Minimum Spanning Trees and Prim’s Algorithm

Version of October 23, 2014
• **Spanning trees** and minimum spanning trees (MST).
• Tools for solving the MST problem.
• **Prim’s algorithm** for the MST problem.
 • The idea
 • The algorithm
 • Analysis
Spanning Trees

Definition

A subgraph T of an undirected graph $G = (V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Example

![Graph](image)

- **Graph**
- **spanning tree 1**
- **spanning tree 2**
- **spanning tree 3**
Theorem

Every connected graph has a spanning tree.

Question

Why is this true?

Question

Given a connected graph \(G \), how can you find a spanning tree of \(G \)?
Weighted Graphs

Definition

A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.

Example

![Weighted Graph Example](image)

Definition

Weight of a graph: The sum of the weights of all edges
Definition

A Minimum spanning tree (MST) of an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Example

weighted graph

Tree 1. w=74

Tree 2, w=71

Tree 3, w=72
Remark

The minimum spanning tree may not be unique

Example

Note: if the weights of all the edges are distinct, MST is provably unique (proof will follow from later results).
Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.
Outline

- **Spanning trees** and minimum spanning trees (MST).
- **Tools for solving the MST problem.**
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
A tree is an acyclic graph

1. start with an empty graph
2. try to add edges one at a time, subject to not creating a cycle
3. if after adding each edge we are sure that the resulting graph is a subset of some minimum spanning tree, then, after $n-1$ steps we are done.

Hard part is ensuring (3)!
Definition
Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is **safe edge** for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can **grow** a MST.

Generic-MST(G, w)

```plaintext
begin
    A = EMPTY;
    while A does not form a spanning tree do
        find an edge $(u, v)$ that is safe for A;
        add $(u, v)$ to A;
    end
    return A
end
```
Definition

Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

![Graph Diagram]

Definition

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$. A cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

Let A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A.
- (u, v) be a light edge crossing the cut $(S, V - S)$.

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

1. first finding a cut that respects A,
2. then finding a light edge crossing that cut.

That light edge is a safe edge.
Proof

- Let $A \subseteq T$, where T is a MST.
- Case 1: $(u, v) \in T$
 - $A \cup \{(u, v)\} \subseteq T$.
 - Hence (u, v) is safe for A.
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
- Since the cut respects \(A\), \((x, y) \notin A\).
- Since \((u, v)\) is a light edge crossing the cut, we have \(w(u, v) \leq w(x, y)\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is

\[
\begin{align*}
w(T') &= w(T) - w(x, y) + w(u, v) \\ &\leq w(T)
\end{align*}
\]

Since \(T\) is a MST, \(W(T) \leq W(T')\) so \(W(T') = W(T)\) and \(T\) is also an MST.

But \(A \cup \{(u, v)\} \subseteq T'\), so \((u, v)\), is safe for \(A\).

The Lemma is proved.
- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
The generic algorithm gives us an idea how to ‘grow’ a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.
- We can select any cut (that respects current edge set \(A \)) and find a light edge crossing that cut to proceed.
- Different ways of choosing cuts correspond to different algorithms.
- The two major ones are Prim’s algorithm and Kruskal’s algorithm,
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph: find shortest edge leaving tree and add it to the tree.

We will show that these steps can be implemented in total $O(E \cdot \log V)$.
Step 0:
- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- Find a lightest edge such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- Add this edge to \(A \) and its (other) endpoint to \(S \).

Step 2:
- If \(V \setminus S = \emptyset \), then stop and output (minimum) spanning tree \((S, A)\); Otherwise, go to Step 1.
Step 0

$S = \{a\}$

$V \setminus S = \{b, c, d, e, f, g\}$

lightest edge = \{a, b\}
Prim’s Example – Continued

Step 1.1 before
S={a}
V \ S = {b,c,d,e,f,g}
A={}
lighest edge = {a,b}

Step 1.1 after
S={a,b}
V \ S = {c,d,e,f,g}
A={ {a,b} }
lighest edge = {b,d}, {a,c}
Step 1.2 before
S={a,b}
V \ S = \{c,d,e,f,g\}
A=\{\{a,b\}\}
lightest edge = \{b,d\}, \{a,c\}

Step 1.2 after
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lightest edge = \{d,c\}
Step 1.3 before
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lighest edge = \{d,c\}

Step 1.3 after
S={a,b,c,d}
V \ S = \{e,f,g\}
A=\{\{a,b\},\{b,d\},\{c,d\}\}
lighest edge = \{c,f\}
Step 1.4 before
S = \{a, b, c, d\}
V \setminus S = \{e, f, g\}
A = \{\{a, b\}, \{b, d\}, \{c, d\}\}
lightest edge = \{c, f\}

Step 1.4 after
S = \{a, b, c, d, f\}
V \setminus S = \{e, g\}
A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}\}
lightest edge = \{f, g\}
Prim’s Example – Continued

Before Step 1.5:
- \(S = \{a, b, c, d, f\} \)
- \(V \setminus S = \{e, g\} \)
- \(A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}\} \)
- Lightest edge = \{f, g\}

After Step 1.5:
- \(S = \{a, b, c, d, f, g\} \)
- \(V \setminus S = \{e\} \)
- \(A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}, \{f, g\}\} \)
- Lightest edge = \{f, e\}
Step 1.6 before
S={a,b,c,d,f,g}
V \ S = \{e\}
A=\{ \{a,b\}, \{b,d\}, \{c,d\}, \{c,f\}, \{f,g\} \}
lightest edge = \{f,e\}

Step 1.6 after
S={a,b,c,d,e,f,g}
V \ S = \{\}
A=\{ \{a,b\}, \{b,d\}, \{c,d\}, \{c,f\}, \{f,g\}, \{f,e\} \}
MST completed
- **Spanning trees** and minimum spanning trees (MST).
- Strategy for solving the MST problem.
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
Recall Idea of Prim’s Algorithm

Step 0: Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S, A); Otherwise go to Step 1.

Questions

1. Why does this produce a minimum spanning tree?
2. How does the algorithm find the lightest edge and update A efficiently?
3. How does the algorithm update S efficiently?
Prim’s Algorithm

Question
How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question
How does the algorithm find a lightest edge and update A efficiently?

Answer:
1. Use a priority queue to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.
Priority Queue is a data structure

- can be implemented as a heap

Supports the following operations:

- **Insert**\((u, key)\): Insert \(u\) with the key value \(key\) in \(Q\).
- \(u = \text{Extract-Min}()\): Extract the item with minimum key value.
- **Decrease-Key**\((u, new-key)\): Decrease \(u\)’s key value to \(new-key\).

Remark: We already saw how to implement Insert and Extract-Min (and Delete) in \(O(\log |Q|)\) time.

Same ideas can also be used to implement Decrease-Key in \(O(\log |Q|)\) time.

Alternatively, can implement Decrease-Key using Delete followed by Insert.
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, key[u])\), where
- \(u\) is a vertex in \(V \setminus S\),
- \(key[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\). (The endpoint of this edge in \(S\) is stored in \(pred[u]\), which is used to build the MST tree.)

key\[f\] = 8, \(pred[f] = e\)
key\[i\] = infinity, \(pred[i] = nil\)
key\[g\] = 16, \(pred[g] = c\)
key\[h\] = 24, \(pred[h] = b\)
\(\rightarrow f\) has the minimum key

After adding the new edge and vertex \(f\), update the \(key[v]\) and \(pred[v]\) for each vertex \(v\) adjacent to \(f\)
begin
 foreach $u \in V$ do
 $color[u] = \text{WHITE};$ $key[u] = +\infty;$ // initialize
 end
 $key[r] = 0;$ $pred[r] = \text{NIL};$ // start at root
 $Q = \text{new PriQueue}(V);$ // put vertices in Q
while Q is nonempty do
 $u = Q.\text{Extract-Min}();$ // lightest edge
 foreach $v \in adj[u]$ do
 if ($color[v] = \text{WHITE}) \&\& (w[u, v] < key[v])$ then
 $key[v] = w[u, v];$ // new lightest edge
 $Q.\text{Decrease-Key}(v, key[v]);$
 $pred[v] = u;$
 end
 end
 $color[u] = \text{BLACK};$
end
end
When the algorithm terminates, $Q = \emptyset$ and the MST is

$$T = \{ {v, \text{pred}[v]} : v \in V \setminus \{r\} \}.$$

- The pred pointers define the MST as an inverted tree rooted at r.
Example for Running Prim’s Algorithm

```
<table>
<thead>
<tr>
<th>u</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>key[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Version of October 23, 2014

Minimum Spanning Trees and Prim’s Algorithm

35 / 39
Spanning trees and minimum spanning trees (MST).
Strategy for solving the MST problem.
Prim’s algorithm for the MST problem.
 - The idea
 - The algorithm
 - Analysis
begin

 foreach $u \in V$ do
 $key[u] = +\infty$; $color[u] = \text{WHITE}$; // O(V)
 end

 $key[r] = 0$; $pred[r] = \text{NIL}$;

 $Q = \text{new PriQueue}(V)$; // O(V)

while Q is nonempty do

 $u = Q.\text{Extract-Min}()$; // Do this for each vertex

 foreach $v \in adj[u]$ do

 // Do the following for each edge twice
 if $(color[v] = \text{WHITE}) && (w[u, v] < key[v])$ then
 $key[v] = w[u, v]$; $pred[v] = u$;
 $Q.\text{Decrease-Key}(v, key[v])$; // This is bottleneck
 end
 end

 $color[u] = \text{BLACK}$;

end

end
The data structure **PriQueue** (heap) supports the following two operations:

- $O(|V|)$ for creating new Priority Queue
- $O(\log V)$ for **Extract-Min** on a PriQueue of size at most V.
 Total cost: $O(V \log V)$
- $O(\log V)$ time for **Decrease-Key** on a PriQueue of size at most V.
 Total cost: $O(E \log V)$.

Total cost is then $O((V + E) \log V) = O(E \log V)$
A more advanced Priority Queue implementation called *Fibonacci Heaps* allow

- $O(1)$ for inserting each item
- $O(\log |V|)$ for *Extract-Min*
- $O(1)$ (amortized) for each *Decrease-Key*

Since algorithm performs $|V|$ Inserts, $|V|$ Extract-Mins and at most E Decrease-Keys this leads to a $O(|E| + |V| \log |V|)$ algorithm, improving upon the $O(E \log V)$ more naive implementation.