Your solutions should contain (i) your name, (ii) your student ID #, and (iii) your email address

Information:

- Please write clearly and briefly.

- Please follow the guidelines on doing your own work and avoiding plagiarism given on the class home page. Don’t forget to acknowledge individuals who assisted you, or sources where you found solutions.

- Please make a copy of your assignment before submitting it. If we can’t find your answers, we will ask you to resubmit the copy.

- Your solution should be submitted as a PDF. This can be generated by Latex, from Word or a scan of a (legible) handwritten solution, etc..

- Your solution should be submitted via the CASS system by 11:59PM on December 1, 2014. The class web page has reminders on how to use CASS.
Problem 1: [20 points] Suppose \(A = \{a_1, a_2, \ldots, a_k\} \) is a set of distinct coin values (all the \(a_i \) are positive integers) available in a particular country. The **coin changing problem** is defined as follows: Given integer \(n \) find the minimum number of coins from \(A \) that add up to \(n \) assuming that all coins have value in \(A \). You should assume that \(a_1 = 1 \) so that it is always possible to find some set that adds up to \(n \).

For example, if \(A = \{1, 5, 8\} \) and \(n = 26 \) the best way of making change uses 4 coins, i.e., \(\{5, 5, 8, 8\} \).

Design a \(O(nk) \) dynamic programming algorithm for solving the coin changing problem; that is, given inputs \(A \) and \(n \) it outputs the minimum number of coins in \(A \) to add up to \(n \). (It is not necessary to say what the coins are.) Prove that your algorithm is correct.

Problem 2: [20 points] **Arbitrage** is the use of discrepancies in currency-exchange rates to make a profit. For example, there may be a small window of time in which 1 U.S. dollar buys 0.75 British pounds, 1 British pound buys 2 Australian dollars and 1 Australian dollar buys 0.70 U.S. dollars. Then, a smart trader can trade one U.S. dollar and end up with \(0.75 \times 2 \times 0.7 = 1.05 \) U.S. dollars, a profit of 5% (note that this assumes there are no trading costs).

Suppose that there are \(n \) currencies \(c_1, \ldots, c_n \) and an \(n \times n \) table \(R \) of exchange rates such that one unit of currency \(c_i \) buys \(R[i,j] \) units of currency \(c_j \). The value of a series of exchanges \(c_{i_1}, c_{i_2}, \ldots, c_{i_t} \) is

\[
R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{t-1}, i_t]
\]

which is the number of units of currency \(c_t \) that result when starting with one unit of currency \(c_1 \), exchanging it into currency \(c_2 \), exchanging what results into \(c_3 \), etc. until ending by exchanging units of \(c_{t-1} \) in currency \(c_t \).

A series of exchanges yields a profit if it both starts and ends in the same currency and the value of the series is greater than 1.

Devise and analyze a dynamic programming algorithm that, given the \(R[\]\) table, determines whether or not it is possible to make a profit by trading currencies. You must prove that your algorithm is correct and also give the running time of the algorithm using \(O(\) notation.

Problem 3 [20 points]

Suppose you are given three strings of characters: \(X = x_1x_2 \cdots x_n \), \(Y = y_1y_2 \cdots y_m \), \(Z = z_1z_2 \cdots z_p \), where \(p = n + m \). \(Z \) is said to be a **shuffle** of \(X \) and \(Y \) iff \(Z \) can be formed by interleaving the characters from \(X \) and \(Y \) in a way that maintains the left-to-right ordering of the characters from each string. The goal of this problem is to design an efficient dynamic-programming algorithm that determines whether \(Z \) is a shuffle of \(X \) and \(Y \).
(a) Show that \textit{chocohilaptes} is a shuffle of \textit{chocolate} and \textit{chips}, but that \textit{chocochilatspe} is not.

(b) For any string \(A = a_1a_2\cdots a_r\), let \(A_i = a_1a_2\cdots a_i\) be the substring of \(A\) consisting of the first \(i\) characters of \(A\). For example, if \(A\) is \textit{chocolate}, then \(A_3\) is \textit{cho} and \(A_6\) is \textit{chocol}.

Define \(f(i, j)\) to be 1 if \(Z_{i+j}\) is a shuffle of \(X_i\) and \(Y_j\), and 0 otherwise. Derive a recursive formula for \(f(i, j)\). Remember to include the basis cases. Briefly explain your derivation.

(c) Give an efficient algorithm for determining whether \(Z\) is a shuffle of \(X\) and \(Y\). Analyze the running time of your algorithm.

\textbf{Problem 4: [20 points]}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{flow_graph.png}
\end{figure}

(a) Given the above graph with flow values \(f\) and capacities \(c\) as shown (the values are written as \(f/c\) following the notation on the class slides), draw the residual network.

(b) Find an augmenting path \(p\) in the residual network and draw it, showing the maximum flow \(f_p\) that can be pushed through \(p\).

(c) Draw the new flow \(f' = f + f_p\).

\textbf{Problem 5: [20 points]}

Prove the following three statements about flows from page 9 of the Network Flow slides. \(V\) is the set of vertices of the graph and \(f\) is a flow,

(a) \(\forall X \subseteq V, \quad f(X, X) = 0\).

(b) \(\forall X, Y \subseteq V, \quad f(X, Y) = -f(Y, X)\).

(c) \(\forall X, Y, Z \subseteq V\) with \(X \cap Y = \emptyset\)
\[
 f(X \cup Y, Z) = f(X, Z) + f(Y, Z) \quad \text{and} \\
 f(Z, X \cup Y) = f(Z, X) + f(Z, Y).
\]