All sorting algorithms we seen so far are based on comparing elements

- E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort
All sorting algorithms we have seen so far are based on comparing elements

- E.g., Insertion sort, Selection sort, Mergesort, Heapsort, and Quicksort

Insertion sort, Selection sort, and Quicksort have worst-case running times $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$.
All sorting algorithms we seen so far are based on comparing elements

- E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort

- Insertion sort, Selection sort and Quicksort have worst-case running times $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$

Question

Can we do better?
All sorting algorithms we have seen so far are based on comparing elements.

- E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort

Insertion sort, Selection sort, and Quicksort have worst-case running times $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$.

Question

Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a worst-case running time $\Omega(n \log n)$.
Decision-tree Example

Sort $< a_1, a_2, \ldots, a_n >$

Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$

The left subtree shows subsequent comparisons if $a_i \leq a_j$

The right subtree shows subsequent comparisons if $a_i > a_j$

Each leaf corresponds to an input ordering

$≤$ $>$ $≤$ $>$ $≤$ $>$
Sort $< a_1, a_2, \ldots, a_n >$

- Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$
Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$
Decision-tree Example

Sort $< a_1, a_2, \ldots, a_n >$

Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$

Each leaf corresponds to an input ordering
Decision-tree Example

Sort \(< a_1, a_2, a_3 >\)
\(= \langle 6, 8, 5 \rangle:\)

Each internal node is labeled \(a_i : a_j\) for \(\{1, 2, \ldots, n\}\)
- The left subtree shows subsequent comparisons if \(a_i \leq a_j\)
- The right subtree shows subsequent comparisons if \(a_i > a_j\)

Each leaf corresponds to an input ordering
Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$

Each leaf corresponds to an input ordering
Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$

Each leaf corresponds to an input ordering
Decision-tree Example

Sort \(< a_1, a_2, a_3 >\)
\(<= 6, 8, 5 >:\n
\[
\begin{array}{c}
\text{a}_1 : \text{a}_2 \\
\leq & \geq \\
\text{a}_2 : \text{a}_3 \\
\leq & \geq \\
\text{a}_1, \text{a}_2, \text{a}_3 \\
\leq & \geq \\
\text{a}_1 : \text{a}_3 \\
\leq & \geq \\
\text{a}_2, \text{a}_1, \text{a}_3 \\
\leq & \geq \\
\text{a}_2 : \text{a}_3 \\
\leq & \geq \\
\text{a}_3, \text{a}_2, \text{a}_1 \\
\text{a}_1, \text{a}_3, \text{a}_2 \\
\geq 5 \leq 6 \leq 8 \\
\text{a}_3, \text{a}_1, \text{a}_2 \\
\text{a}_2, \text{a}_3, \text{a}_1 \\
\end{array}
\]

- Each internal node is labeled \(a_i : a_j\) for \(\{1, 2, \ldots, n\}\)
 - The left subtree shows subsequent comparisons if \(a_i \leq a_j\)
 - The right subtree shows subsequent comparisons if \(a_i > a_j\)
- Each leaf corresponds to an input ordering
A decision tree can model the execution of any comparison-based sorting algorithm.
A decision tree can model the execution of any comparison-based sorting algorithm

- One tree for each input size n
A decision tree can model the execution of any comparison-based sorting algorithm

- One tree for each input size n
- Worst-case running time = height of tree
Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.
Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort n elements must have at least $n!$ leaves, since each of the $n!$ orderings is a possible answer.
Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort n elements must have at least $n!$ leaves, since each of the $n!$ orderings is a possible answer.
- A binary tree of height h has at most 2^h leaves.
Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort n elements must have at least $n!$ leaves, since each of the $n!$ orderings is a possible answer.
- A binary tree of height h has at most 2^h leaves.
- Thus, $n! \leq 2^h$
 $$\Rightarrow h \geq \log n! = \Omega(n \log n) \quad \text{(Stirling’s approximation)}$$
Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort n elements must have at least $n!$ leaves, since each of the $n!$ orderings is a possible answer.
- A binary tree of height h has at most 2^h leaves.
- Thus, $n! \leq 2^h$

$$\Rightarrow h \geq \log n! = \Omega(n \log n) \quad \text{(Stirling’s approximation)}$$

Corollary

Heapsort and merge sort are asymptotically optimal comparison-based sorting algorithms.
We just proved that worst case number of comparisons used is $\Omega(n \log n)$.

Suppose that each of the $n!$ input permutations is equally likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of algorithm on each possible input and dividing total by $n!$./
We just proved that worst case number of comparisons used is $\Omega(n \log n)$

Suppose that each of the $n!$ input permutations is equally likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of algorithm on each possible input and dividing total by $n!$.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.
Lower Bound for Average Running Time of Sorting

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

- The External Path Length (EPL) of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by $n!$.
Lower Bound for Average Running Time of Sorting

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by $n!$.
- The EPL of a binary tree with m leaves is at least $m \log_2 m + O(m)$.
- The comparison tree has $m = n!$ leaves
 - its external path length is $n! \log_2 n! + O(n!)$
 - average number of comparisons used is $\log_2 n! + O(1)$.

We already saw $\log_2 n! = \Omega(n \log n)$.

Sorting: Lower Bounds and Linear Time Last Revision: Sep
Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by $n!$.
- The EPL of a binary tree with m leaves is at least $m \log_2 m + O(m)$.
- The comparison tree has $m = n!$ leaves
 - \Rightarrow its external path length is $n! \log_2 n! + O(n!)$
 - \Rightarrow average number of comparisons used is $\log_2 n! + O(1)$.
- We already saw $\log_2 n! = \Omega(n \log n)$.

Sorting: Lower Bounds and Linear Time

Last Revision: September 11, 2014
Can we do better?

Are there sorting algorithms which are not comparison-based?
Can they beat the $\Omega(n \log n)$ lower bound?
Can we do better?

Are there sorting algorithms which are not comparison-based? Can they beat the $\Omega(n \log n)$ lower bound?

- **Counting sort**
 - Assumes items are in set $\{1, 2, \ldots, k\}$.
 - Is a *stable* sort (defined soon).
Can we do better?

Are there sorting algorithms which are not comparison-based? Can they beat the $\Omega(n \log n)$ lower bound?

- **Counting sort**
 - Assumes items are in set $\{1, 2, \ldots, k\}$.
 - Is a *stable* sort (defined soon).

- **Radix sort**
 - Assumes items are stored in fixed size words using finite alphabet
Counting Sort

Counting-sort(A, B, k)

Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$

Output: $B[1 \ldots n]$, sorted

let $C[1 \ldots k]$ be a new array;

for $i \leftarrow 1$ to k do
 $C[i] \leftarrow 0$;
end

for $j \leftarrow 1$ to n do
 $C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$
end

for $i \leftarrow 2$ to k do
 $C[i] \leftarrow C[i] + C[i - 1]$; // $C[i] = |\{\text{key} \leq i\}|$
end

for $j \leftarrow n$ to 1 do
 $C[A[j]] \leftarrow C[A[j]] - 1$;
end
Example: Counting Sort

\[
A = \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 1 & 4 & 2 \\
\end{array}
\]

\[
B = \begin{array}{cccc}
\hline
\hline
\end{array}
\]

\[
C = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline
\hline
\end{array}
\]
Example: Counting Sort

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
A: & 4 & 2 & 1 & 4 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 \\
C: & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c}
B \\
\end{array}
\]

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow 0; \\
\text{end}
\]
Example: Counting Sort

```plaintext
for j ← 1 to n do
    C[A[j]] ← C[A[j]] + 1; // C[i] = |{key = i}|
end
```

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Example: Counting Sort

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

| B |   |   |   |   |   |
|---|---|---|---|---|

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

for $j \leftarrow 1$ to $n$ do
    $C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$
end
Example: Counting Sort

\[
\begin{array}{ccccc}
\text{A} & 1 & 2 & 3 & 4 & 5 \\
& 4 & 2 & 1 & 4 & 2 \\
\text{B} & & & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{C} & 1 & 2 & 3 & 4 \\
& 1 & 1 & 0 & 1 \\
\end{array}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad C[A[j]] \leftarrow C[A[j]] + 1; \quad \text{// } C[i] = \left| \{\text{key} = i\} \right| \\
\text{end}
\]
Example: Counting Sort

$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 4 & 2 \end{bmatrix}$

$C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \end{bmatrix}$

$B = \begin{bmatrix} & & & & \end{bmatrix}$

for $j \leftarrow 1$ to $n$ do
  $C[A[j]] \leftarrow C[A[j]] + 1; // C[i] = |\{\text{key} = i\}|$
end
### Example: Counting Sort

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

| B |   |   |   |   |
|---|---|---|---|

```plaintext
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1; // C[i] = |{key = i}|
end
```
Example: Counting Sort

\[
\begin{align*}
A &= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 4 & 2 \end{bmatrix} \\
B &= \begin{bmatrix} & & & & \end{bmatrix} \\
C &= \begin{bmatrix} 1 & 2 & 0 & 2 \end{bmatrix} \\
C' &= \begin{bmatrix} 1 & 3 & 0 & 2 \end{bmatrix}
\end{align*}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow C[i] + C[i - 1]; \quad \text{// } C[i] = |\{\text{key } \leq i\}|
\text{end}
\]
Example: Counting Sort

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 1 & 4 & 2 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
\phantom{1} & \phantom{2} & \phantom{3} & \phantom{4} & \phantom{5} \\
\phantom{4} & \phantom{2} & \phantom{1} & \phantom{4} & \phantom{2} \\
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 0 & 2 \\
\end{bmatrix}
\]

\[
C' = \begin{bmatrix}
1 & 3 & 3 & 2 \\
\phantom{1} & \phantom{3} & \phantom{3} & \phantom{2} \\
\end{bmatrix}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \text{ do}
\]
\[
\quad C[i] \leftarrow C[i] + C[i - 1]; \quad // \quad C[i] = \left| \{ \text{key} \leq i \} \right|
\]
\[
\text{end}
\]
Example: Counting Sort

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

|   | 1 | 3 | 3 | 5 |
|---|---|---|---|
| C' | 1 | 3 | 3 | 5 |

\[
\text{for } i \leftarrow 2 \text{ to } k \text{ do } \\
\quad C[i] \leftarrow C[i] + C[i - 1]; \quad // \quad C[i] = \{|\text{key } \leq i|\}
\text{end}
\]
Example: Counting Sort

\[
\begin{align*}
A &= \begin{bmatrix}
4 & 2 & 1 & 4 & 2 \\
\end{bmatrix} \\
B &= \begin{bmatrix}
\empty & \empty & \empty & \empty & 2 \\
\end{bmatrix} \\
C &= \begin{bmatrix}
1 & 3 & 3 & 5 \\
\end{bmatrix} \\
C' &= \begin{bmatrix}
1 & 2 & 3 & 5 \\
\end{bmatrix}
\end{align*}
\]

\[
\text{for } j \leftarrow n \text{ to } 1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j]; \\
\quad C[A[j]] \leftarrow C[A[j]] - 1;
\]
\end{align*}
\]

end
### Example: Counting Sort

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B$</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C'$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

```c
for j ← n to 1 do
 B[C[A[j]]] ← A[j];
 C[A[j]] ← C[A[j]] - 1;
end
```
Example: Counting Sort

\[
\begin{array}{c|c|c|c|c|c}
\text{A} & 1 & 2 & 3 & 4 & 5 \\
\hline
4 & 2 & 1 & 4 & 2 \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c}
\text{C} & 1 & 2 & 3 & 4 \\
\hline
1 & 3 & 3 & 5 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{B} & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & 4 \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c}
\text{C'} & 0 & 2 & 3 & 4 \\
\hline
\end{array}
\]

\[
\text{for } j \gets n \text{ to } 1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j]; \\
\quad C[A[j]] \leftarrow C[A[j]] - 1; \\
\text{end}
\]
### Example: Counting Sort

#### Algorithm:

1. Initialize arrays $A$, $B$, and $C$.

2. For $j$ from $n$ to $1$ do:
   - $C[A[j]] \leftarrow C[A[j]] - 1$;

3. Output $B$.

#### Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>$B$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$C$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$C'$</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

### Explanation:

- **$A$** is the input array.
- **$B$** is the output array.
- **$C$** is an auxiliary array used to count occurrences of each element.
- The algorithm iterates from the end of $A$ to the beginning, placing each element in its correct position in $B$ and updating the count in $C$.

### Example Operation:

- $C$ is initialized.
- For $j = 5$ to $1$:
  - $C[A[j]] \leftarrow C[A[j]] - 1$;

- After processing all elements, $B$ contains the sorted array.

- $B = [1, 2, 2, 4, 0]$.
- The last element is placed in its correct position, and its count is decreased.

- **Output:** $B = [1, 2, 2, 4, 0]$. 

---

*Sorting: Lower Bounds and Linear Time Last Revision: Sep 27 / 36*
Example: Counting Sort

for $j \leftarrow n$ to 1 do
  $C[A[j]] \leftarrow C[A[j]] - 1$;
end
Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$
Output: $B[1 \ldots n]$, sorted
let $C[1 \ldots k]$ be a new array;
for $i \leftarrow 1$ to $k$ do
    $C[i] \leftarrow 0$; // $O(k)$
end

Analysis

**Input:** $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$

**Output:** $B[1 \ldots n]$, sorted

Let $C[1 \ldots k]$ be a new array;

for $i \leftarrow 1$ to $k$ do
  $C[i] \leftarrow 0$; // $O(k)$
end

for $j \leftarrow 1$ to $n$ do
  $C[A[j]] \leftarrow C[A[j]] + 1$; // $O(n)$
end

Total: $O(n + k)$
Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$
Output: $B[1 \ldots n]$, sorted
let $C[1 \ldots k]$ be a new array;
for $i \leftarrow 1$ to $k$ do
  $C[i] \leftarrow 0$; // $O(k)$
end
for $j \leftarrow 1$ to $n$ do
  $C[A[j]] \leftarrow C[A[j]] + 1$; // $O(n)$
end
for $i \leftarrow 2$ to $k$ do
  $C[i] \leftarrow C[i] + C[i - 1]$; // $O(k)$
end
Input: $A[1\ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$
Output: $B[1\ldots n]$, sorted
let $C[1\ldots k]$ be a new array;
for $i \leftarrow 1$ to $k$ do
  $C[i] \leftarrow 0$; // $O(k)$
end
for $j \leftarrow 1$ to $n$ do
  $C[A[j]] \leftarrow C[A[j]] + 1$; // $O(n)$
end
for $i \leftarrow 2$ to $k$ do
  $C[i] \leftarrow C[i] + C[i - 1]$; // $O(k)$
end
for $j \leftarrow n$ to $1$ do
  $C[A[j]] \leftarrow C[A[j]] - 1$; // $O(n)$
end
Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$
Output: $B[1 \ldots n]$, sorted
let $C[1 \ldots k]$ be a new array;
for $i \leftarrow 1$ to $k$ do
  $C[i] \leftarrow 0$; // $O(k)$
end
for $j \leftarrow 1$ to $n$ do
  $C[A[j]] \leftarrow C[A[j]] + 1$; // $O(n)$
end
for $i \leftarrow 2$ to $k$ do
  $C[i] \leftarrow C[i] + C[i - 1]$; // $O(k)$
end
for $j \leftarrow n$ to $1$ do
  $C[A[j]] \leftarrow C[A[j]] - 1$; // $O(n)$
end

Total: $O(n + k)$
If $k = O(n)$, then counting sort takes $O(n)$ time.
If $k = O(n)$, then counting sort takes $O(n)$ time.

- But didn’t we prove that sorting must take $\Omega(n \log n)$ time?
If $k = O(n)$, then counting sort takes $O(n)$ time.

- But didn’t we prove that sorting must take $\Omega(n \log n)$ time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
If \( k = O(n) \), then counting sort takes \( O(n) \) time.

- But didn’t we prove that sorting must take \( \Omega(n \log n) \) time?
- No, actually we proved that any comparison-based sorting algorithm takes \( \Omega(n \log n) \) time.
- Note that counting sort is not a comparison-based sorting algorithm.
If $k = O(n)$, then counting sort takes $O(n)$ time.

- But didn’t we prove that sorting must take $\Omega(n \log n)$ time?

- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.

- Note that counting sort is \textit{not} a comparison-based sorting algorithm.

- In fact, it makes no comparisons at all!
Counting sort is a stable sort
- it preserves the input order among equal elements.
Counting sort is a **stable** sort

- it preserves the input order among equal elements.

```
4 2 1 4 2
2 4 1 2 4
```

**Exercise**

What other sorts have this property?
Sort on *least significant* digit first using stable sort
Radix Sort

Sort on *least significant* digit first using stable sort

```
2 3 2 9 2 7 2 0 2 7 2 0 2 3 2 9 2 3 2 9
5 4 5 7 5 3 5 5 2 3 2 9 5 3 5 5 2 7 2 0
3 6 5 7 3 4 3 6 3 4 3 6 3 4 3 6 3 4 3 6
5 8 3 9 5 4 5 7 5 8 3 9 5 4 5 7 3 6 5 7
3 4 3 6 3 6 5 7 5 3 5 5 3 6 5 7 5 3 5 5
2 7 2 0 2 3 2 9 5 4 5 7 2 7 2 0 5 4 5 7
5 3 5 5 5 8 3 9 3 6 5 7 5 8 3 9 5 8 3 9
```
Induction on digit position

- Assume that the numbers are sorted by their low-order \( i - 1 \) digits
- Sort on digit \( i \)
Radix Sort: Correctness

*Induction on digit position*

- Assume that the numbers are sorted by their low-order \( i - 1 \) digits

- Sort on digit \( i \)
  - Two numbers that differ on digit \( i \) are correctly sorted by their low-order \( i \) digits
Radix Sort: Correctness

**Induction on digit position**

- Assume that the numbers are sorted by their low-order \( i - 1 \) digits

- Sort on digit \( i \)
  - Two numbers that differ on digit \( i \) are correctly sorted by their low-order \( i \) digits
  - Two numbers equal on digit \( i \) are put in the same order as the input \( \Rightarrow \) correctly sorted by their low-order \( i \) digits

\[
\begin{array}{cccc}
2 & 7 & 2 & 0 \\
2 & 3 & 2 & 9 \\
3 & 4 & 3 & 6 \\
5 & 8 & 3 & 9 \\
5 & 3 & 5 & 5 \\
5 & 4 & 5 & 7 \\
3 & 6 & 5 & 7 \\
\end{array}
\]
Lemma

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.
Lemma

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.

Application:
Sorting numbers in the range from 0 to $n^b - 1$, where $b$ is a constant.
Lemma

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.

Application:
Sorting numbers in the range from 0 to $n^b - 1$, where $b$ is a constant

- $b \log n$ bits for each number
Lemma

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where $b$ is a constant

- $b \log n$ bits for each number
- each number can be viewed as having $O(b)$ digits of $\log n$ bits each
**Lemma**

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.

**Application:**

Sorting numbers in the range from 0 to $n^b - 1$, where $b$ is a constant

- $b \log n$ bits for each number
- each number can be viewed as having $O(b)$ digits of $\log n$ bits each
- running time is $O(d(n + k)) = O(b(n + 2^{\log n})) = O(bn)$
Lemma

Given $n$ $d$-digit numbers in which each digit can take on up to $k$ possible values, radix sort correctly sorts these numbers in $O(d(n + k))$ time if the stable sort it uses takes $O(n + k)$ time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where $b$ is a constant

- $b \log n$ bits for each number
- each number can be viewed as having $O(b)$ digits of $\log n$ bits each
- running time is $O(d(n + k)) = O(b(n + 2^{\log n})) = O(bn)$
- since $b$ is a constant, the running time is $O(n)$. 