Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A computational problem is a specification of the desired input-output relationship.

Definition: An instance of a problem is all the inputs needed to compute a solution to the problem.

Definition: An algorithm is a well defined computational procedure that transforms inputs into outputs, achieving the desired input-output relationship.

Definition: A correct algorithm halts with the correct output for every input instance. We can then say that the algorithm solves the problem.
Example of Problems and Instances

Computational Problem: Sorting

- **Input:** Sequence of \(n \) numbers \(\langle a_1, \cdots, a_n \rangle \).

- **Output:** Permutation (reordering)
 \[\langle a'_1, a'_2, \cdots, a'_n \rangle \]
 such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).

Instance of Problem:

- **Input:** Permutation
 \[\langle 8, 3, 6, 7, 1, 2, 9 \rangle \]

- **Output:** Permutation (reordering)
 \[\langle 1, 2, 3, 6, 7, 8, 9 \rangle \]
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.

Pseudocode: A is an array of numbers

for $j = 2$ to length(A)
{
 key = $A[j]$;
 $i = j - 1$;
 while ($i \geq 1$ and $A[i] > key$)
 {
 $i = i - 1$;
 }
 $A[i+1] = key$;
}

Pause: How does it work?
Insertion Sort: an Incremental Approach

To sort a given array of length n, at the ith step it sorts the array of the first i items by making use of the sorted array of the first $i - 1$ items in the $(i - 1)$th Step.

Example: Sort $A = \langle 6, 3, 2, 4 \rangle$ with Insertion Sort.

Step 1: $\langle 6, 3, 2, 4 \rangle$

Step 2: $\langle 3, 6, 2, 4 \rangle$

Step 3: $\langle 2, 3, 6, 4 \rangle$

Step 4: $\langle 2, 3, 4, 6 \rangle$
Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computation, e.g., sequential vs. parallel or internal memory vs. external memory. In this class we usually assume sequential and internal memory.
Running time: the number of primitive operations used to solve the problem.

Primitive operations: e.g., addition, multiplication, comparisons. In more advanced models could be page faults or Map/Reduce calls.

Running time: depends on problem instance, often we find an upper bound: F(input size).

Input size: rigorous definition given later.

1. **Sorting**: number of items to be sorted

2. **Multiplication**: number of bits, number of digits.

3. **Graphs**: number of vertices and edges.
Three Cases of Analysis

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time. Example. In the worst case *Quicksort* runs in $\Theta(n^2)$ time on an input of n keys.

Average Case: average running time over every possible type of input (usually involve probabilities of different types of input). Example. In the average case *Quicksort* runs in $\Theta(n \log n)$ time on an input of n keys. All $n!$ inputs of n keys are considered equally likely.

Remark: All cases are relative to the algorithm under consideration.
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to

$$1 + 1 + 1 + \cdots + 1 = n - 1 = \Theta(n).$$

The number of comparisons needed is equal to

$$1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} = \Theta(n^2).$$

Average Case: $\Theta(n^2)$ assuming that each of the $n!$ instances are equally likely.
Some thoughts on Algorithm Design

- Algorithm Design, as taught in this class, is mainly about designing algorithms that have small big $O(\cdot)$ running times.

- “All other things being equal”, $O(n \log n)$ algorithms will run more quickly than $O(n^2)$ ones and $O(n)$ algorithms will beat $O(n \log n)$ ones.

- Being able to do good algorithm design lets you identify the hard parts of your problem and deal with them effectively.

- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code! A few hours of abstract thought devoted to algorithm design could have speeded up the solution substantially and simplified it.
Note: After algorithm design one can continue on to *Algorithm tuning* which would further concentrate on improving algorithms by cutting cut down on the *constants* in the big $O()$ bounds. This needs a good understanding of both algorithm design principles and efficient use of data structures. In this course we will not go further into algorithm tuning. For a good introduction, see Chapter 9 in *Programming Pearls, 2nd ed* by Jon Bentley or Appendix 4 in the online excerpts from the book.