Spanning trees and minimum spanning trees (MST).
• Spanning trees and minimum spanning trees (MST).
• Tools for solving the MST problem.
- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
Definition

A subgraph T of a undirected graph $G = (V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Version of October 23, 2014
Spanning Trees

Definition

A subgraph \(T \) of a undirected graph \(G = (V, E) \) is a spanning tree of \(G \) if it is a tree and contains every vertex of \(G \).

Example

Graph

spanning tree 1

spanning tree 2

spanning tree 3
Theorem

Every connected graph has a spanning tree.
Theorem

Every connected graph has a spanning tree.

Question

Why is this true?
Theorem

Every connected graph has a spanning tree.

Question

Why is this true?

Question

Given a connected graph G, how can you find a spanning tree of G?
Weighted Graphs

Definition

A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.
A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.

Example

- **weighted graph**
 - Tree 1. w = 74
 - Tree 2. w = 71
 - Tree 3. w = 72
A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.

Example

Weighted graph

Tree 1. $w=74$

Tree 2. $w=71$

Tree 3. $w=72$

Definition

Weight of a graph: The sum of the weights of all edges
Definition

A **Minimum spanning tree (MST)** of an undirected connected weighted graph is a spanning tree of **minimum weight** (among all spanning trees).
Definition

A **Minimum spanning tree (MST)** of an undirected connected weighted graph is a spanning tree of **minimum weight** (among all spanning trees).

Example

- **weighted graph**
- Tree 1, \(w=74 \)
- Tree 2, \(w=71 \)
- Tree 3, \(w=72 \)
Remark

The minimum spanning tree may not be **unique**

Example

- **weighted graph**
- **MST1**
- **MST2**

Note: if the weights of all the edges are distinct, MST is provably unique (proof will follow from later results).
Remark

The minimum spanning tree may not be unique

Example

- Weighted graph
- MST1
- MST2

Note: if the weights of all the edges are distinct, MST is provably unique (proof will follow from later results).
Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.
Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.
• Spanning trees and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
Outline

- **Spanning trees** and minimum spanning trees (MST).
- **Tools for solving the MST problem.**
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
A tree is an **acyclic** graph
A tree is an **acyclic** graph

1. start with an **empty** graph
A tree is an acyclic graph

1. start with an empty graph
2. try to add edges one at a time, subject to not creating a cycle
A tree is an acyclic graph

1. start with an empty graph
2. try to add edges one at a time, subject to not creating a cycle
3. if after adding each edge we are sure that the resulting graph is a subset of some minimum spanning tree, then, after $n - 1$ steps we are done.
A tree is an *acyclic* graph

1. start with an *empty* graph
2. try to *add* edges one at a time, subject to not creating a cycle
3. if after adding each edge we are sure that the resulting graph is a *subset* of some minimum spanning tree, then, after \(n - 1 \) steps we are done.

Hard part is ensuring (3)!
Generic Algorithm for MST problem

Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST.
Generic Algorithm for MST problem

Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is **safe edge** for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.
Generic Algorithm for MST problem

Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can
Definition

Let \(A \) be a set of edges such that \(A \subseteq T \), where \(T \) is some MST. Edge \((u, v)\) is **safe edge** for \(A \), if \(A \cup \{(u, v)\} \) is also a subset of some MST.

- If at each step, we can find a safe edge \((u, v)\), we can **grow** a MST.
Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can grow a MST.

Generic-MST(G, w)

```plaintext
begin
    A = EMPTY;
    while A does not form a spanning tree do
        find an edge $(u, v)$ that is safe for A;
        add $(u, v)$ to A;
    end
    return A
end
```
Some Definitions

Definition
Let $G = (V, E)$ be a connected and undirected graph.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$.

A cut respects a set A of edges if no edge in A crosses the cut.

An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A **cut** $(S, V - S)$ of G is a partition of V.

Example

[A diagram illustrating a graph cut with two partitions separated by a green and blue ellipse, with red edges crossing the cut.]
Some Definitions

Definition
Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

![Graph Example](image)

Definition
An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$.
Definition

Let $G = (V, E)$ be a connected and undirected graph. A **cut** $(S, V - S)$ of G is a partition of V.

Example

![Example Diagram]

Definition

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$.

A cut respects a set A of edges if no edge in A crosses the cut.
Some Definitions

Definition
Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

Definition
An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$. A cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.
How to Find a Safe Edge?

Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.
- A be a subset of E that is included in some minimum spanning tree for G.

Let $(S, V - S)$ be any cut of G that respects A.

Let (u, v) be a light edge crossing the cut $(S, V - S)$.

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by:

1. First finding a cut that respects A.
2. Then finding a light edge crossing that cut.

That light edge is a safe edge.
Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A
How to Find a Safe Edge?

Lemma

Let $G = (V,E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A
- (u, v) be a light edge crossing the cut $(S, V - S)$
How to Find a Safe Edge?

Lemma

Let \(G = (V, E) \) be a connected, undirected graph with a real-valued weight function \(w \) defined on \(E \).

Let \(A \) be a subset of \(E \) that is included in some minimum spanning tree for \(G \).

Let

- \((S, V - S)\) be any cut of \(G \) that respects \(A \)
- \((u, v)\) be a light edge crossing the cut \((S, V - S)\)

Then, edge \((u, v)\) is safe for \(A \).
How to Find a Safe Edge?

Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be *any* cut of G that respects A
- (u, v) be a light edge crossing the cut $(S, V - S)$

Then, edge (u, v) is *safe* for A.

This implies we can find a safe edge by
How to Find a Safe Edge?

Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A
- (u, v) be a light edge crossing the cut $(S, V - S)$

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

1. first finding a cut that respects A, ...
Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E

A be a subset of E that is included in some minimum spanning tree for G.

Let

1. $(S, V - S)$ be any cut of G that respects A
2. (u, v) be a light edge crossing the cut $(S, V - S)$

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

1. first finding a cut that respects A,
2. then finding a light edge crossing that cut.

That light edge is a safe edge.
Let $A \subseteq T$, where T is a MST.
Proof

- Let $A \subseteq T$, where T is a MST.
- Case 1: $(u, v) \in T$
Proof

Let $A \subseteq T$, where T is a MST.

Case 1: $(u, v) \in T$

- $A \cup \{(u, v)\} \subseteq T$.
- Hence (u, v) is safe for A.
Case 2: \((u, v) \notin T\)
Case 2: \((u, v) \notin T\)

Idea: construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
Case 2: \((u, v) \notin T\)

- Idea: construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
Proof (cont’d)

- Case 2: \((u, v) \notin T\)
 - Idea: construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
 - Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
 - Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
 - Since the cut respects \(A\), \((x, y) \notin A\).
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\), there is at least one edge in \(P\) that crosses the cut.
- Let \((x, y)\) be such an edge.

Since the cut respects \(A\), \((x, y) \notin A\).

Since \((u, v)\) is a light edge crossing the cut, we have \(w(u, v) \leq w(x, y)\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again.
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).
• Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
 Removing any edge from this cycle gives a tree again.
 In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

• The weight of \(T'\) is
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is

\[
w(T') = w(T) - w(x, y) + w(u, v) \\
\leq w(T)
\]
• Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

• The weight of \(T'\) is

\[
 w(T') = w(T) - w(x, y) + w(u, v)
\]

\[
 \leq w(T)
\]

• Since \(T\) is a MST, \(W(T) \leq W(T')\) so \(W(T') = W(T)\) and \(T\) is also an MST.
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is

\[
w(T') = w(T) - w(x, y) + w(u, v) \\
\leq w(T)
\]

Since \(T\) is a MST, \(W(T) \leq W(T')\) so \(W(T') = W(T)\) and \(T\) is also an MST.

But \(A \cup \{(u, v)\} \subseteq T'\), so \((u, v)\), is safe for \(A\).

The Lemma is proved.
Spanning trees and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
The generic algorithm gives us an idea how to ’grow’ a MST.
Prim’s Algorithm

The generic algorithm gives us an idea how to 'grow' a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.
The generic algorithm gives us an idea how to ’grow’ a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.

- We can select any cut (that respects current edge set A) and find a light edge crossing that cut to proceed.
The generic algorithm gives us an idea how to ’grow’ a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.
- We can select any cut (that respects current edge set A) and find a light edge crossing that cut to proceed.
- Different ways of choosing cuts correspond to different algorithms.
- The two major ones are Prim’s algorithm and Kruskal’s algorithm,
Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex \(r \) to be the root of the tree.
Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph:
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph: find shortest edge leaving tree and add it to the tree.
Prim’s Algorithm

Prim’s algorithm
- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree
- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph: find shortest edge leaving tree and add it to the tree.

We will show that these steps can be implemented in total $O(E \cdot \log V)$.
Step 0:

- Choose any element r; set $S = \{ r \}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)
Step 0:
- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

Step 1:
- Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.

New edge: $f \rightarrow g$
Step 0:
- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- **Find a lightest edge** such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- **Add** this edge to \(A \) and its (other) endpoint to \(S \).
Step 0:
- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

Step 1:
- Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.
- Add this edge to A and its (other) endpoint to S.

Step 2:
- If $V \setminus S = \emptyset$, then stop and output (minimum) spanning tree (S, A);
Step 0:
- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- Find a lightest edge such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- Add this edge to \(A \) and its (other) endpoint to \(S \).

Step 2:
- If \(V \setminus S = \emptyset \), then stop and output (minimum) spanning tree \((S, A)\); Otherwise, go to Step 1.
Worked Example

Connected graph

Step 0

\[S = \{ a \} \]

\[V \setminus S = \{ b, c, d, e, f, g \} \]

lightest edge = \{ a, b \}
Step 1.1 before
S={a}
V \ S = \{b,c,d,e,f,g\}
A=\{
lightest edge = \{a,b\}

Step 1.1 after
S={a,b}
V \ S = \{c,d,e,f,g\}
A=\{\{a,b\}\}
lightest edge = \{b,d\}, \{a,c\}
Step 1.2 before
$S=\{a,b\}$
$V \setminus S = \{c,d,e,f,g\}$
$A=\{\{a,b\}\}$
lighest edge = $\{b,d\}, \{a,c\}$

Step 1.2 after
$S=\{a,b,d\}$
$V \setminus S = \{c,e,f,g\}$
$A=\{\{a,b\},\{b,d\}\}$
lighest edge = $\{d,c\}$
Step 1.3 before
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lighest edge = \{d,c\}

Step 1.3 after
S={a,b,c,d}
V \ S = \{e,f,g\}
A=\{\{a,b\},\{b,d\},\{c,d\}\}
lighest edge = \{c,f\}
Step 1.4 before
S={a,b,c,d}
V \ S = \{e,f,g\}
A=\{\{a,b\},\{b,d\},\{c,d\}\}
lighest edge = \{c,f\}

Step 1.4 after
S={a,b,c,d,f}
V \ S = \{e,g\}
A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}
lighest edge = \{f,g\}
Step 1.5 before

\(S = \{ a, b, c, d, f \} \)

\(V \setminus S = \{ e, g \} \)

\(A = \{ \{ a, b \}, \{ b, d \}, \{ c, d \}, \{ c, f \} \} \)

lightest edge = \{ f, g \}

Step 1.5 after

\(S = \{ a, b, c, d, f, g \} \)

\(V \setminus S = \{ e \} \)

\(A = \{ \{ a, b \}, \{ b, d \}, \{ c, d \}, \{ c, f \}, \{ f, g \} \} \)

lightest edge = \{ f, e \}
Step 1.6 before
S={a,b,c,d,f,g}
V \ S = \{e\}
A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\}\}
lightest edge = \{f,e\}

Step 1.6 after
S={a,b,c,d,e,f,g}
V \ S = \{\}
A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\},\{f,e\}\}
MST completed
Outline

- **Spanning trees** and minimum spanning trees (MST).
Spanning trees and minimum spanning trees (MST).
Strategy for solving the MST problem.
- **Spanning trees** and minimum spanning trees (MST).
- Strategy for solving the MST problem.
- **Prim's algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
Step 0: Choose any element \(r \) and set \(S = \{r\} \) and \(A = \emptyset \). (Take \(r \) as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
Add this edge to \(A \) and its (other) endpoint to \(S \).

Step 2: If \(V \setminus S = \emptyset \), then stop and output the minimum spanning tree \((S, A)\); Otherwise go to Step 1.
Recall Idea of Prim’s Algorithm

Step 0: Choose any element \(r \) and set \(S = \{ r \} \) and \(A = \emptyset \).
(Take \(r \) as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
Add this edge to \(A \) and its (other) endpoint to \(S \).

Step 2: If \(V \setminus S = \emptyset \), then stop and output the minimum spanning tree \((S, A)\); Otherwise go to Step 1.

Questions

1. Why does this produce a **minimum** spanning tree?
2. How does the algorithm find the **lightest edge** and update \(A \) efficiently?
3. How does the algorithm update \(S \) efficiently?
Question
How does the algorithm update S efficiently?

Answer:
1. Color the vertices.
 Initially all are white.
 Change the color to black when the vertex is moved to S.
 Use $\text{color}[v]$ to store color.

2. Use a priority queue to find the lightest edge.
3. Use $\text{pred}[v]$ to update A.
Question: How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
Question: How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.

1. Use a priority queue to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.

Version of October 23, 2014
Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.
Prim’s Algorithm

Question
How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question
How does the algorithm find a lightest edge and update A efficiently?

1. Use a priority queue to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.
Question
How does the algorithm update S efficiently?

Answer: *Color* the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question
How does the algorithm find a *lightest* edge and update A efficiently?

Answer:
1. Use a *priority queue* to find the lightest edge.
Question
How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question
How does the algorithm find a lightest edge and update A efficiently?

Answer:
1. Use a *priority queue* to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.
Priority Queue is a data structure
 can be implemented as a heap

Supports the following operations:
Reviewing Priority Queues

Priority Queue is a data structure
- can be implemented as a heap

Supports the following operations:

Insert(\(u, key\)): Insert \(u\) with the key value \(key\) in \(Q\).
Reviewing Priority Queues

Priority Queue is a data structure
 - can be implemented as a heap

Supports the following operations:

Insert\((u, key)\): Insert \(u\) with the key value \(key\) in \(Q\).

\(u = \text{Extract-Min}()\): Extract the item with minimum key value.
Priority Queue is a data structure
 * can be implemented as a heap

Supports the following operations:

- **Insert**(u, key): Insert u with the key value key in Q.
- **$u = \text{Extract-Min}$**: Extract the item with minimum key value.
- **Decrease-Key**($u, new-key$): Decrease u’s key value to $new-key$.

Remark: We already saw how to implement Insert and Extract-Min (and Delete) in $O(\log |Q|)$ time. Same ideas can also be used to implement Decrease-Key in $O(\log |Q|)$ time. Alternatively, can implement Decrease-Key using Delete followed by Insert.
Reviewing Priority Queues

Priority Queue is a data structure
- can be implemented as a heap

Supports the following operations:
Insert\((u, \text{key})\): Insert \(u\) with the key value \(\text{key}\) in \(Q\).
\(u = \text{Extract-Min}()\): Extract the item with minimum key value.
Decrease-Key\((u, \text{new-key})\): Decrease \(u\)’s key value to \(\text{new-key}\).

Remark: We already saw how to implement Insert and Extract-Min (and Delete) in \(O(\log |Q|)\) time.
Same ideas can also be used to implement Decrease-Key in \(O(\log |Q|)\) time.
Alternatively, can implement Decrease-Key using Delete followed by Insert.
Each item of the queue is a pair \((u, key[u])\), where
- \(u\) is a vertex in \(V \setminus S\),
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, key[u])\), where

- \(u\) is a vertex in \(V \setminus S\),
- \(key[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\).

(The endpoint of this edge in \(S\) is stored in \(pred[u]\), which is used to build the MST tree.)
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, key[u])\), where

- \(u\) is a vertex in \(V \setminus S\),
- \(key[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\). (The endpoint of this edge in \(S\) is stored in \(pred[u]\), which is used to build the MST tree.)

\[
\begin{align*}
\text{key}[f] &= 8, \quad \text{pred}[f] = e \\
\text{key}[i] &= \text{infinity}, \quad \text{pred}[i] = \text{nil} \\
\text{key}[g] &= 16, \quad \text{pred}[g] = c \\
\text{key}[h] &= 24, \quad \text{pred}[h] = b
\end{align*}
\]

\(\rightarrow\) \(f\) has the minimum key

\[
\begin{align*}
\text{key}[i] &= 23, \quad \text{pred}[i] = f \\
\text{After adding the new edge and vertex } f, \text{ update the key}[v] \text{ and pred}[v] \text{ for each vertex } v \text{ adjacent to } f
\end{align*}
\]
begin
 foreach $u \in V$ do
 $color[u] = \text{WHITE}$; $key[u] = +\infty$; // initialize
 end

 $key[r] = 0$; $pred[r] = \text{NIL}$; // start at root

 $Q = \text{new PriQueue}(V)$; // put vertices in Q

 while Q is nonempty do
 $u = Q.\text{Extract-Min}()$; // lightest edge

 foreach $v \in \text{adj}[u]$ do
 if ($color[v] = \text{WHITE}) \&\& (w[u, v] < key[v])$ then
 $key[v] = w[u, v]$; // new lightest edge
 $Q.\text{Decrease-Key}(v, key[v])$
 $pred[v] = u$
 end
 end

 end

 $color[u] = \text{BLACK}$
end
When the algorithm terminates, $Q = \emptyset$ and the MST is

$$T = \{ \{ v, \text{pred}[v] \} : v \in V \setminus \{ r \} \}.$$

- The pred pointers define the MST as an inverted tree rooted at r.
Example for Running Prim’s Algorithm

![Graph Diagram]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>key[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spinning trees and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Strategy for solving the MST problem.
Outline

- Spanning trees and minimum spanning trees (MST).
- Strategy for solving the MST problem.
- Prim’s algorithm for the MST problem.
 - The idea
 - The algorithm
 - Analysis
begin

foreach $u \in V$ do

| $key[u] = +\infty$; $color[u] = \text{WHITE}$; // $O(V)$

end

$key[r] = 0$; $pred[r] = \text{NIL}$;

$Q = \text{new PriQueue}(V)$; // $O(V)$

while Q is nonempty do

| $u = Q.\text{Extract-Min}();$ // Do this for each vertex

foreach $v \in adj[u]$ do

| // Do the following for each edge twice

if ($color[v] = \text{WHITE}$) && ($w[u, v] < key[v]$) then

| $key[v] = w[u, v]$; $pred[v] = u$;

| $Q.\text{Decrease-Key}(v, key[v])$; // This is bottleneck

end

end

$color[u] = \text{BLACK}$;

end

end
The data structure \texttt{PriQueue} (heap) supports the following two operations:

- \(O(|V|) \) for creating new Priority Queue
- \(O(\log V) \) for \texttt{Extract-Min} on a PriQueue of size at most \(V \).

 Total cost: \(O(V \log V) \)
- \(O(\log V) \) time for \texttt{Decrease-Key} on a PriQueue of size at most \(V \).

 Total cost: \(O(E \log V) \).

Total cost is then \(O((V + E) \log V) = O(E \log V) \)
A more advanced Priority Queue implementation called *Fibonacci Heaps* allow

- $O(1)$ for inserting each item
- $O(\log |V|)$ for *Extract-Min*
- $O(1)$ (amortized) for each *Decrease-Key*

Since algorithm performs $|V|$ Inserts, $|V|$ Extract-Mins and at most E Decrease-Keys this leads to a $O(|E| + |V| \log |V|)$ algorithm, improving upon the $O(E \log V)$ more naive implementation.