Reference: Chapter 7 of CLRS

Outline:

- Partitions
- Quicksort
- Analysis of Quicksort
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q - 1]$ and $A[q + 1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$x = A[r]$

x is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting $A[p..q - 1]$ and $A[q + 1..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations

- $O(r - p)$ time but needs extra space.
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right. i will be largest index of processed item $\leq x$. j will be smallest index of unprocessed item.

Initially $(i, j) = (p - 1, p)$

1. Increase j by 1 each time to find a place for $A[j]$
 At the same time increase i when necessary

2. Stops when $j = r$
One Iteration of the Procedure Partition

Increase \(j \) by 1 each time to find a place for \(A[j] \)

At the same time increase \(i \) when necessary

1. Only increase \(j \) by 1
2. \(i = i + 1. \ A[i] \leftrightarrow A[j]. \ j = j + 1 \)
Example: The Operation of Partition \((A, p, r)\)
The Partition(A, p, r) Algorithm

Partition(A, p, r)

\[
\text{begin} \\
\quad x = A[r]; // A[r] is the pivot element \\
\quad i = p - 1; \\
\quad \text{for } j = p \text{ to } r - 1 \text{ do} \\
\quad\quad \text{if } A[j] \leq x \text{ then} \\
\quad\quad\quad i = i + 1; \\
\quad\quad\quad \text{exchange } A[i] \text{ and } A[j]; \\
\quad\quad \text{end} \\
\quad \text{end} \\
\quad \text{exchange } A[i + 1] \text{ and } A[r]; // put pivot in position \\
\quad \text{return } i + 1 // q = i + 1 \\
\text{end}
\]
Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
 \[x = A[r]; \]
 \[i = p - 1; \]
 for \(j = p \) to \(r - 1 \) do
 if \(A[j] \leq x \) then
 \[i = i + 1; \]
 exchange \(A[i] \) and \(A[j] \); // \(O(r - p) \)
 end
 end
 exchange \(A[i + 1] \) and \(A[r] \);
 return \(i + 1 \)
end

Running time is \(O(r - p) \)
- **linear** in the length of the array \(A[p..r] \)
Quicksort

Quicksort(A, p, r)

begin
 if $p < r$ then
 $q =$ Partition(A, p, r);
 Quicksort($A, p, q - 1$);
 Quicksort($A, q + 1, r$);
 end
end

If we could always partition the array into halves, then we have the recurrence $T(n) \leq 2T(n/2) + O(n)$, hence $T(n) = O(n \log n)$

However, if we always get unlucky with very unbalanced partitions, then $T(n) \leq T(n - 1) + O(n)$, hence $T(n) = O(n^2)$
Outline:

- Partition
- Quicksort
- Average Case Analysis of Quicksort
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

$$T(n) = T(0) + T(n - 1) + O(n)$$

$$T(n) = O(n^2)$$

What inputs give worst case performance?

We will analyze average case running time.
1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen

2. Use Average Case Analysis

3. Assume every possible input permutation of the n items are equally likely.

4. $n!$ permutations so each one has probability $\frac{1}{n!}$ of occurring

5. If S_n is set of all permutations, $\sigma \in S_n$ is a possible input permutation, then average running time is

$$\frac{1}{n!} \sum_{\sigma \in S_n} C(\sigma)$$
Let A be the set of items in $A[p..r]$ and σ a random permutation of A.

1. $A[r]$ is equally likely to be any item in A.

2. After running the partition algorithm on $A[p..r]$, the input to the new left and right subproblems are again random permutations (need to argue why).

Recall that if X is a random variable and E_1, E_2, \ldots, E_n are events that partition the probability space then we can write the expectation of X in terms of the Expectation of X conditioned on E_i. That is

$$E(X) = \sum_i E(X|E_i) \Pr(E_i).$$
Assume that the input to is a random permutation of \(N \) items.

- Let \(C_N \) be the average amount of work performed on the input
- \(C_0 = C_1 = 0 \).
- Partition requires \(N - 1 \) comparisons
- Each item has probability \(1/N \) of being pivot.
- If Item \(k \) is pivot, the two remaining subproblems require \(C_{k-1} + C_{N-k} \) average time

\[
C_N = N - 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k})
\]
\[
= N - 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}
\]
Multiplying both sides of previous equation by N and then rewriting the equation for $N - 1$ yields

$$NC_N = N(N - 1) + 2 \sum_{1 \leq k \leq N} C_{k - 1}, \quad (N - 1)C_{N - 1} = (N - 1)(N - 2) + 2 \sum_{1 \leq k \leq N - 1} C_{k - 1}$$

Subtracting the 2nd from the 1st and simplifying yields

$$NC_N = (N + 1)C_{N - 1} + 2N - 2$$

Dividing both sides by $N(N + 1)$ gives

$$\frac{C_N}{N + 1} = \frac{C_{N - 1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}.$$
Telescoping the recurrence down to $N = 3$ and recalling that $C_1 = 0$ yields

\[
\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} - \frac{2}{N(N+1)}
\]

\[
= \frac{C_{N-2}}{N-1} + \left(\frac{2}{N} - \frac{2}{(N-1)N} \right) + \left(\frac{2}{N+1} - \frac{2}{N(N+1)} \right)
\]

\[
= \ldots
\]

\[
= \frac{C_1}{2} + 2 \sum_{i=3}^{N} \frac{1}{i+1} - \sum_{i=3}^{N} \frac{2}{i(i+1)}
\]

\[
= 2H_{N+1} - 2H_3 + O(1) = 2H_N + O(1)
\]

where $H_N = \sum_{i=1}^{N} 1/i$ and we are using the fact that $\sum_{i=1}^{\infty} 1/i(i = 1)$ is bounded.
We just saw that
\[\frac{C_N}{N+1} = 2H_N + O(1). \]

\(H_N \) is called the \(N \)th Harmonic number and it is well known that
\[H_n = \ln n + O(1). \]

So, we have just proven that the average number of operations performed running Quicksort on a random permutation of \(N \) items is
\[C_N = 2(N + 1)H_N + O(N) = 2N \ln N + O(N). \]
Quicksort is a divide and conquer algorithm.

The Quicksort code can be tuned

- When N is small, call Insertion Sort rather than Quicksort (on very small N, Insertion sort is faster).
- Instead of using last item $A[r]$ as pivot, set pivot to be median of first, last and middle item. (Why should this help?)

$qsort$ under UNIX was an extremely popular sorting routine for decades. It was a finely tuned version of Quicksort

Quicksort was published by Tony Hoare in the Communications of the ACM 4(7), 1961.