Depth-First Search

Version of October 11, 2014
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?
What does Depth-First Search (DFS) do?

- Traverses all vertices in graph,
What does Depth-First Search (DFS) do?

- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal:

1. `color[u]`: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. `pred[u]`: predecessor pointer pointing back to the vertex from which `u` was discovered

3. `d[u]`: discovery time, a counter indicating when vertex `u` is discovered

4. `f[u]`: finishing time, a counter indicating when the processing of vertex `u` (and all its descendants) is finished
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?
- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal

1. \(\text{color}[u]\): the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. \(\text{pred}[u]\): predecessor pointer pointing back to the vertex from which \(u\) was discovered

3. \(d[u]\): discovery time a counter indicating when vertex \(u\) is discovered

4. \(f[u]\): finishing time a counter indicating when the processing of vertex \(u\) (and all its descendants) is finished
What does Depth-First Search (DFS) do?
- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal

1. `color[u]`: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?

- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal

1. $color[u]$: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. $pred[u]$: predecessor pointer
 - pointing back to the vertex from which u was discovered
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?
- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal

1. **color[u]**: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. **pred[u]**: predecessor pointer
 - pointing back to the vertex from which \(u \) was discovered

3. **d[u]**: discovery time
 - a counter indicating when vertex \(u \) is discovered
The Depth-First Search (DFS) Algorithm

What does Depth-First Search (DFS) do?

- Traverses all vertices in graph, and thereby
- Reveal properties of the graph.

Four arrays are used to keep information gathered during traversal

1. **color[u]**: the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing

2. **pred[u]**: predecessor pointer
 - pointing back to the vertex from which \(u \) was discovered

3. **d[u]**: discovery time
 - a counter indicating when vertex \(u \) is discovered

4. **f[u]**: finishing time
 - a counter indicating when the processing of vertex \(u \) (and all its descendants) is finished
How does DFS work?
How does DFS work?

- It starts from an initial vertex.
How does DFS work?

- It starts from an initial vertex.
- After visiting a vertex, it recursively visits all of its neighbors.
- The strategy is to search “deeper” in the graph whenever possible.
DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end
time=
DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time = 0;
foreach u in V do
DFS Algorithm

DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time= 0;

foreach u in V do
 // start a new tree
 if

DFS Algorithm

DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time = 0;

foreach u in V do
 // start a new tree
 if color[u] =
DFS Algorithm

DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

// start a new tree
foreach u in V do
 if color[u] = WHITE then
 DFSVisit(u);
 end
end
DFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time = 0;
foreach u in V do
 // start a new tree
 if color[u] = WHITE then
 DFSVisit(u);
 end
end
DFSVisit\((u) \)

\[
\text{color}[u] = \text{GRAY} ;// \text{ u is discovered}
\]

\[
d[u] = \text{time} = \text{time} + 1 ;// \text{ u's discovery time}
\]

\[
\text{foreach} \ v \text{ in Adj}(u) \text{ do}
\]

\[
\text{if} \ \text{color}[v] = \text{WHITE} \text{ then}
\]

\[
\text{pred}[v] = u ;\text{DFSVisit}(v);
\]

\[
\text{end}
\]

\[
\text{end}
\]

\[
\text{color}[u] = \text{BLACK} ;// \text{ u has finished}
\]

\[
f[u] = \text{time} = \text{time} + 1 ;// \text{ u's finish time}
\]
DFSVisit\((u) \)

\[
\text{color}[u] = \text{GRAY}; \quad // \text{u is discovered}
\]
DFSVisit(u)

\[
color[u] = \text{GRAY}; \quad // \quad \text{u is discovered}
\]
\[
d[u] = \text{time}=\text{time}+1; \quad // \quad \text{u’s discovery time}
\]
DFSVisit(u)

\[
\begin{align*}
\text{color}[u] &= \text{GRAY}; \quad \text{// } u \text{ is discovered} \\
\text{d}[u] &= \text{time}=\text{time}+1; \quad \text{// } u\text{'s discovery time} \\
\text{foreach } v \text{ in Adj}(u) \text{ do}
\end{align*}
\]
DFSVisit(u)

color[u] = GRAY; // u is discovered
d[u] = time = time + 1; // u’s discovery time
foreach v in Adj(u) do
 // Visit undiscovered vertex
 if color[v] = WHITE then
 pred[v] = u;
 end
DFSVisit(u)

\[
\text{color}[u] = \text{GRAY}; \quad // \text{u is discovered}
\]
\[
d[u] = \text{time} = \text{time} + 1; \quad // \text{u’s discovery time}
\]

\textbf{foreach } v \textbf{ in Adj}(u) \textbf{ do}

\quad // \text{Visit undiscovered vertex}

\quad \textbf{if } \text{color}[v] = \text{WHITE}\textbf{ then}

\quad \quad \text{pred}[v] = u;

\quad \quad \text{DFSVisit}(v);

\quad \textbf{end}

\textbf{end}
DFSVisit(u)

color[u] = GRAY; // u is discovered

d[u] = time=time+1; // u's discovery time

for each v in Adj(u) do
 // Visit undiscovered vertex
 if color[v] = WHITE then
 pred[v] = u;
 DFSVisit(v);
 end
end

color[u] = BLACK; // u has finished
DFSVisit(u)

```
color[u] = GRAY;  // u is discovered
d[u] = time = time + 1;  // u’s discovery time
foreach v in Adj(u) do
    // Visit undiscovered vertex
    if color[v] = WHITE then
        pred[v] = u;
        DFSVisit(v);
    end
end

color[u] = BLACK;  // u has finished
f[u] = time = time + 1;  // u’s finish time
```
DFS Example

Depth-First Search
The DFS Algorithm

The outputs of DFS:

- The time stamp arrays: $d[v]$, $f[v]$
- The predecessor array $\text{pred}[v]$

The DFS Forest:

Use $\text{pred}[v]$ to define a graph $F = (V, E_f)$ as follows:

$E_f = \{(\text{pred}[v], v) \mid v \in V, \text{pred}[v] \neq \text{NULL}\}$

This is a graph with no cycles, and hence a forest, i.e. a collection of trees. Called a DFS Forest.

Vertices in the subtree rooted at u are those discovered while u is gray.
The outputs of DFS:

1. The time stamp arrays: $d[v], f[v]$
The DFS Algorithm

The outputs of DFS:

1. The time stamp arrays: $d[v], f[v]$
2. The predecessor array $pred[v]$

The DFS Forest:

Use $pred[v]$ to define a graph $F = (V, E_f)$ as follows:

$$E_f = \{(pred[v], v) | v \in V, pred[v] \neq \text{NULL}\}$$

This is a graph with no cycles, and hence a forest, i.e. a collection of trees. Called a DFS Forest.

Vertices in the subtree rooted at u are those discovered while u is gray.
The DFS Algorithm

The outputs of DFS:

1. The time stamp arrays: $d[v]$, $f[v]$
2. The predecessor array $pred[v]$

The DFS Forest:
The DFS Algorithm

The outputs of DFS:

1. The time stamp arrays: \(d[v], f[v] \)
2. The predecessor array \(pred[v] \)

The DFS Forest:

- Use \(pred[v] \) to define a graph \(F = (V, E_f) \) as follows:

\[
E_f = \{(pred[v], v) | v \in V, pred[v] \neq \text{NULL}\}
\]
The DFS Algorithm

The outputs of DFS:

1. The time stamp arrays: $d[v], f[v]$
2. The predecessor array $pred[v]$

The DFS Forest:

- Use $pred[v]$ to define a graph $F = (V, E_f)$ as follows:

 $$E_f = \{(pred[v], v) | v \in V, pred[v] \neq \text{NULL}\}$$

- This is a graph with no cycles, and hence a forest, i.e. a collection of trees.
- Called a DFS Forest.
- Vertices in the subtree rooted at u are those discovered while u is gray.
The procedure DFSVisit is called exactly once for each vertex $u \in V$.

The total running time is

$$ \sum_{u \in V} T_u \leq \sum_{u \in V} O(1 + \text{degree}(u)) = O(V + E) $$

Hence, the running of DFS on a graph with V vertices and E edges is $O(V + E)$.

Running Time of DFS
The procedure DFSVisit is called exactly once for each vertex $u \in V$ — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray.
Running Time of DFS

- The procedure DFSVisit is called exactly once for each vertex \(u \in V \)
 — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray
- During an execution of DFSVisit\((u)\),
 the for loop is executed \(|\text{Adj}(u)| = \text{degree}(u)\) times
The procedure DFSVisit is called exactly once for each vertex $u \in V$ — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray.

During an execution of DFSVisit(u),
 the for loop is executed $|\text{Adj}(u)| = \text{degree}(u)$ times.

On each vertex u, we spend time $T_u = O(1 + \text{degree}(u))$
The procedure DFSVisit is called exactly once for each vertex $u \in V$ — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray.

During an execution of DFSVisit(u), the for loop is executed $|\text{Adj}(u)| = \text{degree}(u)$ times.

On each vertex u, we spend time $T_u = O(1 + \text{degree}(u))$.

The total running time is

$$
\sum_{u \in V} T_u \leq \sum_{u \in V} (O(1 + \text{degree}(u))) = O(V + E)
$$
Running Time of DFS

- The procedure DFSVisit is called exactly once for each vertex \(u \in V \) — since DFSVisit is invoked only on white vertices and the first thing it does is paint the vertex gray.
- During an execution of DFSVisit\((u)\), the for loop is executed \(|\text{Adj}(u)| = \text{degree}(u)\) times.

On each vertex \(u \), we spend time \(T_u = O(1 + \text{degree}(u)) \)

The total running time is

\[
\sum_{u \in V} T_u \leq \sum_{u \in V} (O(1 + \text{degree}(u))) = O(V + E)
\]

Hence, the running of DFS on a graph with \(V \) vertices and \(E \) edges is \(O(V + E) \)
• u is a descendant (in DFS trees) of v, if and only if $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$ (Example)
u is a **descendant** (in DFS trees) of v, if and only if $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$ (Example)

u is an **ancestor** of v, if and only if $[d[u], f[u]]$ contains $[d[v], f[v]]$ (Example)
u is a **descendant** (in DFS trees) of v, if and only if \([d[u], f[u]]\) is a subinterval of \([d[v], f[v]]\) (Example)

u is an **ancestor** of v, if and only if \([d[u], f[u]]\) contains \([d[v], f[v]]\) (Example)

u is **unrelated** to v, if and only if \([d[u], f[u]]\) and \([d[v], f[v]]\) are disjoint intervals (Example)
Proof

The idea is to consider every case
The idea is to consider every case
We first consider $d[v] < d[u]$
The idea is to consider every case
We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$,
The idea is to consider every case
We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray)
The idea is to consider every case
We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray)
 $\Rightarrow u$ is a descendant of v
The idea is to consider every case

We first consider \(d[v] < d[u] \)

1. If \(f[v] > d[u] \), then
 - \(u \) is discovered when \(v \) is still not finished yet (marked gray)
 \(\Rightarrow \) \(u \) is a descendant of \(v \)
 - \(u \) is discovered later than \(v \) \(\Rightarrow \) \(u \) should finish before \(v \)
The idea is to consider every case
We first consider \(d[v] < d[u] \)

1. If \(f[v] > d[u] \), then
 - \(u \) is discovered when \(v \) is still not finished yet (marked gray)
 \(\Rightarrow u \) is a descendant of \(v \)
 - \(u \) is discovered later than \(v \) \(\Rightarrow \) \(u \) should finish before \(v \)
 - Hence we have \([d[u], f[u]]\) is a subinterval of \([d[v], f[v]]\)
Proof

The idea is to consider every case
We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray)
 $\Rightarrow u$ is a descendant of v
 - u is discovered later than v $\Rightarrow u$ should finish before v
 - Hence we have $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$

2. If $f[v] < d[u]$, then
 - obviously $[d[v], f[v]]$ and $[d[u], f[u]]$ are
Proof

The idea is to consider every case.

We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray)
 $\Rightarrow u$ is a descendant of v
 - u is discovered later than v $\Rightarrow u$ should finish before v
 - Hence we have $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$

2. If $f[v] < d[u]$, then
 - obviously $[d[v], f[v]]$ and $[d[u], f[u]]$ are disjoint
 - It means that when u or v is discovered, the others are not marked gray
The idea is to consider every case
We first consider \(d[v] < d[u] \)

1. If \(f[v] > d[u] \), then
 - \(u \) is discovered when \(v \) is still not finished yet (marked gray)
 \(\Rightarrow u \) is a descendant of \(v \)
 - \(u \) is discovered later than \(v \) \(\Rightarrow u \) should finish before \(v \)
 - Hence we have \([d[u], f[u]]\) is a subinterval of \([d[v], f[v]]\)

2. If \(f[v] < d[u] \), then
 - obviously \([d[v], f[v]]\) and \([d[u], f[u]]\) are disjoint
 - It means that when \(u \) or \(v \) is discovered, the others are not marked gray
 - Hence neither vertex is a descendant of the other
Proof

The idea is to consider every case.

We first consider $d[v] < d[u]$

1. If $f[v] > d[u]$, then
 - u is discovered when v is still not finished yet (marked gray) \[\Rightarrow u \text{ is a descendant of } v\]
 - u is discovered later than v \[\Rightarrow u \text{ should finish before } v\]
 - Hence we have $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$

2. If $f[v] < d[u]$, then
 - obviously $[d[v], f[v]]$ and $[d[u], f[u]]$ are disjoint
 - It means that when u or v is discovered, the others are not marked gray
 - Hence neither vertex is a descendant of the other

The argument for other case, where $d[v] > d[u]$, is similar.
- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
Tree Structure

- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
- Consider $(u, v) \in E$
 - tree edge: if $(u, v) \in E_f$
Tree Structure

- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
- Consider $(u, v) \in E$
 - tree edge: if $(u, v) \in E_f$ or equivalently $u = pred[v]$, i.e. u is the predecessor of v in the DFS tree
Tree Structure

- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
- Consider $(u, v) \in E$
 - tree edge: if $(u, v) \in E_f$ or equivalently $u = \text{pred}[v]$, i.e. u is the predecessor of v in the DFS tree
 - back edge:
Tree Structure

- Undirected graph $G = (V, E)$, DFS forest $F = (V, E_f)$
- Consider $(u, v) \in E$
 - **tree edge**: if $(u, v) \in E_f$ or equivalently $u = \text{pred}[v]$, i.e. u is the predecessor of v in the DFS tree
 - **back edge**: if v is an ancestor (excluding predecessor) of u in the DFS tree
Theorem

An edge in an undirected graph is either a tree edge or a back edge.
Theorem

An edge in an undirected graph is either a tree edge or a back edge.

Proof:

- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
Theorem

An edge in an undirected graph is either a tree edge or a back edge.

Proof:
- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
- Then \(v\) is discovered while \(u\) is gray (why?).
Tree Structure

Theorem

An edge in an undirected graph is either a tree edge or a back edge.

Proof:

- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
- Then \(v\) is discovered while \(u\) is gray (why?).
- Hence \(v\) is in the DFS subtree rooted at \(u\).
Tree Structure

Theorem

An edge in an undirected graph is either a tree edge or a back edge.

Proof:

- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
- Then \(v\) is discovered while \(u\) is gray (why?).
- Hence \(v\) is in the DFS subtree rooted at \(u\).
 - If \(\text{pred}[v] = u\), then \((u, v)\) is a tree edge.
Theorem

An edge in an undirected graph is either a tree edge or a back edge.

Proof:

- Let \((u, v)\) be an arbitrary edge in an undirected graph \(G\).
- Without loss of generality, assume \(d(u) < d(v)\).
- Then \(v\) is discovered while \(u\) is gray (why?).
- Hence \(v\) is in the DFS subtree rooted at \(u\).
 - If \(\text{pred}[v] = u\), then \((u, v)\) is a tree edge.
 - If \(\text{prev}[v] \neq u\), then \((u, v)\) is a back edge.
Question
Given an undirected graph G, how to determine whether or not G contains a cycle?

Lemma
G is acyclic if and only if a DFS of G yields no back edges.

Proof.
\Rightarrow: Suppose that there is a back edge (u, v). Then, vertex v is an ancestor (excluding predecessor) of u in the DFS trees. There is thus a path from v to u in G, and the back edge (u, v) completes a cycle.
\Leftarrow: If there is no back edge, then since an edge in an undirected graph is either a tree edge or a back edge, there are only tree edges, implying that the graph is a forest, and hence is acyclic.
Cycle Finding

Cycle(G)

\[
\text{foreach } u \text{ in } V \text{ do}
\]
\[
\quad \text{color}[u] = \text{WHITE};
\]
\[
\quad \text{pred}[u] = \text{NULL};
\]
\end
\]
\[
\text{foreach } u \text{ in } V \text{ do}
\]
\[
\quad \text{if } \text{color}[u] = \text{WHITE} \text{ then}
\]
\[
\quad \quad \text{Visit}(u);
\]
\end
\]
\end
\]
\end
\[
\text{output } \text{“No Cycle”};
\]

Running time: \(O(V) \)

- only traverse tree edges, until the first back edge is found
- at most \(V - 1 \) tree edges

Visit(u)

\[
\text{color}[u] = \text{GRAY};
\]
\[
\text{foreach } v \text{ in Adj}(u) \text{ do}
\]
\[
\quad \text{// consider } (u,v)
\]
\[
\quad \text{if } \text{color}[v] = \text{WHITE} \text{ then}
\]
\[
\quad \quad \text{// v unvisited}
\]
\[
\quad \quad \text{pred}[v] = u;
\]
\[
\quad \quad \text{Visit}(v); \text{// visit v}
\]
\[
\text{else if } v \neq \text{pred}[u] \text{ then}
\]
\[
\quad \text{// back edge detected}
\]
\[
\quad \text{output } \text{“Cycle found!”};
\]
\[
\quad \text{exit}; \text{// terminate}
\]
\end
\]
\end
\]
\end
\]
\end
\]
\end
\]
\end
\]
\text{color}[u] = \text{BLACK};