A third example of dynamic programming
Will see two different dynamic programming formulations for same problem.

Outline

- The all-pairs shortest path problem.
- A first dynamic programming solution.
- The Floyd-Warshall algorithm
- Extracting shortest paths.
The All-Pairs Shortest Paths Problem

Input: weighted digraph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$

Find: lengths of the shortest paths (i.e., distance) between all pairs of vertices in G.

- we assume that there are no cycles with zero or negative cost.

Diagram:

1. **Without negative cost cycle**
 - a to b: 20
 - a to e: 6
 - e to b: 3
 - d to c: 17
 - d to e: 5

2. **With negative cost cycle**
 - a to b: -20
 - a to e: 4
 - e to b: 4
 - d to c: 10

Version of November 5, 2014
Solution 1: Using Dijkstra’s Algorithm

Where there are no negative cost edges.
- Apply Dijkstra’s algorithm \(n \) times, once with each vertex (as the source) of the shortest path tree.
- Recall that Dijkstra algorithm runs in \(\Theta(e \log n) \)
 - \(n = |V| \) and \(e = |E| \).
- This gives a \(\Theta(ne \log n) \) time algorithm
- If the digraph is dense, this is a \(\Theta(n^3 \log n) \) algorithm.

When negative-weight edges are present:
- Run the Bellman-Ford algorithm from each vertex.
- \(O(n^2e) \), which is \(O(n^4) \) for dense graphs.
- We don’t learn Bellman-Ford in this class.
The all-pairs shortest path problem.

A first dynamic programming solution.

The Floyd-Warshall algorithm

Extracting shortest paths.
Input and Output Formats

Input Format:

- To simplify the notation, we assume that $V = \{1, 2, \ldots, n\}$.
- Adjacency matrix: graph is represented by an $n \times n$ matrix containing edge weights

\[
\begin{cases}
0 & \text{if } i = j, \\
 w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\
\infty & \text{if } i \neq j \text{ and } (i, j) \notin E.
\end{cases}
\]

Output Format: an $n \times n$ matrix $D = [d_{ij}]$ in which d_{ij} is the length of the shortest path from vertex i to j.
For $m = 1, 2, 3 \ldots$,

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges.
- Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.

We will see (next page) that solution D satisfies $D = D^{n-1}$.

Subproblems: (Iteratively) compute $D^{(m)}$ for $m = 1, \ldots, n - 1$.
Lemma

$D^{(n-1)} = D$, i.e.

$d_{ij}^{(n-1)} = \text{true distance from } i \text{ to } j$

Proof.

We prove that any shortest path P from i to j contains at most $n - 1$ edges.

First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).

A path without cycles can have length at most $n - 1$ (since a longer path must contain some vertex twice, that is, contain a cycle).
Step 2: Building $D^{(m)}$ from $D^{(m-1)}$.

Consider a shortest path from i to j that contains at most m edges.

Let k be the vertex immediately before j on the shortest path (k could be i).

The sub-path from i to k must be the shortest 1-k path with at most $m - 1$ edges. Then

$$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}.$$

Since we don’t know k, we try all possible choices: $1 \leq k \leq n$.

$$d_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}$$
Step 3: Bottom-up Computation of $D^{(n-1)}$

- Initialization: $D^{(1)} = [w_{ij}]$, the weight matrix.

- Iteration step: Compute $D^{(m)}$ from $D^{(m-1)}$, for $m = 2, ..., n-1$, using

$$d_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}$$
Example: Bottom-up Computation of $D^{(n-1)}$

$D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$
D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0
\end{bmatrix}
$$

$D^{(1)} = \begin{bmatrix}
0 & 3 & 8 & \infty \\
\infty & 0 & 4 & 11 \\
\infty & \infty & 0 & 7 \\
4 & \infty & \infty & 0
\end{bmatrix}$

$$
d^{(2)}_{ij} = \min_{1 \leq k \leq 4} \left\{ d^{(1)}_{ik} + w_{kj} \right\}
$$

$$
d^{(2)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & \infty & 0 & 7 \\
4 & 7 & 12 & 0
\end{bmatrix}
$$

$$
d^{(3)}_{ij} = \min_{1 \leq k \leq 4} \left\{ d^{(2)}_{ik} + w_{kj} \right\}
$$

$$
d^{(3)} = \begin{bmatrix}
0 & 3 & 7 & 14 \\
15 & 0 & 4 & 11 \\
11 & 14 & 0 & 7 \\
4 & 7 & 11 & 0
\end{bmatrix}
$$

$D^{(3)}$ gives the distances between any pair of vertices.
\[d_{ij}^{(m)} = \min_{1 \leq k \leq n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\} \]

```plaintext
for m = 1 to n - 1 do
    for i = 1 to n do
        for j = 1 to n do
            min = \infty;
            for k = 1 to n do
                new = d_{ik}^{(m-1)} + w_{kj};
                if new < min then
                    min = new
            end
        end
    end
    d_{ij}^{(m)} = min;
end
```
Running time $O(n^4)$, much worse than the solution using Dijkstra’s algorithm.

Question

Can we improve this?
Repeated Squaring

We use the recurrence relation:

- **Initialization:** $D^{(1)} = [w_{ij}]$, the weight matrix.
- For $s \geq 1$ compute $D^{(2^s)}$ using
 \[
 d^{(2^s)}_{ij} = \min_{1 \leq k \leq n} \left\{ d^{(s)}_{ik} + d^{(s)}_{kj} \right\}
 \]

- From equation, can calculate $D^{(2^i)}$ from $D^{(2^{i-1})}$ in $O(n^3)$ time.
- have shown earlier that the shortest path between any two vertices contains no more than $n - 1$ edges. So
 \[D^i = D^{(n-1)} \text{ for all } i \geq n.\]

We can therefore calculate all of
\[D^{(2)}, D^{(4)}, D^{(8)}, \ldots, D^{\left(2^{\left\lceil \log_2 n \right\rceil}\right)} = D^{(n-1)}\]
in $O(n^3 \log n)$ time, improving our running time.
The all-pairs shortest path problem.
A first dynamic programming solution.
The Floyd-Warshall algorithm
Extracting shortest paths.
Step 1: Space of subproblems

- The vertices $v_2, v_3, \ldots, v_{l-1}$ are called the intermediate vertices of the path $p = \langle v_1, v_2, \ldots, v_{l-1}, v_l \rangle$.
- For any $k = 0, 1, \ldots, n$, let $d_{ij}^{(k)}$ be the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set $\{1, 2, \ldots, k\}$.
Step 1: Space of subproblems

- $d_{ij}^{(k)}$ is the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set $\{1, 2, \ldots, k\}$.
- Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.

Subproblems: compute $D^{(k)}$ for $k = 0, 1, \ldots, n$.

Original Problem: $D = D^{(n)}$, i.e. $d_{ij}^{(n)}$ is the shortest distance from i to j.

Step 2: Relating Subproblems

Observation: For a shortest path from \(i \) to \(j \) with intermediate vertices from the set \(\{1, 2, \ldots, k\} \), there are two possibilities:

1. \(k \) is not a vertex on the path: \(d_{ij}^{(k)} = d_{ij}^{(k-1)} \)

2. \(k \) is a vertex on the path: \(d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \)

(Impossible for \(k \) to appear in path twice. Why?) So:

\[
d_{ij}^{(k)} = \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right\}
\]
Proof.

- Consider a shortest path from i to j with intermediate vertices from the set $\{1, 2, \ldots, k\}$. Either it contains vertex k or it does not.

- If it does not contain vertex k, then its length must be $d_{ij}^{(k-1)}$.

- Otherwise, it contains vertex k, and we can decompose it into a subpath from i to k and a subpath from k to j.

- Each subpath can only contain intermediate vertices in $\{1, \ldots, k - 1\}$, and must be as short as possible. Hence they have lengths $d_{ik}^{(k-1)}$ and $d_{kj}^{(k-1)}$.

- Hence the shortest path from i to j has length

$$\min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}.$$
Step 3: Bottom-up Computation

- Initialization: $D^{(0)} = [w_{ij}]$, the weight matrix.

- Compute $D^{(k)}$ from $D^{(k-1)}$ using

$$d^{(k)}_{ij} = \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right)$$

for $k = 1, ..., n$.
The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall\((w, n)\):
\[
d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)
\]

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

\[
\quad \text{for } j = 1 \text{ to } n \text{ do}
\]

\[
\quad \quad d^{(0)}[i,j] = w[i,j]; \quad \text{pred}[i,j] = \text{nil}; \quad \text{// initialize}
\]

\[
\quad \text{end}
\]

\[
\text{end}
\]

\[
\text{// dynamic programming}
\]

\[
\text{for } k = 1 \text{ to } n \text{ do}
\]

\[
\quad \text{for } i = 1 \text{ to } n \text{ do}
\]

\[
\quad \quad \text{for } j = 1 \text{ to } n \text{ do}
\]

\[
\quad \quad \quad \text{if } \left(d^{(k-1)}[i,k] + d^{(k-1)}[k,j] < d^{(k-1)}[i,j]\right) \text{ then}
\]

\[
\quad \quad \quad \quad d^{(k)}[i,j] = d^{(k-1)}[i,k] + d^{(k-1)}[k,j];
\]

\[
\quad \quad \quad \text{pred}[i,j] = k;
\]

\[
\quad \quad \text{else}
\]

\[
\quad \quad \text{end}
\]

\[
\quad \quad \text{end}
\]

\[
\quad d^{(k)}[i,j] = d^{(k-1)}[i,j];
\]

\[
\quad \text{end}
\]

\[
\text{end}
\]

\text{return } d^{(n)}[1..n, 1..n]
The algorithm’s running time is clearly $\Theta(n^3)$.

The predecessor pointer $\text{pred}[i, j]$ can be used to extract the shortest paths (see later).

Problem: the algorithm uses $\Theta(n^3)$ space.

- It is possible to reduce this to $\Theta(n^2)$ space by keeping only one matrix instead of n.
- Algorithm is on next page. Convince yourself that it works.
The Floyd-Warshall Algorithm: Version 2

\[d_{ij}^{(k)} = \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \]

Floyd-Warshall \((w, n)\)

```plaintext
for i = 1 to n do
    for j = 1 to n do
        d[i][j] = w[i][j]; pred[i][j] = nil; // initialize
    end
end

// dynamic programming
for k = 1 to n do
    for i = 1 to n do
        for j = 1 to n do
            if (d[i][k] + d[k][j] < d[i][j]) then
                d[i][j] = d[i][k] + d[k][j];
                pred[i][j] = k;
            end
        end
    end
end

return d[1..n, 1..n];
```
The all-pairs shortest path problem.
A first dynamic programming solution.
The Floyd-Warshall algorithm
Extracting shortest paths.
predecessor pointers $\text{pred}[i, j]$ can be used to extract the shortest paths.

Idea:

- Whenever we discover that the shortest path from i to j passes through an intermediate vertex k, we set $\text{pred}[i, j] = k$.
- If the shortest path does not pass through any intermediate vertex, then $\text{pred}[i, j] = \text{nil}$.
- To find the shortest path from i to j, we consult $\text{pred}[i, j]$.
 1. If it is nil, then the shortest path is just the edge (i, j).
 2. Otherwise, we recursively construct the shortest path from i to $\text{pred}[i, j]$ and the shortest path from $\text{pred}[i, j]$ to j.
The Algorithm for Extracting the Shortest Paths

Path\((i,j)\)

\[
\begin{align*}
\text{if } \text{pred}[i,j] &= \text{nil} \text{ then} \\
&\quad \quad \text{// single edge} \\
&\quad \quad \text{output } (i,j); \\
\text{else} \\
&\quad \quad \text{// compute the two parts of the path} \\
&\quad \quad \text{Path}(i, \text{pred}[i,j]); \\
&\quad \quad \text{Path}(\text{pred}[i,j],j); \\
\text{end}
\end{align*}
\]
Find the shortest path from vertex 2 to vertex 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2..3</td>
<td>Path(2, 3)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2..6..3</td>
<td>Path(2, 6)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2..5..6..3</td>
<td>Path(2, 5)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2,5)</td>
</tr>
<tr>
<td>25..6..3</td>
<td>Path(5, 6)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5,6)</td>
</tr>
<tr>
<td>256..3</td>
<td>Path(6, 3)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256..4..3</td>
<td>Path(6, 4)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6,4)</td>
</tr>
<tr>
<td>2564..3</td>
<td>Path(4, 3)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4,3)</td>
</tr>
<tr>
<td>25643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>