Extremely useful tool in modeling problems
Graphs

- Extremely useful tool in modeling problems

- Consist of:
 - Vertices
 - Edges

Vertices can be considered as “sites” or locations.

Edges represent connections.
Each vertex represents a city
Each edge represents a direct flight between two cities
A query on direct flight = a query on whether an edge exists
A query on how to get to a location = does a path exist from A to B
We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"
Each vertex represents a city
Graph Application

- Each vertex represents a city
- Each edge represents a direct flight between two cities
Each vertex represents a city
Each edge represents a direct flight between two cities
A query on direct flight = a query on whether an edge exists
Each vertex represents a city
Each edge represents a direct flight between two cities
A query on direct flight = a query on whether an edge exists
A query on how to get to a location = does a path exist from A to B
- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flight = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask “what is the cheapest path from A to B”
Graph Application

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flight = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs/time to edges (weighted graphs), then ask “what is the cheapest/fastest path from A to B”
Graphs are a ubiquitous data structure in computer science.
Graphs are a ubiquitous data structure in computer science

- Networks: LAN, the Internet, wireless networks
Graphs are a ubiquitous data structure in computer science
- Networks: LAN, the Internet, wireless networks
- Logistics: transportation, supply chain management
Graphs are a ubiquitous data structure in computer science

- Networks: LAN, the Internet, wireless networks
- Logistics: transportation, supply chain management
- Relationship between objects: online dating, social networks (Facebook!)
Why Graph Algorithms?

- Graphs are a ubiquitous data structure in computer science
 - Networks: LAN, the Internet, wireless networks
 - Logistics: transportation, supply chain management
 - Relationship between objects: online dating, social networks (Facebook!)

- Hundreds of interesting computational problems defined on graphs
Why Graph Algorithms?

- Graphs are a ubiquitous data structure in computer science
 - Networks: LAN, the Internet, wireless networks
 - Logistics: transportation, supply chain management
 - Relationship between objects: online dating, social networks (Facebook!)

- Hundreds of interesting computational problems defined on graphs

- We will sample a few basic ones
A graph $G = (V, E)$ consists of
Definition

- A graph $G = (V, E)$ consists of
 - a set of vertices V, $|V| = n$, and
A graph $G = (V, E)$ consists of
- a set of vertices V, $|V| = n$, and
- a set of edges E, $|E| = m$
A graph $G = (V, E)$ consists of

- a set of vertices V, $|V| = n$, and
- a set of edges E, $|E| = m$

Each edge is a pair of (u, v), where u, v belongs to V
Definition

- A graph \(G = (V, E) \) consists of
 - a set of vertices \(V \), \(|V| = n\), and
 - a set of edges \(E \), \(|E| = m\)
- Each edge is a pair of \((u, v)\), where \(u, v \) belongs to \(V \)
A graph \(G = (V, E) \) consists of
- a set of vertices \(V \), \(|V| = n\), and
- a set of edges \(E \), \(|E| = m\)

Each edge is a pair of \((u, v)\), where \(u, v\) belongs to \(V\)

\[V = \{A, B, C, H, L, M, N, P, S, T\} \]
A graph \(G = (V, E) \) consists of
- a set of vertices \(V \), \(|V| = n\), and
- a set of edges \(E \), \(|E| = m\)

Each edge is a pair of \((u, v)\), where \(u, v \) belongs to \(V \)

\[
V = \{A, B, C, H, L, M, N, P, S, T\} \\
E = \{(A, C), (A, H), \ldots, (H, P), \ldots\}
\]
A graph $G = (V, E)$ consists of
- a set of vertices V, $|V| = n$, and
- a set of edges E, $|E| = m$

Each edge is a pair of (u, v), where u, v belongs to V

$$V = \{A, B, C, H, L, M, N, P, S, T\}$$
$$E = \{(A, C), (A, H), \ldots, (H, P), \ldots\}$$

For directed graph, we distinguish between edge (u, v) and edge (v, u); for undirected graph, no such distinction is made.
Each edge has two endpoints.
Each edge has two endpoints.
- H and B are the endpoints of (H, B).

![Diagram of a graph with vertices A, B, C, M, H, S, P, T, L, N, and edges connecting them.](image-url)
- Each edge has two endpoints
 - H and B are the endpoints of (H, B)
- An edge joins its endpoints
Each edge has two endpoints
- H and B are the endpoints of (H, B)

An edge joins its endpoints
- (H, B) joins H and B
Each edge has two endpoints
 - H and B are the endpoints of (H, B)

An edge joins its endpoints
 - (H, B) joins H and B

Two vertices are adjacent (or neighbors) if they are joined by an edge.
Each edge has two endpoints
- \(H \) and \(B \) are the endpoints of \((H, B)\)

An edge joins its endpoints
- \((H, B)\) joins \(H\) and \(B\)

Two vertices are adjacent (or neighbors) if they are joined by an edge.
- \(H\) and \(B\) are adjacent

Terminology
Each edge has two endpoints
- H and B are the endpoints of (H, B)

An edge joins its endpoints
- (H, B) joins H and B

Two vertices are adjacent (or neighbors) if they are joined by an edge.
- H and B are adjacent
- H is a neighbor of B
- Each edge has two endpoints
 - H and B are the endpoints of (H, B)
- An edge joins its endpoints
 - (H, B) joins H and B
- Two vertices are adjacent (or neighbors) if they are joined by an edge.
 - H and B are adjacent
 - H is a neighbor of B
- If vertex v is an endpoint of edge e, then the edge e is said to be incident on v. Also, the vertex v is said to be incident on e
Each edge has two endpoints
- H and B are the endpoints of (H, B)

An edge joins its endpoints
- (H, B) joins H and B

Two vertices are adjacent (or neighbors) if they are joined by an edge.
- H and B are adjacent
- H is a neighbor of B

If vertex v is an endpoint of edge e, then the edge e is said to be incident on v. Also, the vertex v is said to be incident on e
- (H, B) is incident on H and B
- Each edge has two endpoints
 - H and B are the endpoints of (H, B)
- An edge joins its endpoints
 - (H, B) joins H and B
- Two vertices are adjacent (or neighbors) if they are joined by an edge.
 - H and B are adjacent
 - H is a neighbor of B
- If vertex v is an endpoint of edge e, then the edge e is said to be incident on v. Also, the vertex v is said to be incident on e
 - (H, B) is incident on H and B
 - H and B are incident on (H, B)
The degree of a vertex \(v \) \((\text{degree}(v))\) in a graph is the number of edges incident on it.
The degree of a vertex v (degree(v)) in a graph is the number of edges incident on it.
The degree of a vertex v (degree(v)) in a graph is the number of edges incident on it.

- Vertex H has degree 5
The degree of a vertex v (degree(v)) in a graph is the number of edges incident on it.

- Vertex H has degree 5
- Vertex N has degree 1

\[
\sum_{v \in V} \text{degree}(v) = 2|E|.
\]

Proof. An edge $e = (u, v)$ in a graph contributes one to degree(u) and contributes one to degree(v).
The degree of a vertex v (degree(v)) in a graph is the number of edges incident on it.

- Vertex H has degree 5
- Vertex N has degree 1
- Vertex X has degree 0
The degree of a vertex \(v \) (\(\text{degree}(v) \)) in a graph is the number of edges incident on it.

- Vertex \(H \) has degree 5
- Vertex \(N \) has degree 1
- Vertex \(X \) has degree 0

(It is called an isolated vertex)
The degree of a vertex \(v \) (\(\text{degree}(v) \)) in a graph is the number of edges incident on it.

- Vertex \(H \) has degree 5
- Vertex \(N \) has degree 1
- Vertex \(X \) has degree 0

(It is called an isolated vertex)

Lemma

\[
\sum_{v \in V} \text{degree}(v) = 2|E|.
\]
The degree of a vertex v (\text{degree}(v)) in a graph is the number of edges incident on it.

- Vertex H has degree 5
- Vertex N has degree 1
- Vertex X has degree 0
 (It is called an \textit{isolated} vertex)

Lemma

$$\sum_{v \in V} \text{degree}(v) = 2|E|.$$

Proof.

An edge $e = (u, v)$ in a graph contributes one to \text{degree}(u) and contributes one to \text{degree}(v).
A path in a graph is a sequence \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \) of vertices such that \((v_{i-1}, v_i) \in E\) for \(i = 1, 2, \ldots, k\).
A path in a graph is a sequence $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ of vertices such that $(v_{i-1}, v_i) \in E$ for $i = 1, 2, \ldots, k$

- There is a path from v_0 to v_k
- **Length** of a path = # of edges on the path
- **Path contains** the vertices v_0, v_1, \ldots, v_k and the edges $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$
- For any $0 \leq i \leq j \leq k$, $\langle v_i, v_{i+1}, \ldots, v_j \rangle$ is its subpath
- If there is a path p from u to v, v is said to be **reachable** from u
- A path is **simple** if all vertices in the path are distinct
A path $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ forms a **cycle** if $v_0 = v_k$ and all edges on the path are distinct.
A path $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ forms a cycle if $v_0 = v_k$ and all edges on the path are distinct.

- A cycle is simple if v_1, v_2, \ldots, v_k are distinct.
A path $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ forms a cycle if $v_0 = v_k$ and all edges on the path are distinct

- A cycle is simple if v_1, v_2, \ldots, v_k are distinct
- A graph with no cycles is acyclic
A path \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \) forms a cycle if \(v_0 = v_k \) and all edges on the path are distinct.

- A cycle is simple if \(v_1, v_2, \ldots, v_k \) are distinct.
- A graph with no cycles is acyclic.
A path \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \) forms a cycle if \(v_0 = v_k \) and all edges on the path are distinct.

- A cycle is simple if \(v_1, v_2, \ldots, v_k \) are distinct.
- A graph with no cycles is acyclic.

\[\langle T, S, H, T \rangle \] is a simple cycle.
A path \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \) forms a cycle if \(v_0 = v_k \) and all edges on the path are distinct.

- A cycle is simple if \(v_1, v_2, \ldots, v_k \) are distinct.
- A graph with no cycles is acyclic.

\[\langle T, S, H, T \rangle \] is a simple cycle.

\[\langle A, C, L, P, H, A \rangle \] is a simple cycle.
Connectivity

- Two vertices are **connected** if there is a path between them.
Connectivity

- Two vertices are **connected** if there is a path between them.
- A graph is **connected** if every pair of vertices is connected; otherwise, the graph is **disconnected**.
Connectivity

- Two vertices are **connected** if there is a path between them.
- A graph is **connected** if every pair of vertices is connected; otherwise, the graph is **disconnected**.
- The **connected components** of a graph are the equivalence classes of vertices under the “is reachable from” relation.
Connectivity

- Two vertices are **connected** if there is a path between them.
- A graph is **connected** if every pair of vertices is connected; otherwise, the graph is **disconnected**.
- The **connected components** of a graph are the equivalence classes of vertices under the “is reachable from” relation.

- **Connected graph**
 - one connected component
 \{A, B, C, H, L, M, N, P, S, T\}

- **Disconnected graph**
 - 3 connected components
 - \{1, 2, 5\}
 - \{3, 6\}
 - \{4\}
Graph $G' = (V', E')$ is a subgraph of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$.

A subgraph is an induced subgraph if every edge of G connecting vertices of G' is also an edge of G'.

Version of October 11, 2014

Introduction to Graph Algorithms
Graph $G' = (V', E')$ is a subgraph of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$

G' is an induced subgraph of G if G' is a subgraph of G and every edge of G connecting vertices of G' is an edge of G'.
Graph $G' = (V', E')$ is a subgraph of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$.

G' is an induced subgraph of G if G' is a subgraph of G and every edge of G connecting vertices of G' is an edge of G'.
A tree is a connected, acyclic, undirected graph
- A **tree** is a connected, acyclic, undirected graph.

- If an undirected graph is acyclic but possibly disconnected, it is a **forest**.
• A **tree** is a connected, acyclic, undirected graph

• If an undirected graph is acyclic but possibly disconnected, it is a **forest**
Properties of Trees

Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and $|E| = |V| - 1$
5. G is acyclic, and $|E| = |V| - 1$
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and $|E| = |V| - 1$
Properties of Trees

Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and $|E| = |V| - 1$
5. G is acyclic, and $|E| = |V| - 1$
Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and $|E| = |V| - 1$
5. G is acyclic, and $|E| = |V| - 1$
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
Proof

(1) G is a tree
⇒ (2) Any two vertices in G are connected by a unique simple path
Proof

(1) G is a tree

\Rightarrow (2) Any two vertices in G are connected by a unique simple path

- Proof by contradiction

- Suppose that vertices u and v are connected by two distinct simple paths p_1 and p_2, as shown in the above figure.
Proof

(1) \(G \) is a tree
\[\Rightarrow \quad (2) \text{Any two vertices in } G \text{ are connected by a unique simple path} \]

- Proof by contradiction
- Suppose that vertices \(u \) and \(v \) are connected by two distinct simple paths \(p_1 \) and \(p_2 \), as shown in the above figure
 - \(p_1 \) and \(p_2 \) first diverge at vertex \(w \)
 - \(p_1 \) and \(p_2 \) first reconverge at vertex \(z \)
Proof

(1) G is a tree

\Rightarrow (2) Any two vertices in G are connected by a unique simple path

Proof by contradiction

Suppose that vertices u and v are connected by two distinct simple paths p_1 and p_2, as shown in the above figure

- p_1 and p_2 first diverge at vertex w
- p_1 and p_2 first reconverge at vertex z
- p' is the subpath of p_1 from w through x to z
- p'' is the subpath of p_2 from w through y to z
(1) G is a tree
\[\Rightarrow (2) \text{Any two vertices in } G \text{ are connected by a unique simple path} \]

Proof by contradiction

Suppose that vertices u and v are connected by two distinct simple paths p_1 and p_2, as shown in the above figure:

- p_1 and p_2 first diverge at vertex w
- p_1 and p_2 first reconverge at vertex z
- p' is the subpath of p_1 from w through x to z
- p'' is the subpath of p_2 from w through y to z
- The path obtained by concatenating p' and the reverse of p'' is a cycle, which yields the contradiction!
Proof

(2) Any two vertices in \(G \) are connected by a unique simple path
\(\Rightarrow \) (3) \(G \) is connected, but if any edge is removed from \(E \), the resulting graph is disconnected
Proof

(2) Any two vertices in G are connected by a unique simple path
⇒ (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

- If any two vertices in G are connected by a unique simple path, then G is connected
Proof

(2) Any two vertices in G are connected by a unique simple path

⇒ (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

• If any two vertices in G are connected by a unique simple path, then G is connected

• Let (u, v) be any edge in E
Proof

(2) Any two vertices in G are connected by a unique simple path

\Rightarrow (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

- If any two vertices in G are connected by a unique simple path, then G is connected
- Let (u, v) be any edge in E
- This edge is a path from u to v, and so it must be the unique path from u to v
Proof

(2) Any two vertices in G are connected by a unique simple path
⇒ (3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

- If any two vertices in G are connected by a unique simple path, then G is connected
- Let (u, v) be any edge in E
- This edge is a path from u to v, and so it must be the unique path from u to v
- If (u, v) is deleted from G, there is no path from u to v, and hence its removal disconnects G
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
- Prove $|E| = |V| - 1$ by induction
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
- Prove $|E| = |V| - 1$ by induction
 - Base ($n = 1$): A connected graph with one vertex has zero edge
Proof

(3) \(G \) is connected, but if any edge is removed from \(E \), the resulting graph is disconnected
\[\Rightarrow (4) \text{ } G \text{ is connected, and } |E| = |V| - 1 \]

- By assumption, the graph \(G \) is connected
- Prove \(|E| = |V| - 1 \) by induction
 - Base \((n = 1) \): A connected graph with one vertex has zero edge
 - Suppose that \(G \) has \(n \geq 2 \) vertices and that all graphs satisfying (3) with fewer than \(n \) vertices also satisfy \(|E| = |V| - 1 \)
Proof

(3) \(G \) is connected, but if any edge is removed from \(E \), the resulting graph is disconnected

\[\Rightarrow (4) \; G \text{ is connected, and } |E| = |V| - 1 \]

- By assumption, the graph \(G \) is connected
- Prove \(|E| = |V| - 1 \) by induction
 - Base \((n = 1) \): A connected graph with one vertex has zero edge
 - Suppose that \(G \) has \(n \geq 2 \) vertices and that all graphs satisfying (3) with fewer than \(n \) vertices also satisfy \(|E| = |V| - 1 \)
 - Removing an arbitrary edge from \(G \) separates the graph into 2 connected components
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected
\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
- Prove $|E| = |V| - 1$ by induction
 - Base ($n = 1$): A connected graph with one vertex has zero edge
 - Suppose that G has $n \geq 2$ vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy $|E| = |V| - 1$
 - Removing an arbitrary edge from G separates the graph into 2 connected components
 - Each component satisfies (3), or else G would not satisfy (3)
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
- Prove $|E| = |V| - 1$ by induction
 - Base ($n = 1$): A connected graph with one vertex has zero edge
 - Suppose that G has $n \geq 2$ vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy $|E| = |V| - 1$
 - Removing an arbitrary edge from G separates the graph into 2 connected components
 - Each component satisfies (3), or else G would not satisfy (3)
 - Thus, by induction, the number of edges in 2 components combined is $|V| - 2$
Proof

(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

\Rightarrow (4) G is connected, and $|E| = |V| - 1$

- By assumption, the graph G is connected
- Prove $|E| = |V| - 1$ by induction
 - Base ($n = 1$): A connected graph with one vertex has zero edge
 - Suppose that G has $n \geq 2$ vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy $|E| = |V| - 1$
 - Removing an arbitrary edge from G separates the graph into 2 connected components
 - Each component satisfies (3), or else G would not satisfy (3)
 - Thus, by induction, the number of edges in 2 components combined is $|V| - 2$
 - Adding in the removed edge yields $|E| = |V| - 1$
Proof

(4) G is connected, and $|E| = |V| - 1$
⇒ (5) G is acyclic, and $|E| = |V| - 1$
Proof

(4) G is connected, and $|E| = |V| - 1$

\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple
Proof

(4) G is connected, and $|E| = |V| - 1$

\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple
- Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle
- Note that $|V_k| = |E_k| = k$
Proof

(4) G is connected, and $|E| = |V| - 1$

\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple
- Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle
- Note that $|V_k| = |E_k| = k$
- If $k < |V|$, there must be a vertex $v_{k+1} \in V - V_k$ that is adjacent to some vertex $v_i \in V_k$, since G is connected
(4) G is connected, and $|E| = |V| - 1$

\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple
- Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle
- Note that $|V_k| = |E_k| = k$
- If $k < |V|$, there must be a vertex $v_{k+1} \in V - V_k$ that is adjacent to some vertex $v_i \in V_k$, since G is connected
- Define $G_{k+1} = (V_{k+1}, E_{k+1})$ to be the subgraph of G with $V_{k+1} = V_k \cup \{v_{k+1}\}$ and $E_{k+1} = E_k \cup \{(v_i, v_{k+1})\}$
Proof

(4) \(G \) is connected, and \(|E| = |V| - 1 \)

\[\Rightarrow (5) \ G \text{ is acyclic, and } |E| = |V| - 1 \]

- Suppose that \(G \) is connected and that \(|E| = |V| - 1 \)
- Suppose that \(G \) has a cycle containing \(k \) vertices \(v_1, v_2, \ldots, v_k \), and without loss of generality assume that this cycle is simple
- Let \(G_k = (V_k, E_k) \) be the subgraph of \(G \) consisting of the cycle
- Note that \(|V_k| = |E_k| = k \)
- If \(k < |V| \), there must be a vertex \(v_{k+1} \in V - V_k \) that is adjacent to some vertex \(v_i \in V_k \), since \(G \) is connected
- Define \(G_{k+1} = (V_{k+1}, E_{k+1}) \) to be the subgraph of \(G \) with \(V_{k+1} = V_k \cup \{v_{k+1}\} \) and \(E_{k+1} = E_k \cup \{(v_i, v_{k+1})\} \)
- Note that \(|V_{k+1}| = |E_{k+1}| = k + 1 \)
Proof

(4) G is connected, and $|E| = |V| - 1$

\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple
- Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle
- Note that $|V_k| = |E_k| = k$
- If $k < |V|$, there must be a vertex $v_{k+1} \in V - V_k$ that is adjacent to some vertex $v_i \in V_k$, since G is connected
- Define $G_{k+1} = (V_{k+1}, E_{k+1})$ to be the subgraph of G with $V_{k+1} = V_k \cup \{v_{k+1}\}$ and $E_{k+1} = E_k \cup \{(v_i, v_{k+1})\}$
- Note that $|V_{k+1}| = |E_{k+1}| = k + 1$
- If $k + 1 < |V|$, we can continue, defining G_{k+2} in the same manner, and so forth, until we obtain $G_n = (V_n, E_n)$, where $n = |V|, V_n = V$, and $|E_n| = |V_n| = |V|$
(4) G is connected, and $|E| = |V| - 1$
\Rightarrow (5) G is acyclic, and $|E| = |V| - 1$

- Suppose that G is connected and that $|E| = |V| - 1$
- Suppose that G has a cycle containing k vertices v_1, v_2, \ldots, v_k, and without loss of generality assume that this cycle is simple.
- Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle.
- Note that $|V_k| = |E_k| = k$
- If $k < |V|$, there must be a vertex $v_{k+1} \in V - V_k$ that is adjacent to some vertex $v_i \in V_k$, since G is connected.
- Define $G_{k+1} = (V_{k+1}, E_{k+1})$ to be the subgraph of G with $V_{k+1} = V_k \cup \{v_{k+1}\}$ and $E_{k+1} = E_k \cup \{(v_i, v_{k+1})\}$
- Note that $|V_{k+1}| = |E_{k+1}| = k + 1$
- If $k + 1 < |V|$, we can continue, defining G_{k+2} in the same manner, and so forth, until we obtain $G_n = (V_n, E_n)$, where $n = |V|$, $V_n = V$, and $|E_n| = |V_n| = |V|$
- Since G_n is a subgraph of G, we have $E_n \subseteq E$, and hence $|E| \geq |V|$, which contradicts the assumption that $|E| = |V| - 1$
Proof

(5) G is acyclic, and $|E| = |V| - 1$

\Rightarrow (6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
Proof

(5) \(G \) is acyclic, and \(|E| = |V| - 1\)

\(\Rightarrow \) (6) \(G \) is acyclic, but if any edge is added to \(E \), the resulting graph contains a cycle

- Suppose that \(G \) is acyclic and that \(|E| = |V| - 1\)
Proof

(5) G is acyclic, and $|E| = |V| - 1$

\Rightarrow (6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

- Suppose that G is acyclic and that $|E| = |V| - 1$
- Let k be the number of connected components of G
Proof

(5) G is acyclic, and $|E| = |V| - 1$

\Rightarrow (6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

- Suppose that G is acyclic and that $|E| = |V| - 1$
- Let k be the number of connected components of G
- Each connected component is a free tree by definition, and since (1) implies (5), the sum of all edges in all connected components of G is $|V| - k$
(5) G is acyclic, and $|E| = |V| - 1$

\Rightarrow (6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

- Suppose that G is acyclic and that $|E| = |V| - 1$
- Let k be the number of connected components of G
- Each connected component is a free tree by definition, and since (1) implies (5), the sum of all edges in all connected components of G is $|V| - k$
- Consequently, we must have $k = 1$, and G is in fact a tree (That is, (1) holds)
Proof

(5) \(G \) is acyclic, and \(|E| = |V| - 1 \)
⇒ (6) \(G \) is acyclic, but if any edge is added to \(E \), the resulting graph contains a cycle

- Suppose that \(G \) is acyclic and that \(|E| = |V| - 1 \)
- Let \(k \) be the number of connected components of \(G \)
- Each connected component is a free tree by definition, and since (1) implies (5), the sum of all edges in all connected components of \(G \) is \(|V| - k \)
- Consequently, we must have \(k = 1 \), and \(G \) is in fact a tree (That is, (1) holds)
- Since (1) implies (2), any two vertices in \(G \) are connected by a unique simple path
(5) \(G \) is acyclic, and \(|E| = |V| - 1\)
\[\Rightarrow (6) \text{ } G \text{ is acyclic, but if any edge is added to } E, \text{ the resulting graph contains a cycle} \]

- Suppose that \(G \) is acyclic and that \(|E| = |V| - 1\)
- Let \(k \) be the number of connected components of \(G \)
- Each connected component is a free tree by definition, and since (1) implies (5), the sum of all edges in all connected components of \(G \) is \(|V| - k\)
- Consequently, we must have \(k = 1 \), and \(G \) is in fact a tree (That is, (1) holds)
- Since (1) implies (2), any two vertices in \(G \) are connected by a unique simple path
- Thus, adding any edge to \(G \) creates a cycle
Proof

(6) \(G \) is acyclic, but if any edge is added to \(E \), the resulting graph contains a cycle
\[\Rightarrow (1) \ G \text{ is a tree} \]
(6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

\Rightarrow (1) G is a tree

- Suppose that G is acyclic but that if any edge is added to E, a cycle is created
(6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

\Rightarrow (1) G is a tree

- Suppose that G is acyclic but that if any edge is added to E, a cycle is created
- We must show that G is connected
(6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
\[\Rightarrow \] (1) G is a tree

- Suppose that G is acyclic but that if any edge is added to E, a cycle is created
- We must show that G is connected
- Let u and v be arbitrary vertices in G
Proof

(6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle
\Rightarrow (1) G is a tree

- Suppose that G is acyclic but that if any edge is added to E, a cycle is created
- We must show that G is connected
- Let u and v be arbitrary vertices in G
- If u and v are not already adjacent, adding the edge (u, v) creates a cycle in which all edges but (u, v) belong to G
(6) G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

\Rightarrow (1) G is a tree

- Suppose that G is acyclic but that if any edge is added to E, a cycle is created
- We must show that G is connected
- Let u and v be arbitrary vertices in G
- If u and v are not already adjacent, adding the edge (u, v) creates a cycle in which all edges but (u, v) belong to G
- Thus, there is a path from u to v, and since u and v were chosen arbitrarily, G is connected