partition the array into halves, then we have the recurrence

\[T(n) \leq 2T(n/2) + O(n), \]

hence

\[T(n) = O(n \log n). \]

However, if we always get unlucky with very unbalanced partitions, then

\[T(n) \leq T(n-1) + O(n), \]

hence

\[T(n) = O(n^2). \]
If we could always partition the array into halves, then we have the recurrence $T(n) \leq 2T(n/2) + O(n)$, hence $T(n) = O(n \log n)$.

However, if we always get unlucky with very unbalanced partitions, then $T(n) \leq T(n - 1) + O(n)$, hence $T(n) = O(n^2)$.

Quicksort(A, p, r)

begin
 if $p < r$ then
 $q =$ Partition(A, p, r);
 Quicksort($A, p, q - 1$);
 Quicksort($A, q + 1, r$);
 end
end
Outline:

- Partition
- Quicksort
- Average Case Analysis of Quicksort
Average Case Analysis of Quicksort

Measuring running time:
Measuring running time:

- The running time is dominated by the time spent in partition.
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) =$
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + \ldots$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.
Recurrence:

$$T(n) = T(m) + T(n - m - 1) + O(n)$$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

$T(n) = T(0) + T(n - 1) + O(n)$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

\begin{align*}
T(n) &= T(0) + T(n - 1) + O(n) \\
T(n) &= O(\quad)
\end{align*}
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

\[
T(n) = T(0) + T(n - 1) + O(n)
\]

\[
T(n) = O(n^2)
\]
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

$T(n) = T(0) + T(n - 1) + O(n)$

$T(n) = O(n^2)$

What inputs give worst case performance?
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

$$
T(n) = T(0) + T(n - 1) + O(n) \\
T(n) = O(n^2)
$$

What inputs give worst case performance?

We will analyze average case running time.
Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen.
1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen

2. Use Average Case Analysis
Average Case Analysis

1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen
2. Use Average Case Analysis
3. Assume every possible input permutation of the n items are equally likely.
4. $n!$ permutations so each one has probability $\frac{1}{n!}$ of occurring
5. If S_n is set of all permutations, $\sigma \in S_n$ is a possible input permutation, then average running time is

$$\frac{1}{n!} \sum_{\sigma \in S_n} C(\sigma)$$
Average Case Analysis

Let A be the set of items in $A[p..r]$ and σ a random permutation of A.

1. $A[r]$ is equally likely to be any item in A.
2. After running the partition algorithm on $A[p..r]$, the input to the new left and right subproblems are again random permutations (need to argue why).

Recall that if X is a random variable and E_1, E_2, \ldots, E_n are events that partition the probability space then we can write the expectation of X in terms of the Expectation of X conditioned on E_i. That is

$$E(X) = \sum_i E(X|E_i) \Pr(E_i).$$
Average Case Analysis

Assume that the input to is a random permutation of N items.

- Let C_N be the average amount of work performed on the input
- $C_0 = C_1 = 0$.
- Partition requires $N - 1$ comparisons
- Each item has probability $1/N$ of being pivot.
- If Item k is pivot, the two remaining subproblems require $C_{k-1} + C_{N-k}$ average time

$$C_N = N - 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k})$$

$$= N - 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}$$
Multiplying both sides of previous equation by N and then rewriting the equation for $N - 1$ yields

$$NC_N = N(N - 1) + 2 \sum_{1 \leq k \leq N} C_{k - 1}, \quad (N - 1)C_{N-1} = (N - 1)(N - 2) + 2 \sum_{1 \leq k \leq N-1} C_{k - 1}.$$

Subtracting the 2nd from the 1st and simplifying yields

$$NC_N = (N + 1)C_{N-1} + 2N - 2$$

Dividing both sides by $N(N + 1)$ gives

$$\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}.$$
Telescoping the recurrence down to $N = 3$ and recalling that $C_1 = 0$ yields

\[
\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}
\]

\[
= \frac{C_{N-2}}{N - 1} + \left(\frac{2}{N} - \frac{2}{(N - 1)N} \right) + \left(\frac{2}{N + 1} - \frac{2}{N(N + 1)} \right)
\]

\[
= \ldots
\]

\[
= \frac{C_1}{2} + 2 \sum_{i=3}^{N} \frac{1}{i + 1} - \sum_{i=3}^{N} \frac{2}{i(i + 1)}
\]

\[
= 2H_{N+1} - 2H_3 + O(1) = 2H_N + O(1)
\]

where $H_N = \sum_{i=1}^{N} \frac{1}{i}$ and we are using the fact that $\sum_{i=1}^{\infty} \frac{1}{i} \frac{1}{i}$ is bounded.
Average Case Analysis

We just saw that

\[\frac{C_N}{N+1} = 2H_N + O(1). \]

\(H_N\) is called the \(N\)th Harmonic number and it is well known that

\[H_n = \ln n + O(1). \]

So, we have just proven that the average number of operations performed running Quicksort on a random permutation of \(N\) items is

\[C_N = 2(N+1)H_N + O(N) = 2N \ln N + O(N). \]
Quicksort is a divide and conquer algorithm.
The Quicksort code can be tuned
- When \(N \) is small, call Insertion Sort rather than Quicksort (on very small \(N \), Insertion sort is faster.
- Instead of using last item \(A[r] \) as pivot, set pivot to be median of first, last and middle item. (Why should this help?)

`qsort` under UNIX was an extremely popular sorting routine for decades. It was a finely tuned version of Quicksort

Quicksort was published by Tony Hoare in the Communications of the ACM 4(7), 1961.