- \(V \): set of vertices, \(E \): set of edges. (We will sometimes also simultaneously use \(V \) to denote the number of vertices, and \(E \) to denote the number of edges.)

- **Adjacency list representation**: \(O(V + E) \) storage

 \(Adj[u] \) — linked list of all \(v \) such that \((u, v) \in E\).

 - \(Adj[0] = \{1, 3, 9\}; Adj[1] = \{0, 9, 2\}; \ldots \)

- Can retrieve all the neighbors of \(u \) in \(O(\text{degree}(u)) \) time.
Adjacency matrix representation: $O(V^2)$ storage

$A = [a_{ij}]$, $a_{ij} = 1$ if $(v_i, v_j) \in E$;

$a_{ij} = 0$ if $(v_i, v_j) \notin E$.

For undirected graph, adjacency matrix is always symmetric.

Can check if u and v are connected in $O(1)$ time.
What does Breadth-First Search (BFS) do?

- Traverse all vertices in graph, and thereby
- Reveal properties of the graph.

Three arrays are used to keep information gathered during traversal:

1. \(\text{color}[u]\): the color of each vertex visited
 - WHITE: undiscovered
 - GRAY: discovered but not finished processing
 - BLACK: finished processing
2. \(\text{pred}[u]\): the predecessor pointer
 - pointing back to the vertex from which \(u\) was discovered
3. \(d[u]\): the distance from the source to vertex \(u\)
BFS Algorithm

BFS(G)

// Initialize
foreach u in V do
 color[u] = WHITE; // undiscovered
 pred[u] = NULL; // no predecessor
end

time = 0;
foreach u in V do
 // start a new tree
 if color[u] = WHITE then
 BFSVisit(u);
 end
end
BFSVisit(s)

```plaintext
color[s] = GRAY; pred[s] = NULL; d[s] = 0;
Q = ∅; Enqueue(Q,s);
while Q ≠ ∅ do
    u = Dequeue(Q);
    foreach v ∈ Adj[u] do
        if color[v] = WHITE then
            color[v] = GRAY;
            d[v] = d[u]+1;
            pred[v] = u;
            Enqueue(Q,v);
        end
    end
    color[u] = BLACK;
end
```

Question

Which graph representation shall we use?
The BFS Algorithm

The outputs of BFS:

1. Distance array: \(d[v] \)
2. Predecessor array \(pred[v] \)

The BFS Forest:

- Use \(pred[v] \) to define a graph \(F = (V, E_f) \) as follows:

\[
E_f = \{ (pred[v], v) | v \in V, pred[v] \neq \text{NULL} \}
\]

- This graph has no cycles (why?), and is therefore a forest, i.e. a collection of trees. We call it a BFS Forest.
- In each tree, \(d[v] \) gives the shortest distance to the initial vertex of the tree.
- Following \(pred[v] \) gives a shortest path to the initial vertex of the tree.
On each vertex u, we spend time $T_u = O(1 + \text{degree}(u))$

The total running time is

$$\sum_{u \in V} T_u \leq \sum_{u \in V} (O(1 + \text{degree}(u))) = O(V + E)$$

Hence, the running of BFS on a graph with V vertices and E edges is $O(V + E)$

Applications:

1. Shortest paths in a graph
 - What if the graph is weighted?
2. Finding connected components