Divide and Conquer: Polynomial Multiplication

Version of October 7, 2014
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Already saw some divide and conquer algorithms

Divide

- Divide a given problem into a or more subproblems (ideally of approximately equal size n/b)

Conquer

- Solve each subproblem (directly if small enough or recursively)

 \[a \cdot T(n/b) \]

Combine

- Combine the solutions of the subproblems into a global solution $f(n)$

Cost satisfies $T(n) = aT(n/b) + f(n)$.
Two major examples so far
- Maximum Contiguous Subarray
- Mergesort

Both satisfied $T(n) = 2T(n/2) + O(n)$
 $\Rightarrow T(n) = O(n \log n)$

Also saw Quicksort
- Divide and Conquer, but unequal size problems
Main tool is the *Master Theorem* for solving recurrences of form

\[T(n) = aT(n/b) + f(n) \]

where

- \(a \geq 1 \) and \(b \geq 1 \) are constants and
- \(f(n) \) is a (asymptotically) positive function.
- Note: Initial conditions \(T(1), T(2), \ldots T(k) \) for some \(k \). They don’t contribute to asymptotic growth
- \(n/b \) could be either \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \)
The Master Theorem

\[T(n) = aT(n/b) + f(n), \quad c = \log_b a \]

- If \(f(n) = \Theta(n^{c-\epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \Theta(n^c) \)
 - If \(T(n) = 4T(n/2) + n \) then \(T(n) = \Theta(n^2) \)
 - If \(T(n) = 3T(n/2) + n \) then \(T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}) \)

- If \(f(n) = \Theta(n^c) \) then \(T(n) = \Theta(n^c \log n) \)
 - If \(T(n) = 2T(n/2) + n \) then \(T(n) = \Theta(n \log n) \)

- If \(f(n) = \Theta(n^{c+\epsilon}) \) for some \(\epsilon > 0 \)
 and if \(af(n/b) \leq df(n) \) for some \(d < 1 \) and large enough \(n \)
 then \(T(n) = O(f(n)) \)
 - If \(T(n) = T(n/2) + n \) then \(T(n) = \Theta(n) \)
There are many variations of the Master Theorem. Here’s one...

- If \(T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + n \) then \(T(n) = \Theta(n) \)

- More generally, given constants \(\alpha_i > 0 \) with \(\sum_i \alpha_i < 1 \),
 - if \(T(n) = n + \sum_{i=1}^{k} T(\alpha_i n) \)
 - then \(T(n) = \Theta(n) \).
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

\[A(x) = a_0 + a_1x + \cdots + a_nx^n \]
\[B(x) = b_0 + b_1x + \cdots + b_mx^m \]

Compute the product \(A(x)B(x) \)

Example

\[A(x) = 1 + 2x + 3x^2 \]
\[B(x) = 3 + 2x + 2x^2 \]
\[A(x)B(x) = 3 + 8x + 15x^2 + 10x^3 + 6x^4 \]

- Assume that the coefficients \(a_i \) and \(b_i \) are stored in arrays \(A[0 \ldots n] \) and \(B[0 \ldots m] \)
- **Cost**: number of scalar multiplications and additions
What do we need to compute exactly?

Define

- \(A(x) = \sum_{i=0}^{n} a_i x^i \)
- \(B(x) = \sum_{i=0}^{m} b_i x^i \)
- \(C(x) = A(x)B(x) = \sum_{k=0}^{n+m} c_k x^k \)

Then

\[c_k = \sum_{\substack{0 \leq i \leq n, \ 0 \leq j \leq m, \ i+j=k}} a_i b_j \text{ for all } 0 \leq k \leq m + n \]

Definition

The vector \((c_0, c_1, \ldots, c_{m+n})\) is the **convolution** of the vectors \((a_0, a_1, \ldots, a_n)\) and \((b_0, b_1, \ldots, b_m)\)

While polynomial multiplication is interesting, real goal is to calculate convolutions. **Major** subroutine in digital signal processing.
Objective and Outline

Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Direct (Brute Force) Approach

To ease analysis, assume $n = m$.

- $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{n} b_i x^i$
- $C(x) = A(x)B(x) = \sum_{k=0}^{2n} c_k x^k$ with
 \[
c_k = \sum_{0 \leq i, j \leq n, i+j=k} a_i b_j, \quad \text{for all } 0 \leq k \leq 2n
 \]

Direct approach: Compute all c_k's using the formula above

- Total number of multiplications: $\Theta(n^2)$
- Total number of additions: $\Theta(n^2)$
- Complexity: $\Theta(n^2)$
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Assume n is a power of 2
Define

\[
A_0(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}
\]

\[
A_1(x) = a_n + a_{n+1}x + \cdots + a_nx^n
\]

\[
A(x) = A_0(x) + A_1(x)x^{\frac{n}{2}}
\]

Similarly, define $B_0(x)$ and $B_1(x)$ such that

\[
B(x) = B_0(x) + B_1(x)x^{\frac{n}{2}}
\]

\[
A(x)B(x) = A_0(x)B_0(x) + A_0(x)B_1(x)x^{\frac{n}{2}} + A_1(x)B_0(x)x^{\frac{n}{2}} + A_1(x)B_1(x)x^n
\]

The original problem (of size n) is divided into
4 problems of input size $n/2$
Example

\[A(x) = 2 + 5x + 3x^2 + x^3 - x^4 \]
\[B(x) = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \]
\[A(x)B(x) = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]

\[A_0(x) = 2 + 5x, A_1(x) = 3 + x - x^2, \]
\[A(x) = A_0(x) + A_1(x)x^2 \]
\[B_0(x) = 1 + 2x, B_1(x) = 2 + 3x + 6x^2, \]
\[B(x) = B_0(x) + B_1(x)x^2 \]

\[A_0(x)B_0(x) = 2 + 9x + 10x^2 \]
\[A_1(x)B_1(x) = 6 + 11x + 19x^2 + 3x^3 - 6x^4 \]
\[A_0(x)B_1(x) = 4 + 16x + 27x^2 + 30x^3 \]
\[A_1(x)B_0(x) = 3 + 7x + x^2 - 2x^3 \]
\[A_0(x)B_1(x) + A_1(x)B_0(x) = 7 + 23x + 28x^2 + 28x^3 \]

\[A_0(x)B_0(x) + (A_0(x)B_1(x) + A_1(x)B_0(x))x^2 + A_1(x)B_1(x)x^4 = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8 \]
Conquer: Solve the four subproblems

- compute

\[A_0(x)B_0(x), \ A_0(x)B_1(x), \ A_1(x)B_0(x), \ A_1(x)B_1(x) \]

by recursively calling the algorithm 4 times

Combine

- adding the following four polynomials

\[A_0(x)B_0(x) + A_0(x)B_1(x)x^{\frac{n}{2}} + A_1(x)B_0(x)x^{\frac{n}{2}} + A_1(x)B_1(x)x^n \]

- takes \(O(n) \) operations (Why?)
PolyMulti1(A(x), B(x))

begin
 $A_0(x) = a_0 + a_1x + \cdots + a_{\frac{n}{2} - 1}x_{\frac{n}{2} - 1}$;
 $A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2} + 1}x + \cdots + a_{n}x_{\frac{n}{2}}$;
 $B_0(x) = b_0 + b_1x + \cdots + b_{\frac{n}{2} - 1}x_{\frac{n}{2} - 1}$;
 $B_1(x) = b_{\frac{n}{2}} + b_{\frac{n}{2} + 1}x + \cdots + b_{n}x_{\frac{n}{2}}$;

 $U(x) = \text{PolyMulti1}(A_0(x), B_0(x))$;
 $V(x) = \text{PolyMulti1}(A_0(x), B_1(x))$;
 $W(x) = \text{PolyMulti1}(A_1(x), B_0(x))$;
 $Z(x) = \text{PolyMulti1}(A_1(x), B_1(x))$;

 return $\left(U(x) + \left[V(x) + W(x) \right]x_{\frac{n}{2}} + Z(x)x^n \right)$

end
Analysis of Running Time

Assume that n is a power of 2

$$T(n) = \begin{cases} 4T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

By the Master Theorem for recurrences

$$T(n) = \Theta(n^2).$$

Same order as the brute force approach!
No improvement!
Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
Two Observations

Observation 1:

We said that we need the 4 terms:

\[A_0B_0, \ A_0B_1, \ A_1B_0, \ A_1B. \]

What we really need are the 3 terms:

\[A_0B_0, \ A_0B_1 + A_1B_0, \ A_1B_1! \]

Observation 2:

The three terms can be obtained using only 3 multiplications:

\[
\begin{align*}
Y &= (A_0 + A_1)(B_0 + B_1) \\
U &= A_0B_0 \\
Z &= A_1B_1
\end{align*}
\]

- We need \(U \) and \(Z \) and
- \(A_0B_1 + A_1B_0 = Y - U - Z \)
The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

begin

$A_0(x) = a_0 + a_1x + \cdots + a_{\frac{n}{2}-1}x^{\frac{n}{2}-1}$;

$A_1(x) = a_{\frac{n}{2}} + a_{\frac{n}{2}+1}x + \cdots + a_nx^{n-\frac{n}{2}}$;

$B_0(x) = b_0 + b_1x + \cdots + b_{\frac{n}{2}-1}x^{\frac{n}{2}-1}$;

$B_1(x) = b_{\frac{n}{2}} + b_{\frac{n}{2}+1}x + \cdots + b_nx^{n-\frac{n}{2}}$;

$Y(x) = \text{PolyMulti2}(A_0(x) + A_1(x), B_0(x) + B_1(x))$;

$U(x) = \text{PolyMulti2}(A_0(x), B_0(x))$;

$Z(x) = \text{PolyMulti2}(A_1(x), B_1(x))$;

return $(U(x) + [Y(x) - U(x) - Z(x)]x^{\frac{n}{2}} + Z(x)x^{2\frac{n}{2}})$

end
Running Time of the Modified Algorithm

\[T(n) = \begin{cases}
3T(n/2) + n, & \text{if } n > 1, \\
1, & \text{if } n = 1.
\end{cases} \]

By the Master Theorem for recurrences

\[T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58\ldots}). \]

Much better than previous \(\Theta(n^2) \) algorithms!
Objective and Outline

Outline:

- Introduction
- The polynomial multiplication problem
- An $O(n^2)$ brute force algorithm
- An $O(n^2)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks
This algorithm can also be used for (long) integer multiplication
- Really designed by Karatsuba (1960, 1962) for that purpose.
- Response to conjecture by Kolmogorov, founder of modern probability, that this would require $\Theta(n^2)$.

Similar to technique developed by Strassen a few years later to multiply $2 \times n \times n$ matrices in $O(n^{\log_2 7})$ operations, instead of the $\Theta(n^3)$ that a straightforward algorithm would use.

Takeaway from this lesson is that divide-and-conquer doesn’t always give you faster algorithm. Sometimes, you need to be more clever.

Coming up. An $O(n \log n)$ solution to the polynomial multiplication problem
- It involves strange recasting of the problem and solution using the Fast Fourier Transform algorithm as a subroutine
- The FFT is another classic D & C algorithm that we will learn soon.