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Abstract. Quantitative Association Rule (QAR) mining has been rec-

ognized an influential research problem over the last decade due to

the popularity of quantitative databases and the usefulness of associ-

ation rules in real life. Unlike Boolean Association Rules (BARs), which

only consider boolean attributes, QARs consist of quantitative attributes

which contain much richer information than the boolean attributes. How-

ever, the combination of these quantitative attributes and their value in-

tervals always gives rise to the generation of an explosively large number

of itemsets, thereby severely degrading the mining efficiency.

In this paper, we propose an information-theoretic approach to avoid un-

rewarding combinations of both the attributes and their value intervals

being generated in the mining process. We study the mutual information

between the attributes in a quantitative database and devise a normal-

ization on the mutual information to make it applicable in the context of

QAR mining. To indicate the strong informative relationships among the

attributes, we construct a mutual information graph (MI graph), whose

edges are attribute pairs that have normalized mutual information no

less than a predefined information threshold. We find that the cliques

in the MI graph represent a majority of the frequent itemsets. We also

show that frequent itemsets that do not form a clique in the MI graph

are those whose attributes are not informatively correlated to each other.

⋆ A preliminary version of this paper [15] appeared as a poster paper in the proceedings

of the 22nd International Conference on Data Engineering (ICDE), 2006.



By utilizing the cliques in the MI graph, we devise an efficient algorithm

that significantly reduces the number of value intervals of the attribute

sets to be joined during the mining process. Extensive experiments show

that our algorithm speeds up the mining process by up to two orders of

magnitude. Most importantly, we are able to obtain most of the high-

confidence QARs, whereas the QARs that are not returned by MIC are

shown to be less interesting.

Keywords: Quantitative Databases, Association Rules, Information-

Theoretic Approach, Mutual Information

1 Introduction

Quantitative Association Rules (QARs) [25] have served as a useful tool

in discovering association relationships among sets of attributes in busi-

ness and scientific domains. In a QAR, attributes are not limited to be-

ing boolean but can be either quantitative, which are numeric values

(e.g., age, salary), or categorical, which are enumerations (e.g., gender,

brand). Being able to represent a wide variety of real-life attributes, QARs

are far more expressive and informative than Boolean Association Rules

(BARs) [2], which are restricted to only boolean attributes. An example

QAR in an employee database is {age[25, 40], gender[female]} ⇒

{salary[13500, 18700]} (supp = 0.03, conf = 0.8). The QAR states

that “3% (support) of the employees are females aged between 25 and

40 and earning a salary of between $13, 500 and $18, 700”, while “80%

(confidence) of the female employees aged between 25 and 40 are earning

a salary of between $13, 500 and $18, 700”.

The problem of QAR mining [25] is: given a database, a minimum

support threshold and a minimum confidence threshold, find all QARs

with support and confidence no less than the given thresholds.
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Due to the popularity of quantitative databases and the usefulness of

association rules in real life, QAR mining has been identified as a long-

standing research problem. Many studies [25, 19, 32, 28, 18] have aimed at

developing feasible approaches to mining QARs over the last decade. A

common approach to the QAR mining problem is to transform it into

a problem of conventional BAR mining [2, 3]. The idea is that, for each

distinct value of a quantitative or categorical attribute, the pair 〈attribute,

value〉 is mapped to a boolean attribute, and then algorithms for mining

BARs are applied. However, in many cases, the domain of a quantitative

attribute is very large and may be continuous. Thus, a discretization

process [25] is first used to partition the domain of a quantitative attribute

into intervals. Then, each 〈attribute, interval〉 pair of the quantitative

attribute is mapped to a boolean attribute.

Mining QARs by a generic BAR mining algorithm, however, is infeasi-

ble in most cases for the following reasons. First, QAR mining suffers from

the same problem of a combinatorial explosion of attribute sets as does

BAR mining; that is, given a set of N distinct attributes, the number of

its non-empty subsets is (2N − 1). In practice, the number of distinct at-

tributes in a QAR mining problem may not be as large as that in a BAR

mining problem. However, as shown by Srikant and Agrawal [25], it is

necessary to combine the consecutive intervals of a quantitative attribute

to gain sufficient support and more meaningful intervals. This leads to

another combinatorial explosion problem: if the domain of a quantitative

attribute is partitioned into n intervals, the total number of intervals of

the attribute grows to O(n2) after combining the consecutive intervals.

When we join the attributes in the mining process, the number of itemsets

(i.e., a set of 〈attribute, interval〉 pairs) can become prohibitively large if

the number of intervals associated with an attribute is large. For exam-

ple, it is common in a QAR mining problem that a quantitative attribute
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has 200 intervals; however, there are (200 ∗ (200 + 1)/2)2 = 404, 010, 000

different combinations of intervals if we join two such attributes, which

is equivalent to 404,010,000 candidate attribute sets in a BAR mining

problem. This number further grows exponentially when more than two

attributes are joined. As a result, effective techniques to prune the large

search space of QAR mining are necessary in order to develop an efficient

algorithm for the problem.

In this paper, we adopt an information-theoretic approach to address

the two combinatorial explosions in QAR mining by investigating the re-

lationships between the attributes. We first define an interaction graph

to formally represent the relationships between the attributes in the min-

ing problem. The vertices of the interaction graph correspond to the at-

tributes in the mining problem, while an edge represents a pair of at-

tributes appearing in the same QAR. Thus, the set of attributes that

compose a QAR forms a clique (i.e., a complete subgraph) in the inter-

action graph.

We introduce a framework, called MIC (which stands for Mutual In-

formation and Clique), to mine the set of QARs. The MIC framework

has three phases. The first phase prepares the database by discretizing

the quantitative attributes. In the second phase, we first investigate the

mutual information between each pair of attributes. Then, we propose a

normalization on the mutual information. We define a pair of attributes

to have a strong informative relationship if their normalized mutual in-

formation is no less than a predefined minimum information threshold,

µ. We then establish a Mutual Information graph (MI graph) to represent

attributes that have strong informative relationships. We show that the

MI graph can retain all or most of the information carried by the interac-

tion graph. Since each frequent itemset is represented by a clique in the

interaction graph, the cliques in the MI graph are used in the final phase
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to facilitate the computation of frequent itemsets as well as to guide the

generation of QARs.

Utilizing the cliques in the MI graph greatly alleviates both the com-

binatorial explosions of attribute sets and intervals in the QAR min-

ing problem. Instead of joining the intervals for all attribute sets in the

database, we only need to focus on those attribute sets that form a clique

in the MI graph. Therefore, both the number of attribute sets and their

intervals to be joined are significantly reduced. Moreover, the attributes

in a clique of the MI graph are strongly informatively related as mea-

sured by normalized mutual information, thereby ensuring the quality of

the QARs obtained.

Our Contribution. We study an information-theoretic approach that

addresses the problem of QAR mining. Since the mutual information is

able to capture the inherent co-occurrence relationships between the at-

tributes, it is a good indicator for frequent itemsets and hence QARs.

By applying the mutual information concept in the context of QAR min-

ing, we effectively prune a large part of the search space that represents

the insignificant informative relationships between the attributes. Our ex-

tensive experiments show that compared with the state-of-the-art QAR

mining algorithm [25], MIC speeds up the mining process by up to two

orders of magnitude on both synthetic and real datasets. Most impor-

tantly, MIC obtains most of the QARs that have high confidence. We

also show that the QARs that are not returned by MIC are insignificant

by a formal measure [5] of interestingness for association rules.

Organization. We give some preliminaries on QAR mining in Section

2. We then introduce the concept of interaction graphs in Section 3. In

Section 4, we present the overall description of the MIC framework and

describe the technical details in each phase of the framework. We give the
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experimental results in Section 5 and discuss the related work in Section

6. Finally, we conclude our paper in Section 7.

2 Preliminaries

In this section, we present the notions and basic concepts in the QAR

mining problem.

Let I = {x1, x2, . . . , xm} be a set of distinct attributes or random vari-

ables1. An attribute can be either quantitative or categorical. Let dom(xj)

be the domain of an attribute xj , for 1 ≤ j ≤ m. An item, denoted as

x[lx, ux], is an attribute x associated with an interval [lx, ux], where x ∈ I

and lx, ux ∈ dom(x). We have lx = ux if x is categorical and lx ≤ ux if

x is quantitative. An itemset is a non-empty set of items with distinct

attributes. Given an itemset X, we define its attribute set as attr(X) =

{x | x[lx, ux] ∈ X}. An itemset X is called a k-itemset if |attr(X)| =

k. Accordingly, the attribute set of a k-itemset is called k-attribute set.

For brevity, we write an itemset X = {x1[lx1
, ux1

], . . . , xk[lxk
, uxk

]} as

x1[lx1
, ux1

] · · · xk[lxk
, uxk

].

A transaction T is a sequence 〈v1, v2, . . . , vm〉, where vj ∈ dom(xj),

for 1 ≤ j ≤ m. A transaction T supports an itemset X if ∀ xi[li, ui] ∈ X,

li ≤ vi ≤ ui, where i ∈ {1, . . . ,m}. Let D denote a quantitative database,

which consists of a set of transactions. The frequency of X in D, denoted

by freq(X), is the number of transactions in D that support X. The

support of X, denoted by supp(X), is the probability that a transaction T

in D supports X, and is defined as supp(X)=freq(X)/|D|. X is a frequent

itemset if supp(X) ≥ σ, where σ (0 ≤ σ ≤ 1) is a predefined minimum

support threshold.

1 We use the terms attribute and random variable interchangeably in subsequent dis-

cussions.
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Table 1. The Employee Database

age gender salary education service years

23 F 12,000 High School 5

28 M 15,800 Bachelor 3

28 M 17,000 Master 1

30 M 21,300 Master 2

30 F 9,500 High School 1

37 M 28,000 PhD 1

39 M 20,000 Bachelor 8

41 M 36,500 PhD 11

44 M 32,000 Master 15

46 F 15,000 High School 23

A Quantitative Association Rule (QAR), r, is an implication of the

form X ⇒ Y , where X and Y are itemsets, and attr (X) ∩ attr (Y ) = ∅.

X and Y are called the antecedent and the consequent of r, respectively.

We define the attribute set of r as attr (r) = attr (X) ∪ attr (Y ). The

support of r is defined as supp(X ∪ Y ). The confidence of r is defined as

conf(r) = supp(X∪Y )/supp(X), which is the conditional probability that

a transaction T supports Y , given that T supports X.

Problem Description. Given a database D, a minimum support thresh-

old σ (0 ≤ σ ≤ 1), and a minimum confidence threshold c (0 ≤ c ≤ 1), the

QAR mining problem is to find all the QARs with support and confidence

no less than σ and c, respectively.

Note that Boolean Association Rules (BARs) [2] are a special case of

QARs, where all the attributes are categorical attributes with boolean

values.

Example 1 Table 1 shows an employee database having ten transac-

tions. I = {age, gender, salary, education, service years}, among

which age, salary and service years are quantitative attributes. An
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example item is age[25, 30]. And age[25, 30]gender[M,M ] is a 2-itemset

with frequency 3 and with support 3/10 = 0.3. Given σ = 0.3 and c = 0.6,

age[25, 30] ⇒ gender[M,M ] is a QAR since supp(age[25, 30]gender[M,M ]) =

0.3 ≥ σ and conf (age[25, 30] ⇒ gender[M,M ]) =
supp(age[25, 30]gender[M, M])

supp(age[25, 30])
=

0.3
0.4 = 0.75 ≥ c. 2

3 Interaction Graph

In this section, we define an interaction graph to model the set of QARs

obtained by QAR mining. Given a QAR mining problem P, the interac-

tion graph is defined as an undirected graph GI = (VI , EI), where the set

of vertices VI = I, and the set of undirected edges EI = {(xi, xj) | ∃ r ∈

Rules(P) such that xi, xj ∈ attr(r)}. Herein, Rules(P) denotes the set

of all QARs in P. Thus, the interaction graph is a graph representation

of Rules(P).

According to the definition of GI , for every rule r in Rules(P), the

attribute set attr(r) corresponds to a clique (i.e., a complete subgraph) in

GI , since every pair of attributes in attr(r) defines an edge. Thus, given

GI , we can obtain the set of all frequent itemsets by finding all the cliques

in GI and verifying whether the support of the corresponding itemsets

satisfies the minimum support threshold. Then, we can restore all the

QARs based on the frequent itemsets.

The interaction graph represents the relationships between attributes

in a QAR mining problem. Thus, if we can obtain the interaction graph

prior to performing QAR mining, we can restrict the search space to a

much smaller one that encompasses all QARs. More specifically, by finding

the cliques in the interaction graph, we can derive the set of attributes

which is the attribute set of some QARs. Based on the attribute sets,

we further find the qualified interval sets to produce the QARs. We show

that most of the relationships of the attributes reflected in the interaction
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graph can be acquired by establishing a mutual information graph in the

next section.

4 The MIC Framework

In this section, we introduce a framework, called MIC, for mining QARs.

The MIC framework seamlessly incorporates the mutual information con-

cept from information theory [24] into the context of QAR mining. We

first give an overall description of the framework and then elaborate on

the techniques in each phase.

4.1 Overall Description

There are three main phases in the MIC framework, as shown in Figure

1.
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Fig. 1. Three Phases of the MIC Framework

– Phase I: Discretization. The domain of each quantitative attribute

is partitioned into a set of base intervals.

– Phase II: MI Graph Construction. Based on the discretized database

obtained in Phase I, we compute the normalized mutual information

of the attributes. Then, we construct a mutual information graph

GMI that represents the strong informative relationships between the

attributes.
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– Phase III: Clique Computation and QAR Generation. We

utilize the cliques in GMI to compute frequent itemsets and to guide

the generation of QARs.

Here, we briefly introduce Srikant and Agrawal’s Mining approach [25]

(denoted as SAM), which is the state-of-the-art QAR mining approach.

Later in experiments in Section 5, we compare the performance of our

MIC to that of SAM.

We can view the QAR mining problem at two conceptual levels: the

attribute level that consists of the attributes and the interval level that

consists of the corresponding intervals of the attributes. SAM directly op-

erates on the interval level throughout the entire mining process. In other

words, the pruning by the Apriori property is performed on the intervals

of the attributes. On the contrary, MIC performs pruning first at the at-

tribute level. Pruning at the attribute level results in substantial pruning

at the interval level and hence significant performance improvement, be-

cause once the attribute set is pruned, none of the intervals associated

with the attribute set is considered in the subsequent mining process.

However, pruning at the attribute level is a challenging problem since

pruning an attribute set mistakenly will miss all frequent itemsets and

QARs that are generated from the attribute set.

MIC applies the concept of mutual information to perform pruning at

the attribute level. Mutual information captures the informative relation-

ships between the attributes, which have an implication for the frequent

itemsets and the QARs. All pairs of attributes that do not have a strong

informative relationship are not chosen to form an itemset and conse-

quently all their intervals are also pruned. Meanwhile, MIC also performs

pruning at the interval level using the Apriori property as does SAM.

Thus, the search space of MIC is significantly smaller than that of SAM.

10



The pruning at the attribute level in MIC may miss some QARs in the

mining result. However, as evidenced by our experiments, MIC obtains

most of the QARs that are of high confidence and we also show that the

missing QARs are of very low interest [5], because the attributes in the

same QAR are informatively related to each other.

4.2 Phase I: Discretization

This phase is a preprocessing step in the mining process. The purpose

of discretization is to map a large number of distinct values of a quanti-

tative attribute to a smaller set of intervals to deal with the continuous

domain and to speed up the mining process. In this phase, the domain of

a quantitative attribute is partitioned into a set of n consecutive intervals,

called base intervals. The base intervals are then labeled with a set of con-

secutive integers, {1, 2, . . . , n}, such that the order of the base intervals

is preserved. During the mining process, each base interval is considered

as an indivisible unit, while consecutive base intervals may be combined

into larger intervals. We also map the values of a categorical attribute to

a set of consecutive integers. Thus, the raw values of the attributes are

transparent to the mining algorithm in subsequent phases.

The discretization phase is a common preprocessing method in the

QAR mining problem [25, 32, 28, 29]. If the domain knowledge for the

meaningful attribute intervals is available, the database can be prepared

according to the domain knowledge and then it passes through Phases II

and III of the MIC framework to mine the QARs. However, in most cases,

the domain knowledge is hard to obtain, which is the situation we consider

in this paper. While a detailed discussion of discretization is not the focus

of this paper, we remark that any discretization technique can be applied

in this phase of the MIC framework. Here, we limit our discussion to the

equidepth discretization technique used in SAM [25], which we compare
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with our approach. The equidepth discretization technique is proved to

minimize the information loss caused by discretization in [25]. Equidepth

partitions the domain of a quantitative attribute into n base intervals

so that the number of transactions in each base interval is roughly the

same. Note that the discretization is an information-lossy transformation;

therefore, the number of base intervals n is an important factor since it

determines the degree of information loss due to discretization. The larger

the n, the less the information loss but the higher the computational cost

to mine QARs. A smaller n results in more information loss. The following

example helps to illustrate the idea of equidepth discretization.

Table 2. Age

Base Interval Label

[23, 28] 1

[30, 39] 2

[41, 46] 3

Table 3. Gender

Value Label

M 1

F 2

Table 4. Salary

Base Interval Label

[9,500, 15,000] 1

[15,800, 20,000] 2

[21,300, 36,500] 3

Table 5. Education

Value Label

High School 1

Bachelor 2

Master 3

PhD 4

Table 6. Service Years

Base Interval Label

[1, 1] 1

[2, 8] 2

[11, 23] 3

Example 2 Given the employee database in Table 1 and using the

equidepth discretization method, the quantitative attributes, age, salary

and service years, are discretized into three base intervals, each with

3 or 4 (≈ 10/3) transactions. Tables 2-6 show the base intervals (or val-

ues) of the five attributes and their corresponding labels. The discretized

employee database is shown in Table 7. 2
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Table 7. The Discretized Employee Database

age gender salary education service years

1 2 1 1 2

1 1 2 2 2

1 1 2 3 1

2 1 3 3 2

2 2 1 1 1

2 1 3 4 1

2 1 2 2 2

3 1 3 4 3

3 1 3 3 3

3 2 1 1 3

4.3 Phase II: Mutual Information Graph Construction

In this section, we discuss in detail how we apply the concepts of entropy

and mutual information that originates from information theory [24] in

the context of QAR mining.

4.3.1 Entropy and Mutual Information

Notation. Let x and y be two random variables. Given vx ∈ dom(x) and

vy ∈ dom(y), we denote the probability parameters as follows:

- p(vx): the probability of x taking the value vx.

- p(vx, vy): the joint probability of x taking the value vx and y taking

the value vy.

- p(vy|vx): the conditional probability of y taking the value vy given

that x takes the value vx. It is defined as p(vy|vx) = p(vx, vy)/p(vx).

In the QAR mining context, p(vx) = supp(x[vx, vx]) , p(vx, vy) =

supp(x[vx, vx]y[vy, vy]) and p(vy|vx) = conf (x[vx, vx] ⇒ y[vy, vy]).
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Entropy. Entropy is a central notion in information theory [24], which

measures the uncertainty in a random variable. Entropy and mutual in-

formation are closely related and we use entropy to interpret many of

the fundamental properties of mutual information and to elaborate the

semantics of normalized mutual information. The entropy of a random

variable x, denoted as H(x), is defined as

H(x) = −
∑

vx∈dom(x)

p(vx) log p(vx). (1)

The conditional entropy of a random variable y given another variable

x, denoted as H(y|x), is defined as

H(y|x) = −
∑

vx∈dom(x)

∑

vy∈dom(y)

p(vx, vy) log p(vy|vx). (2)

Since probabilities are defined in the range of [0, 1], we have H(x) ≥ 0

and H(y|x) ≥ 0.

We use the following example to illustrate the application of entropy

in the context of QAR mining.

Example 3 Consider the discretized database in Table 7, H(gender) =

−p(1) · log(p(1)) − p(2) · log(p(2)) = −0.7 × log(0.7) − 0.3 × log(0.3) =

0.88. Similarly, we compute H(education) = 1.97. Thus, the attribute

education exhibits a greater degree of uncertainty than gender, since

H(education) > H(gender). Intuitively, we can say that we are more

certain about the value of a gender instance than that of an education

instance.

We can also compute H(gender|education) = 0, which indicates

that given education, there is no uncertainty in gender. This may not

be true in reality; however, in our designated database as shown in Table

1, given the education of an employee, we can determine his/her gen-

der. In contrast, we cannot determine education given gender since
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H(education|gender) = 1.09 > 0, although we are now more certain

about education as indicated by H(education|gender) < H(education).

2

Mutual Information. Mutual information describes how much informa-

tion one random variable tells about another one. The mutual information

of two random variables x and y, denoted as I(x; y), is defined as

I(x; y) =
∑

vx∈dom(x)

∑

vy∈dom(y)

p(vx, vy) log
p(vx, vy)

p(vx)p(vy)
. (3)

An important interpretation of mutual information comes from the

following property.

Property 1 I(x; y) = H(x) − H(x|y) = H(y) − H(y|x).

From Property 1, the information that y tells us about x is the reduc-

tion in uncertainty about x due to the knowledge of y, and similarly for

the information that x tells about y. The greater the value of I(x; y), the

more information x and y tell about each other.

Example 4 Consider the discretized database presented in Table 7. Ac-

cording to Equation (3), we have the expression I(gender; education) =
∑

vx∈{1,2}

∑
vy∈{1,2,3,4} p(vx, vy) log

p(vx, vy)
p(vx)p(vy)

= 0.88. By Example 3, we

verify I(gender; education) = H(gender) − H(gender|education) =

0.88 − 0 = 0.88. Since we know for certain the value of gender given

the value of education, the information that education tells us about

gender is just the information that gender itself carries. We can also ver-

ify that I(gender; education) = H(education)−H(education|gender) =

1.97 − 1.09 = 0.88, which shows that the knowledge of gender causes a

reduction of 1.09 in the uncertainty about education. 2

We first explore some properties of mutual information that are used

to develop a normalization for mutual information. Detailed proof of the

properties can be found in [8].
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Property 2 I(x; y) = I(y;x).

Property 2 suggests that mutual information is symmetric, which

means that the amount of information x tells about y is the same as

that y tells about x.

Property 3 I(x;x) = H(x).

Property 3 states that the mutual information of a random variable

x with itself is the entropy of x. Thus, the entropy is also called self-

information.

Property 4 I(x; y) ≥ 0.

Property 4 gives the lower bound for mutual information. When I(x; y) =

0, p(vx, vy) = p(vx)p(vy), which means that x and y are independent, that

is, x and y tell us nothing about each other.

Property 5 I(x; y) ≤ H(x) and I(x; y) ≤ H(y).

Property 5 gives the upper bound for mutual information.

4.3.2 Normalized Mutual Information

Let M be a measure used to evaluate the strongness of the relationship

between two attributes in a QAR mining problem. Given a predefined

threshold µ, if M ≥ µ, we say that the two attributes are strongly related

to each other; otherwise, we say that they are not strongly related. Ideally,

M is a measure being able to identify attributes that do not constitute

any significant QARs. Thus, we do not need to consider joining these

attributes to produce candidate frequent itemsets in the mining process.

Defining M as the mutual information between the attributes seems to

be an ideal approach because mutual information, by definition, naturally

measures the information that one attribute tells about another. For two

attributes appearing in the same QAR, the strongness of their relationship

is reflected by their mutual information.
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However, we find that there are two crucial problems in the application

of mutual information as such a measure of M. The first is in reference

to Property 5, I(x; y) ≤ min(H(x),H(y)), which means that the mutual

information of two attributes x and y is bounded by the minimum of their

entropy. Since the entropy of different attributes varies greatly in most

cases, the threshold µ cannot be determined globally so that it fits all

attributes. For example, if we set µ = 1 in Example 4, we will not join

gender with education since I(gender; education) = 0.88 < 1. How-

ever, 0.88 is the greatest mutual information between gender and any

other attributes, which is locally maximum. Therefore, it is very likely

that joining gender and education will produce some frequent itemsets.

But if µ is smaller, we may include some pairs of attributes that do not

constitute any significant QARs. They are included just because their mu-

tual information is globally large compared with that of other attributes,

even though locally their mutual information is relatively small.

Second, Property 4 states that the mutual information of two at-

tributes is a non-negative value, while a greater value indicates more in-

formation one attribute tells about the other. However, there is no unified

scale for the mutual information measure. Thus, the threshold µ cannot

intuitively reflect the amount of information that one attribute tells about

another. This is a problem since we cannot tell how strong the relationship

between the attributes is. For example, if we set the minimum confidence

threshold at 0.9, we know that the QARs obtained are of high quality.

However, if we set µ at 0.9, we do not know how much information the

number “0.9” amounts to unless it is mapped to a unified scale.

To tackle the above-mentioned problems, we propose a normalization

for mutual information.
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Definition 1 (Normalized Mutual Information) The normalized

mutual information of two attributes x and y, denoted as Ĩ(x; y), is de-

fined as

Ĩ(x; y) =
I(x; y)

I(x;x)
. (4)

Our idea is to normalize the mutual information between x and y

by the maximal value of mutual information between x and another at-

tribute, which is I(x;x) = H(x). As a result, we can get rid of the local-

ness and make the normalized mutual information a global measure. Now,

we present some useful properties of the normalized mutual information.

Property 6 Ĩ(x; y) 6= Ĩ(y;x) if I(x;x) 6= I(y; y).

Proof. From Definition 1, Ĩ(y;x) =
I(y;x)
I(y;y)

. It follows from Property 2 that

I(x; y) = I(y;x). Hence, if I(x;x) 6= I(y; y), then Ĩ(x; y) 6= Ĩ(y;x). 2

Property 6 shows that, unlike mutual information, normalized mutual

information is not symmetric.

Property 7 0 ≤ Ĩ(x; y) ≤ 1.

Proof. Since I(x;x) ≥ 0 and I(x; y) ≥ 0, Ĩ(x; y) ≥ 0. It follows by Prop-

erties 3 and 5 that Ĩ(x; y) ≤ 1. 2

This property ensures that the value of normalized mutual information

falls within the unit interval [0, 1].

Property 8 Ĩ(x; y) =
H(x) − H(x|y)

H(x)
.

Proof. By Properties 1 and 3, we have I(x; y) = H(x) − H(x|y) and

I(x;x) = H(x). It follows from Definition 1 that Ĩ(x; y) =
I(x; y)
I(x;x)

=

H(x) − H(x|y)
H(x)

. 2

Property 8 suggests the semantics of the normalized mutual informa-

tion between x and y, which is the percentage of reduction in uncertainty

about x due to the knowledge of y.
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Thus, normalized mutual information gives the threshold µ an intu-

itive meaning and makes it relatively independent of specific attributes.

Now the threshold µ indicates the minimum percentage of reduction in

uncertainty about an attribute due to the knowledge of another attribute.

We further illustrate this important point by the following example.

Example 5 In Example 4, when we say that the knowledge of gender

causes a reduction of 1.09 in the uncertainty about education, we have

little idea how much a reduction of 1.09 is. Now, we compute the normal-

ized mutual information Ĩ(education; gender) =
I(education; gender)

H(education)
=

0.88
1.97 = 0.45, which implies a reduction of 45%. Similarly, we can also

compute Ĩ(gender; education) =
I(gender; education)

H(gender)
= 0.88

0.88 = 1.00

and Ĩ(age; service years)=
I(age; service years)

H(age)
= 0.90

1.57 = 0.57.

We note that I(gender; education) < I(age; service years) but

Ĩ(gender; education) > Ĩ(age; service years). This means that the

percentage of uncertainty reduction of gender due to the knowledge of

education is higher than that of age due to the knowledge of service

years, although the mutual information of the former is smaller than

that of the latter. This shows the advantage of using normalized mutual

information.

We list the values of mutual information and normalized mutual in-

formation for all the attribute pairs in Table 8 to show clearly the change

in mutual information after normalization. 2

4.3.3 Mutual Information Graph Construction

Given a predefined minimum information threshold µ, we say that a

pair of attributes, xi and xj, have a strong informative relationship with

each other if Ĩ(xi;xj) ≥ µ.
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Table 8. The Mutual Information of Two Attributes Before and After Normalization

attribute x attribute y Mutual Information Normalized Mutual Information

age age 1.57 1.00

age gender 5.80 × 10−3 3.69 × 10−3

age salary 0.42 0.27

age education 0.22 0.14

age service years 0.90 0.57

gender age 5.80 × 10−3 6.58 × 10−3

gender gender 0.88 1.00

gender salary 0.88 1.00

gender education 0.88 1.00

gender service years 5.80 × 10−3 6.58 × 10−3

salary age 0.42 0.27

salary gender 0.88 0.56

salary salary 1.57 1.00

salary education 1.30 0.82

salary service years 0.22 0.14

education age 0.22 0.11

education gender 0.88 0.45

education salary 1.30 0.66

education education 1.97 1.00

education service years 0.42 0.21

service years age 0.90 0.57

service years gender 5.80 × 10−3 3.69 × 10−3

service years salary 0.22 0.14

service years education 0.42 0.27

service years service years 1.57 1.00

Given a QAR mining problem, we construct a Mutual Information

graph (MI graph), which is a directed graph, GMI = (VMI , EMI), where

the set of vertices VMI = I and the set of directed edges EMI = {(xi, xj) |
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Ĩ(xi;xj) ≥ µ}. Thus, the MI graph retains and represents the strong in-

formative relationships between the attributes in a QAR mining problem.

Example 6 Given the employee database in Table 7 and µ = 0.5, we

construct the corresponding GMI as shown in Figure 2(a). For exam-

ple, the attribute pair (age, service years) forms an edge because the

uncertainty of age is reduced by more than half (0.57 > µ) given the

knowledge of service years. In other words, if we know the value of

service years, we can infer the value of age with a higher accuracy. 2
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(b) ĜMI (Undirected Graph

from GMI)

Fig. 2. The Graphs GMI and ĜMI of Table 7

We provide the user with the flexibility to specify the threshold µ to

be a value in the range of [0, 1], according to the user’s requirement of

the strongness of the relationship between the attributes. One way to set

the value of µ, without any domain knowledge, is based on the density

of the MI graph. The graph density is defined as the number of edges in

the graph divided by the number of edges in the corresponding complete

graph. We first specify a graph density d for the MI graph. Then, we set µ

to be the normalized mutual information value that attains a density of d

for the MI graph. For example, consider the employee database in Table

7. Since there are five attributes, the corresponding complete graph has
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(5× 5− 5 = 20) edges. (Self-loops are not considered in the MI graph be-

cause the antecedent and the consequent of a QAR are disjoint.) We first

compute all the values of normalized mutual information between each

distinct pair of attributes as listed in Table 8. (Table 8 also lists the nor-

malized mutual information in the form of Ĩ(x;x) for clear illustration.)

We then sort these values in descending order. If we specify the density

d of the MI graph to be 20%, the derived MI graph has (20 × 20% = 4)

edges. Therefore, µ is set to be the fourth largest value of the normalized

mutual information in the sorted list.

4.4 Phase III: Clique Computation and QAR Generation

In this final phase of MIC, we find all the cliques in GMI and simultane-

ously compute the set of frequent itemsets based on the cliques. We then

generate the QARs from the frequent itemsets.

4.4.1 Clique Computation and Frequent Itemset Generation

Since there is no direction between the attributes in an itemset, we

ignore the direction of the edges in GMI and consider its corresponding

undirected graph ĜMI . Figure 2(b) shows the ĜMI that corresponds to

the GMI in Figure 2(a).

As we have discussed in Section 3, the attributes in a QAR (as well as

in a frequent itemset) form a clique in the interaction graph GI . Thus, a

clique in GI represents the set of attributes in a potential frequent item-

set. Since ĜMI is constructed to recover the edges in GI that represent

strong informative relationships, we can obtain most of the attribute sets

that potentially form frequent itemsets by finding all the cliques in ĜMI .

Essentially, we utilize ĜMI to do the pruning at the attribute level. Only

the attribute sets, which form a clique in ĜMI , are considered to generate
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frequent itemsets. Meanwhile, we also check the support condition of the

itemsets to make sure that they are frequent.

We compute all the cliques in ĜMI and generate frequent itemsets

using a prefix tree structure. Given ĜMI , we construct a prefix tree level

by level as follows.

First, a root node is created at Level 0. Then, we create a node for

each attribute as a child of the root at Level 1. Each node at Level 1 is

labeled with the corresponding attribute name and is attached with a set

of intervals whose support is no less than σ. Consecutive base intervals

are combined and also attached to the node as long as the support of the

combined intervals are no less than σ. However, the larger the range of

a combined interval, the less specific is the meaning of the interval. For

example, the interval [1,100] for the attribute age is trivial. To avoid

the occurrence of too general combined intervals, a maximum support

threshold σm [25] is specified as an upper bound of the support of a

combined interval. In this way, the intervals are combined as long as their

support is no greater than σm.

Algorithm 1 describes CliqueMine(u), which recursively computes all

the cliques containing the node u. The algorithm starts from each child

of the root of the prefix tree. In the algorithm, RightSibling(u) denotes

the set of right siblings of u and Child(u) denotes the set of children of u.

For each of u’s right sibling, v, we check whether there is an edge (u, v)

in ĜMI (Line 3). If the edge exists, we create a new node w that has the

same label as v and insert w into the tree as a child of u (Line 4). Note

that each node is attached with a set of frequent itemsets that have the

same attribute set but different value intervals. Thus, the attribute set

and the value intervals of u and v are joined to give the attribute set and

the value intervals of w (Line 5). If the support of an interval obtained

from the join is no less than σ, we attach it to w (Lines 6-8). After we
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have created all the children for u, we output the set of frequent itemsets

attached with u to release the memory (Line 9). Then, we call CliqueMine

recursively for each child of u, until the tree cannot be further expanded

(Lines 10-14).

Algorithm 1 CliqueMine(u)

1. if (|RightSibling(u)| > 0)

2. for each node v ∈ RightSibling(u) do

3. if ((u, v) ∈ ĜMI)

4. Add a new node w, with the same label as v, as u’s child;

5. Join the sets of frequent itemsets associated with u and v;

6. for each itemset, X, obtained from the join do

7. if (supp(X) ≥ σ)

8. Attach X to the node w;

9. Output the set of frequent itemsets associated with u;

10. if (|Child(u)| > 0)

11. for each node w ∈ Child(u) do

12. CliqueMine(w);

13. else

14. Output the set of frequent itemsets associated with u;

In the prefix tree constructed by Algorithm 1, each path from a child of

the root at Level 1 to a node at Level k represents a k-clique in ĜMI , where

a k-clique is a clique that consists of k nodes. We prove this observation

in the following lemma.

Lemma 1 Let u1 be a node at Level 1 in the prefix tree and uk a node

at Level k. A path from u1 to uk, 〈u1, . . . , uk〉, represents a k-clique in

ĜMI , where {u1, . . . , uk} is the set of nodes in the k-clique.

Proof. We prove the lemma by induction on k.
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(Basis.) When k = 1 and k = 2, it is trivial that u1 is a 1-clique and the

edge (u1, u2) forms a 2-clique.

(Induction.) Assume the lemma holds for 2 ≤ j ≤ k. Consider a path

Pk+1 = 〈u1, . . . , uk−1, uk, uk+1〉. By Algorithm 1, if Pk+1 exists, uk must

have a right sibling uk+1 and the edge (uk, uk+1) exists in ĜMI . By the in-

ductive hypothesis, Pk = 〈u1, . . . , uk−1, uk〉 and P ′
k = 〈u1, . . . , uk−1, uk+1〉

represent two k-cliques, which implies that ∀u ∈ {u1, . . . , uk−1} and

∀v ∈ {u1, . . . , uk−1, uk, uk+1}, (u, v) exists in ĜMI . Thus, adding the edge

(uk, uk+1) forms a (k + 1)-clique that consists of the same set of nodes,

{u1, . . . , uk−1, uk, uk+1}, as on the path Pk+1. 2

It then follows directly from Lemma 1 that the attribute set of each

node at Level k is represented by the k-path from the node at Level 1 to

that node at Level k in the prefix tree. Note that the reverse statement

of Lemma 1 is not true, that is each k-clique in ĜMI may not represent a

path 〈u1, . . . , uk〉 in the prefix tree. This is because due to the checking of

the support condition, some path in the prefix tree may not be constructed

if there is no frequent itemset produced for the corresponding attribute

set, even though there is a corresponding clique in ĜMI .

We use the following example to illustrate how the computation of

frequent itemsets can be guided by enumerating the cliques in ĜMI .

Example 7 Let σ = 0.3 and σm = 0.6. Figure 3 shows the prefix tree that

we construct from the ĜMI shown in Figure 2(b). Each solid rectangle

represents a node labeled with an attribute name, while each node in the

prefix tree except the root node is associated with a set of intervals, which

are the intervals of frequent itemsets. The intervals are shown in a dashed

rectangle attached to the node. In Figure 3, we only show the intervals

of three nodes for illustration and omit those of others for simplicity. It

can be easily verified that all the paths in the prefix tree represent the

cliques in ĜMI .
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Fig. 3. Prefix Tree for ĜMI in Figure 2(b)

We demonstrate the execution of Algorithm 1 on the subtree rooted

at the node gender, which is the second child of the root. We begin with

the first right sibling of gender, that is, the node salary. Since the edge

(gender, salary) exists in ĜMI , we create a new node labeled salary

and add it as the first child of gender.

Then, we join the set of intervals attached with gender and that at-

tached with salary. The set of intervals attached with gender is {([1,1]:

0.7), ([2,2]: 0.3)} and that attached with salary is {([1,1]: 0.3),

([1,2]: 0.6), ([2,2]: 0.3), ([3,3]: 0.4)}, where the number fol-

lowing colon symbol “:” is the support of the corresponding itemset.

Note that the intervals [1,1] and [2,2] of salary are combined to

produce the interval [1,2] because supp(salary[1, 2]) = 0.3 + 0.3 =

0.6 ≤ σm. The join of gender and salary produces five frequent 2-

itemsets. Since these five 2-itemsets have the same attribute set, {gender,

salary}, we attach their intervals, ([1,1][1,2]:3), ([1,1][2,2]:3),
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([1,1][3,3]:4), ([2,2][1,1]:3) and ([2,2][1,2]:3) with the child

node salary of gender. Similarly, we create the node education as

the second child of gender, with the set of intervals, {([1,1][3,3]:3),

([2,2][1,1]:3)}, that are obtained by joining the intervals of gender

and education.

We proceed to the next level and process the children of gender. Since

there is an edge between salary and its right sibling education in ĜMI ,

we create a new node labeled education as a child of salary. Note that

the path 〈gender, salary, education〉 represents the 3-clique {gender,

salary, education} in ĜMI . We then perform the join on the intervals of

salary and education at Level 2 and generate two frequent 3-itemsets.

In a similar way, we follow the clique enumeration process to generate

all other frequent itemsets. 2

By enumerating the cliques in ĜMI with a prefix tree structure, we

limit the search space of the frequent itemset computation to the prefix

tree representation of all cliques in ĜMI . Without using the normalized

mutual information concept, the search space is equivalent to a prefix tree

representation of a complete graph with all attributes as vertices. Thus,

the search space is drastically reduced.

It is known that the complexity of enumerating all cliques in a graph

is NP-complete [7]. However, we emphasize that utilizing the cliques in

ĜMI does not mean to solve the NP-complete problem. Instead, we seam-

lessly incorporate the clique enumeration into the computation of frequent

itemsets, such that the only extra processing incurred on the computation

of frequent itemsets is a test of whether an edge between a node and its

right sibling exists in ĜMI (as shown in Line 3 of Algorithm 1), which is

a trivial operation.

We adopt diffset [30] on the prefix tree, so that we only scan the

database twice: one for computing the frequent items, and another one
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for computing the initial diffsets (i.e., sets of transaction IDs). All other

frequent itemsets are then computed using the diffsets. We also remark

that the first scan of the database also computes the normalized mutual

information between the attributes.

4.4.2 QAR Generation

After the set of frequent itemsets is derived, we simply map each

frequent itemset into a boolean itemset. Then, the algorithm for BAR

generation in [3] can be trivially applied to generate the QARs.

4.5 Theoretical Bounds for QARs

In this section, we first study the theoretical bounds on the confidence of

QARs for a given frequent itemset and the minimum information thresh-

old. Then, we introduce the measure of interest as to further assess the

quality of QARs. We further provide the theoretical bounds on the inter-

est of QARs.

4.5.1 Theoretical Bounds for the Confidence of QARs

We formalize the connections between the normalized mutual infor-

mation, and the support and confidence of QARs. The significance of our

result is twofold. First, we guarantee that any pair of attributes pruned

by normalized mutual information cannot form a QAR with a confidence

greater than the derived bound. Second, we ensure that the attributes

retained in the MI graph generate QARs with confidence greater than

the given bound.

Given two attributes x and y, we let nx and ny denote the number of

distinct values of x and y, respectively.
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Theorem 1 Let x[vx, vx]y[vy, vy] be a frequent itemset. Then the confi-

dence conf (y[vy, vy] ⇒ x[vx, vx]) has

(a) an upper bound if Ĩ(x; y) < µ, and

(b) a lower bound if Ĩ(x; y) ≥ µ.

Proof. Without loss of generality, we assume that the itemset x[vx1
, vx1

]y[vy1
, vy1

]

is frequent.

In order to establish the result in Part(a), we show that if Ĩ(x; y) < µ,

conf (y[vy1
, vy1

] ⇒ x[vx1
, vx1

]) (i.e., p(vx1
|vy1

)) has an upper bound.

Since Ĩ(x; y) < µ, by Property 8, we have Ĩ(x; y) = (1 − H(x|y)
H(x) ) < µ,

and hence H(x|y)
H(x) > (1 − µ). We start by deriving an upper bound for

H(x|y)
H(x) .

H(x|y)

H(x)

=
−

∑nx

i=1

∑ny

j=1 p(vxi
, vyj

) · log p(vxi
|vyj

)

−
∑nx

i=1 p(vxi
) · log p(vxi

)

=
p(vx1

, vy1
) · log p(vx1

|vy1
) +

∑
i6=1&j 6=1 p(vxi

, vyj
) · log

p(vxi
,vyj

)

p(vyj
)

p(vx1
) · log p(vx1

) +
∑

i6=1 p(vxi
) · log p(vxi

)

≤
p(vx1

, vy1
) · log p(vx1

|vy1
) + (1 − p(vx1

, vy1
)) · log

1−p(vx1
,vy1

)

nx−p(vy1
)

p(vx1
) · log p(vx1

) +
∑

i6=1 p(vxi
) · log p(vxi

)
(5)

≤
p(vx1

, vy1
) · log p(vx1

|vy1
) + (1 − p(vx1

, vy1
)) · log

1−p(vx1
,vy1

)

nx−p(vy1
)

p(vx1
) · log p(vx1

) + (1 − p(vx1
)) · log(1 − p(vx1

))
. (6)

Equation (5) is the application of the log sum inequality for the second

term in the numerator, leading to the inequality of
∑

i6=1&j 6=1(p(vxi
, vyj

) ·

log
p(vxi

,vyj
)

p(vyj
) ) ≥ (

∑
i6=1&j 6=1 p(vxi

, vyj
))·log

P
i6=1&j 6=1

p(vxi
,vyj

)P
i6=1

p(vy1
)+
Pnx

i=1

Pny
j=2

p(vyj
)
. Equa-

tion (6) holds because in the denominator, we have p(vxi
) ≤ (1 − p(vx1

))

whenever i 6= 1.
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Since x[vx1
, vx1

]y[vy1
, vy1

] is frequent, we have σ ≤ p(vx1
, vy1

) ≤ σm

and σ ≤ p(vx1
) ≤ σm. Thus, it follows that:

H(x|y)

H(x)
≤

σm · log p(vx1
|vy1

) + (1 − σ) · log 1−σm

nx−σ

σ · log σm + (1 − σm) · log(1 − σ)
.

Finally, since we have H(x|y)
H(x) > (1 − µ), it follows that:

(1 − µ) <
σm · log p(vx1

|vy1
) + (1 − σ) · log 1−σm

nx−σ

σ · log σm + (1 − σm) · log(1 − σ)
.

So, we have the following upper bound for conf (y[vy1
, vy1

] ⇒ x[vx1
, vx1

]):

p(vx1
|vy1

) < ((σσ
m · (1 − σ)1−σm)1−µ · (

nx − σ

1 − σm
)1−σ)

1

σm .

If we allow a looser upper bound, the above expression can be further

simplified as follows:

p(vx1
|vy1

) < σσ(1−µ)
m · (

nx

1 − σm
).

In order to prove Part(b) we show that if Ĩ(x; y) ≥ µ, conf (y[vy1
, vy1

] ⇒

x[vx1
, vx1

]) (i.e., p(vx1
|vy1

)) has a lower bound.

Similar to the proof in Part(a), we first derive a lower bound for H(x|y)
H(x) .

H(x|y)

H(x)

=
p(vx1

, vy1
) · log p(vx1

|vy1
) +

∑
i6=1&j 6=1 p(vxi

, vyj
) · log

p(vxi
,vyj

)

p(vyj
)

p(vx1
) · log p(vx1

) +
∑

i6=1 p(vxi
) · log p(vxi

)

≥
p(vx1

, vy1
) · log p(vx1

|vy1
)

p(vx1
) · log p(vx1

) + (1 − p(vx1
)) · log

1−p(vx1
)

nx−1

(7)

≥
σ · log p(vx1

|vy1
)

σm · log σ + (1 − σ) · log 1−σm

nx−1

.
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Equation (7) holds, since we apply the log sum inequality for the

second term in the denominator, which is similar to Part(a). The second

term in the numerator is negative because the conditional probability falls

within the range [0,1].

Finally, since Ĩ(x; y) = (1 − H(x|y)
H(x) ) ≥ µ, so H(x|y)

H(x) ≤ (1 − µ), that is,

(1 − µ) ≥
σ · log p(vx1

|vy1
)

σm · log σ + (1 − σ) · log 1−σm

nx−1

.

Therefore, we have the following lower bound for conf (y[vy1
, vy1

] ⇒

x[vx1
, vx1

]):

p(vx1
|vy1

) ≥ (σσm · (
1 − σm

nx − 1
)1−σ)

1−µ
σ .

If we allow a looser lower bound, the above expression can be further

simplified as follows:

p(vx1
|vy1

) ≥ (σ · (
1 − σm

nx
))

1−µ
σ .

2

The following corollary shows that Theorem 1 can be generalized to

the itemsets with intervals instead of single values.

Corollary 1 Let x[lx, ux]y[ly, uy] be a frequent itemset. Then the confi-

dence conf (y[ly, uy] ⇒ x[lx, ux]) has an upper bound if Ĩ(x; y) < µ, and

has a lower bound if Ĩ(x; y) ≥ µ.

Proof. It directly follows from Theorem 1, since the derived equations are

based on probabilities. Once Ĩ(x; y) refers to the one with respect to the

intervals of frequent itemsets, we can simply sum up the probabilities of

the composite values of a given interval to obtain the same bounds. 2

The next corollary shows that Theorem 1 can also be generalized to

the QARs.
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Corollary 2 If conf (y[ly, uy] ⇒ x[lx, ux]) < c, then for any rule (y[ly, uy] ⇒

x[lx, ux]Z), where Z is an itemset, we have conf (y[ly, uy] ⇒ x[lx, ux]Z) <

c.

Proof. By the definition of the confidence of a rule, we have the following

expression:

conf (y[ly, uy] ⇒ x[lx, ux]Z) =
supp(x[lx, ux]y[ly, uy]Z)

supp(y[ly, uy])

≤
supp(x[lx, ux]y[ly, uy])

supp(y[ly, uy])

= conf (y[ly, uy] ⇒ x[lx, ux])

< c.

2

Corollary 2 is important, since it shows that if the confidence of a rule

has an upper bound, the confidence of all the rules formed by augmenting

more items in the consequent of the rule also have the the same upper

bound. Therefore, the upper bound derived in the proof of Theorem 1

is not limited to the rule having one single item in both antecedent and

consequent, but also generally holds for the rules that have more items

in the consequent.

4.5.2 Theoretical Bounds for the Interest of QARs

To formally assess the quality of the mined QARs, we employ another

well-established measure for association rules, called interest [5]. The in-

terest of a rule, X ⇒ Y , is the statistical definition of dependence of X

and Y , given as follows:

interest(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)supp(Y )
.

The range of the interest of an association rule is from 0 to ∞. Interest

values above 1 indicate positive dependence, while values below 1 indicate
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negative dependence. An interest value of 1 implies that X and Y are

independent, while the further the value is from 1, the greater is the

positive or negative dependence between X and Y .

Similar to the results of Section 4.5.1, we formalize the connections

between the normalized mutual information, and the support and interest

of QARs.

Theorem 2 Let x[vx, vx]y[vy, vy] be a frequent itemset. Then, the inter-

est, interest(y[vy, vy] ⇒ x[vx, vx]), has

(a) an upper bound if Ĩ(x; y) < µ, and

(b) a lower bound if Ĩ(x; y) ≥ µ.

Proof. To establish the result of Part (a), we refer to the proof of Theorem

1. By Equation (6), we have:

H(x|y)

H(x)

≤
p(vx1

, vy1
) · (log

p(vx1
|vy1

)

p(vx1
) + log p(vx1

)) + (1 − p(vx1
, vy1

)) · log
1−p(vx1

,vy1
)

nx−p(vy1
)

p(vx1
) · log p(vx1

) + (1 − p(vx1
)) · log(1 − p(vx1

))
.

Therefore, it follows that:

(1 − µ) <
σm · log

p(vx1
,vy1

)

p(vx1
)p(vy1

) + σm · log σ + (1 − σ) · log 1−σm

nx−σ

σ · log σm + (1 − σm) · log(1 − σ)
.

So, we have the following upper bound for interest(y[vy1
, vy1

] ⇒ x[vx1
, vx1

]):

p(vx1
, vy1

)

p(vx1
)p(vy1

)
<

1

σ
· ((σσ

m · (1 − σ)1−σm)1−µ · (
nx − σ

1 − σm
)1−σ)

1

σm .

If we allow a looser upper bound, the above expression can be further

simplified as follows:

p(vx1
, vy1

)

p(vx1
)p(vy1

)
< σσ(1−µ)

m · (
nx

σ(1 − σm)
). (8)
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Similarly, in order to prove Part (b), by Equation (7), we have

H(x|y)

H(x)

≥
p(vx1

, vy1
) · (log

p(vx1
|vy1

)

p(vx1
) + log p(vx1

))

p(vx1
) · log p(vx1

) + (1 − p(vx1
)) · log

1−p(vx1
)

nx−1

.

Therefore, it follows that,

(1 − µ) ≥
σ · log

p(vx1
,vy1

)

p(vx1
)p(vy1

) + σ · log σm

σm · log σ + (1 − σ) · log 1−σm

nx−1

.

So we have the following lower bound for interest(y[vy1
, vy1

] ⇒ x[vx1
, vx1

]):

p(vx1
, vy1

)

p(vx1
)p(vy1

)
≥

1

σm
· (σσm · (

1 − σm

nx − 1
)1−σ)

1−µ
σ .

If we allow a looser lower bound, the above expression can be further

simplified as follows:

p(vx1
, vy1

)

p(vx1
)p(vy1

)
≥

1

σm
· (σ · (

1 − σm

nx
))

1−µ
σ .

2

The results in Theorem 2 can be further generalized to itemsets with

intervals, as shown in the following corollary. We skip the proof since it

is similar to that of Corollary 1.

Corollary 3 Let x[lx, ux]y[ly, uy] be a frequent itemset. Then, the inter-

est, interest(y[ly, uy] ⇒ x[lx, ux]), has an upper bound if Ĩ(x; y) < µ, and

has a lower bound if Ĩ(x; y) ≥ µ.

The following corollary describes the connection between the confi-

dence and the interest of a QAR.

Corollary 4 Let x[lx, ux]y[ly, uy] be a frequent itemset. If conf (y[ly, uy] ⇒

x[lx, ux]) ≥ c, then interest(y[ly, uy] ⇒ x[lx, ux]) ≥ c
σm

.

34



Proof. By the definition of the interest of a rule, we have the following

expressions:

interest(y[ly, uy] ⇒ x[lx, ux]) =
supp(x[lx, ux]y[ly, uy])

supp(y[ly, uy]) · supp(x[lx, ux])

=
conf (y[ly, uy] ⇒ x[lx, ux])

supp(x[lx, ux])

≥
c

σm
.

2

Corollary 4 shows that, if the confidence of a rule has a lower bound,

the interest of a rule also has a lower bound that is related to the bound of

confidence. Because of this connection, we can simply specify a confidence

threshold for mining QARs, while we still have guarantee on the interest

of QARs. However, since the range of interest is different from that of

confidence, we still have to study the interest measure in order to assess

the quality of QARs, as what we are going to show in Section 5.

4.6 Discussions on the Interestingness of Missing QARs

A QAR is an implication on a local set of transactions that satisfy the

antecedent of the rule. The NMI measure, however, computes the de-

pendency relationship between two attributes on the whole set of trans-

actions and takes into account all values in the attribute domain. As a

result, the NMI pruning may eliminate some QARs that are interesting

locally within a small set of transactions (i.e., the QARs have low support

values). This problem can also be seen from Equation (8) in Theorem 2:

when σ decreases, the upper bound of the interest of the missing QARs

increases.

A possible solution to this problem is to allow the user to specify a

maximum interest threshold θ (θ > 0) for the missing QARs that he/she

can tolerate. Then, according to Equation (8), we can derive a lower
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bound for the value of µ as follows:

µ ≥ 1 −
log(θ · σ(1 − σm)) − log nx

σ log σm
.

The above bound provides a useful reference for setting µ in terms of

σ, σm and θ. In this way, we can avoid missing the QARs with interest

higher than θ by setting a suitable µ.

5 Experimental Evaluation

We evaluate the performance of our MIC framework on both synthetic

and real datasets. We use SAM [25] as the baseline for comparison on

the efficiency of the algorithms and quality of the mined QARs. Recall

that MIC operates on an MI graph that captures the strong informative

relationships between the attributes, while SAM operates on the complete

graph that assumes all attributes have a strong informative relationship

with each other. In order to make a fair comparison, we test SAM by

inputting a complete graph into our program, so that the performance

improvement is indeed only due to the pruning as a result of using the

MI graph. Thus, the SAM used in our experiment is not the Apriori-like

algorithm proposed in [25], but a more efficient prefix-tree implementa-

tion using diffset [30]. Since SAM uses the equidepth discretization with

the number of base intervals n calculated by an equation to minimize

the information loss, we also apply the same discretization in MIC. The

equation is given by n = 2×m
σ×(K−1) , where m is the number of quantitative

attributes and K is the partial completeness level. We choose K = 1.5

in the experiments as suggested in SAM. After generating all the fre-

quent itemsets, we apply the rule generation algorithm in [3] to obtain

the QARs. All the experiments are run on an XP machine with a 3.0 GHz

Intel P4 and 2 GB RAM.
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5.1 The Interest Measure

Since we perform pruning at the attribute level of the QAR mining prob-

lem, the set of frequent itemsets produced by MIC is a subset of that

produced by SAM. Consequently, the set of QARs generated by MIC is

also a subset of that generated by SAM. However, we emphasize that

our method is not an approximation technique that improves the effi-

ciency at the expense of accuracy. Instead, we show that MIC not only

significantly outperforms SAM, but the rules we obtain are also of higher

quality than that obtained by SAM, as measured using interest [5], which

is a well-established measure for the interestingness of an association rule.

In particular, we show that the missing QARs, i.e., QARs that are

missed by MIC but returned by SAM, are rules whose attributes are of

low dependency on each other. For example, consider two boolean at-

tributes x and y, supp(x[1, 1]y[1, 1]) = 0.81, supp(x[1, 1]y[0, 0]) = 0.09,

supp(x[0, 0]y[1, 1]) = 0.09, and supp(x[0, 0]y[0, 0]) = 0.01. Although the

rules x[1, 1] ⇒ y[1, 1] and y[1, 1] ⇒ x[1, 1] have a high confidence of 0.9,

x and y are independent of each other since supp(x, y)=supp(x) · supp(y)

for all possible values of x and y. Clearly, the two rules are of little sig-

nificance. They are derived simply because the occurrences of x[1, 1] and

y[1, 1] are prevalent in the database (each of them occurs in 90% of the

transactions). Thus, it just happens to be the case that whenever we

have x[1, 1], we are likely to have y[1, 1] as well. Such rules are not gener-

ated by MIC, because these attributes have very low normalized mutual

information and are hence excluded from the MI graph.

In our experiments, we first use support and confidence to obtain

the high-confidence QARs. Then, we compute the mean and variance

of the interest of the missing QARs. The maximum interest of missing

QARs is also presented. We justify that most of the missing QARs are of

low interest. To unify the scale of the positive dependent interest values
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((1,∞]) and negative ones ([0, 1)), we convert the negative dependent

interest values into their inverse when computing their mean, variance

and maximum.

5.2 Datasets and Parameters

In this section, we introduce the datasets and the parameters we are going

to study in the subsequent subsections.

We use both synthetic and real datasets to justify the effectiveness and

efficiency of MIC. The synthetic datasets are generated by the IBM Quest

Synthetic Data Generator [12]. We modify their code to generate three

extra boolean attributes, using Functions 1-3 described in [1]. Thus, each

dataset has six quantitative and six categorical attributes. We generate

five datasets of sizes from 100K to 1,000K transactions as a scalability test

for MIC. The four real datasets we test are chosen from the commonly

used UCI machine learning repository [11]. Table 9 lists the name, the

number of transactions and the number of attributes of all the datasets.

The number of quantitative attributes of each dataset is given in the

brackets.

Table 9. Dataset Description

Dataset Number of Transactions Number of all Attributes (Quantitative Attributes)

synthetic 100,000 - 1,000,000 12(6)

covtype 581,012 55(10)

letter-recognition 20,000 17(16)

ann-thyroid 7,200 22(6)

yeast 1,484 9(8)

In the following subsection, we first study the effect of µ in the MIC

framework. Meanwhile, we also demonstrate the scalability of MIC by
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varying the size of synthetic datasets. Then, we study the effect of mini-

mum support threshold σ on real datasets.

5.3 Experimental Results

5.3.1 Experiments on Synthetic Datasets

We set σ = 0.1 and σm = 0.13. We test three values of µ by ensuring

the density of the MI graph at 20%, 15% and 10%, respectively. For

each dataset, we generate four sets of QARs, at the minimum confidence

threshold c = 0.7, c = 0.8, c = 0.9 and c = 1, respectively.

Figure 4(a) shows the running time for generating the frequent item-

sets. For all the three values of µ, MIC runs significantly faster than

SAM. While the running time of SAM increases linearly when the size of

the dataset increases, the running time of MIC remains relatively stable.

When the density of the MI graph decreases from 20% to 10% (i.e. the

value of µ increases), the running time of MIC decreases only slightly.

The decrease in the running time is because the size of the MI graph

is smaller for larger µ and hence the search space pruned is also larger.

However, the decrease in running time is small because the difference in

the MI graphs of the three respective µ is small. More specifically, the MI

graph computed on the dataset with size of 1,000k at density 15% only

has three more edges than that at density 10%. These three edges consist

of at least one categorical attribute which has only two distinct values.

Thus, the number of itemsets that are produced from these three edges

is also small.

Figure 4(b) shows the ratio of the number of QARs obtained by MIC

at density 15% to that obtained by SAM. On average, MIC obtains 80%

of QARs that have a confidence over 0.7, while it obtains almost all QARs

that have a confidence of 1. Most importantly, we show in Figures 4(c-d)
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Fig. 4. Performance on Synthetic Datasets

that the mean of the interest of the missing QARs is approximately 1 in

all cases, with a very small variance of less than 0.001. Figure 4(e) further

shows that the maximum interest of any missing QARs is averagely 1.2,
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which is very close to 1. This result implies that the attributes composing

a missing QAR are independent to each other.

5.3.2 Experiments on Real Datasets

We test real datasets by varying σ from 0.1 to 0.3. When discretizing

the datasets, the number of base intervals n is given by the equation

2×m
σ×(K−1) , which is inverse proportional to σ. Therefore, when σ increases

from 0.1 to 0.3, the number of base intervals decreases accordingly. We

set σm at 0.03, 0.3, 0.03, and 0.1 higher than the respective σ for covtype,

letter-recognition, ann-thyroid, and yeast, respectively. The above values

of σm are the maximum values of σm at which SAM does not run out of

memory. We test three values of µ by ensuring the density of the MI graph

at 20%, 15% and 10%, respectively. The values of µ vary for different

datasets and are shown in Table 10. We generate QARs at c = 0.7,

c = 0.8, c = 0.9 and c = 1, respectively.

Table 10. Values of µ for Real Datasets

Dataset MIC-20% MIC-15% MIC-10%

covtype 0.0845636 0.140902 0.2064044

letter-recognition 0.104507 0.151669 0.182439

ann-thyroid 0.0833698 0.1241558 0.1765774

yeast 0.251732 0.268517 0.279695

Figure 5(a) shows that MIC computes the frequent itemsets approx-

imately two orders of magnitude faster than does SAM on the covtype

dataset when the graph density is lower than 15%. When the graph den-

sity is 20%, MIC becomes slower but still significantly outperforms SAM.

The dramatic improvement is because many of the quantitative attributes

of this dataset have a large domain. MIC is able to remove the edges be-
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Fig. 5. Performance on covtype Dataset

tween those attributes that do not have a strong informative relationship,

thereby drastically reducing the number of intervals to be combined. We

also show in Figure 5(b) that only in the case when σ = 0.1, MIC misses

a very small number of QARs of confidence above 0.7 and 0.8, respec-

tively. In all other cases, MIC obtains exactly the same set of QARs as

does SAM. We thus omit the figures for the interest measures due to the

negligible number of missing QARs.

We notice an unexpected, slight increase in the running time of MIC

when σ becomes larger in Figure 5(a), when the graph density is 15% and

10%. This is because in QAR mining, the number of frequent itemsets

is also determined by σm, since a greater σm implies that more intervals

can be combined to generate more frequent itemsets. Thus, the number

of itemsets generated at σ = 0.1 and σm = 0.13 can be smaller than that

generated at σ = 0.15 and σm = 0.18, as is with this dataset. Therefore,

the time spent on processing frequent itemsets at σ = 0.1 and σm = 0.13

can be less than that at σ = 0.15 and σm = 0.18. Without using the

MI graph, most of the time is spent on joining the unpromising intervals

and the smaller the σ, the more the time used. However, the MI graph of

covtype at density lower than 15% almost prunes all irrelevant search space
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and thus the time spent on joining the unpromising intervals becomes

insignificant. As for the graph density of 20%, the MI graph still consists

of some edges that involve attributes with weak relationship. Thus, the

running time of MIC at the density of 20% still follows the trend of that

of SAM. This result again verifies that the MI graph can indeed capture

the strong informative relationships between the attributes.

Figure 5(a) also reports the effect of the number of base intervals on

the performance of MIC and SAM. When the number of base intervals

increases, i.e., σ decreases, the running time of SAM increases rapidly,

while the running time of MIC remains relatively stable at all values of

µ. This is because larger number of base intervals aggravates the problem

of combinatorial explosions of attribute intervals. Without pruning the

irrelevant search space, the performance of SAM is severely degraded

by the increase in the number of base intervals. On the contrary, the

performance of MIC is almost not affected by the increase in the number

of base intervals since the generation of unpromising itemsets is avoided

by the effective pruning.
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Fig. 6. Performance on letter-recognition Dataset
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Figure 6(a) shows that MIC is on average six times faster than SAM on

the letter-recognition dataset when computing the frequent itemsets. All

the quantitative attributes in this dataset have a small domain (16 values).

Therefore, no matter what value of σ is used for the discritization, the

number of base intervals is the same as the size of the domain for all values

of σ. Hence, with the increase in σ, the running time of both algorithms

is not affected by the number of base intervals but majorally by σm. This

explains the abnormal trend of SAM in Figure 6(a). The value of σm has

little influence on MIC due to the effective pruning of attributes with low

mutual dependency. Figure 6(b) shows that the set of QARs obtained

by MIC is over 90% of that obtained by SAM, except when σ = 0.25,

the percentage is slightly lower. This is because the number of QARs at

σ = 0.25 is the smallest among all values of σ. We omit the figures for

the interest measures since the number of missing rules is small.

Figure 7(a) shows the running time of MIC and SAM on the ann-

thyroid dataset. MIC computes the frequent itemsets up to three orders

of magnitude faster than SAM. We are not able to obtain the results of

SAM and MIC-20% at σ = 0.1 since they run out of memory due to the

large number of base intervals.

Figure 7(b) shows that the set of QARs obtained by MIC is less than

1% of that obtained by SAM. This result is because SAM generates a

prohibitively large number of QARs (up to 1 billion and consumes over

50GB of space). By capturing the strong informative relationships of at-

tributes, MIC produces a reasonable number of interesting QARs (about

60K). Moreover, Figures 7(c-e) show that the missing QARs are indeed

uninteresting, since the mean and the maximum interest are almost 1 and

the variance of the interest is 0 in all cases.

Figure 8(a) shows the running time of MIC and SAM on the yeast

dataset. On average, MIC computes the frequent itemsets four times
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Fig. 7. Performance on ann-thyroid Dataset

faster than SAM. The improvement is not as significant as that on other

datasets because the dataset is very small (only 1,484 transactions). The

MI graph of a small dataset does not reflect the relationships between
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Fig. 8. Performance on yeast Dataset

the attributes as good as does the MI graph of a large dataset, because

larger datasets are statistically more stable.
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Figure 8(b) shows that the set of QARs obtained by MIC at the den-

sity of 15% is only about 20-50% of that obtained by SAM. However,

Figures 8(c-d) show that the mean and variance of the interest of the

missing QARs are 1 and 0 in all cases. Figure 8(e) shows that the maxi-

mum interest of the missing QARs is 1 in all cases, except when σ = 0.1,

MIC misses four QARs with interest around 4.6. Thus, the results once

again show that the QARs missed by MIC are of low interest.

5.4 Summary of Experiments

Since MIC outperforms SAM in all the experiments, we conclude that

utilizing normalized mutual information indeed enables us to effectively

reduce the number of attributes to be joined and hence the number of

intervals to be joined between attributes. Although the results reveal

that the improvement of MIC for small datasets is not as significant as

that for large datasets, for most QAR mining problems in practice, the

datasets are large and their attributes have a large domain. MIC achieves

remarkable performance on such datasets, as verified by the experiments

on the large synthetic datasets and on the large real dataset covtype.

Another important finding is that the QARs returned by SAM but

missed by MIC mostly have an interest value of 1, i.e., the attributes

composing the missing QARs are independent on each other. Thus, in

addition to the improvement in efficiency, the set of QARs mined by MIC

is also of higher quality than that mined by SAM.

6 Related Work

QAR mining is first studied by Piatetshy-Shapiro [20] but the QARs

are restricted to a single attribute in both the antecedent and the conse-

quent of a QAR. Srikant and Agrawal [25] generalize the work by allowing
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multiple attributes in both the antecedent and the consequent. We are

also aware of mining four variants of association rules in quantitative

databases.

The first one is optimized association rule mining [9, 21, 6, 17, 18, 14,

23], which contains certain uninstantiated attributes and the mining prob-

lem is to determine values for the uninstantiated attributes such that

one measure (e.g., support, confidence or gain) is maximized and an-

other measure satisfies a predefined threshold. Inspired by the problem

of image segmentation in computer vision, Fukuda et al. [9] propose a

geometric method to compute the optimized region for association rules.

However, the rules they produce are limited to having two quantitative

attributes. Later, the work [21, 6] generalizes the study in [9] by allow-

ing disjunctions over an arbitrary number of uninstantiated attributes.

Another novel approach is proposed to use genetic algorithms to mine

optimized association rules. Mata et al. [17, 18] use a genetic algorithm

to optimize the support of an interval for a quantitative attribute. How-

ever, their approach does not guarantee to produce high confidence rules.

Kaya and Alhajj [14] categorize the rules into partial optimized rules

and complete optimized rules. A multi-objective genetic algorithm based

method is proposed to achieve both types of optimizations. Recently,

Salleb-Aouissi et al. [23] develop a system based on a genetic algorithm

to achieve optimizing both the support and confidence of a rule. Mining

optimal association rules tackles a different problem from ours. It focuses

on finding the optimal values of certain given attributes instead of mining

general QARs without any constraint on the attributes.

The second type is based on statistics [4, 29, 31], in which the con-

sequent of a rule is a statistical measure (e.g., mean, variance) or an

aggregate (e.g., min, max) of a quantitative attribute. This type of rule

is mainly used to provide a statistical view of the attributes, rather than
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giving the interval information of the attributes, which is more detailed

and intuitive.

The third type proposes a new representation of QARs based on half-

spaces [22]. The antecedent and the consequent of a rule are a weighted

sum of the attributes tested against a threshold. As a result, this type of

rule is very complex and more suitable to scientific analyses.

The fourth type is privacy-preserving QARs [33, 13] proposed recently.

The problem is to mine QARs without revealing the private information

of parties who share distributed data. Therefore, the mining algorithm

mainly focuses on secure computation instead of the efficiency.

We are also aware of different applications of normalized mutual in-

formation in literature. The first one is used for data clustering [26], in

which the normalized mutual information of two attributes x and y is de-

fined as 2·I(x;y)
maxA∈{1,...,k}(H(A))+maxB∈{1,...,g}(H(B)) , where A represents possible

cluster labels and B represents possible category labels. Normalized mu-

tual information is also found in the area of image processing [27], where

it is defined as H(x)+H(y)
H(x, y) . In our recent work [16], we define normalized

mutual information as I(x;y)
MAX{I(x;x),I(y;y)} for mining quantitative corre-

lated patterns. This definition is symmetric, since a correlated pattern

requires all attributes in the pattern be strongly correlated, while nor-

malized mutual information in this paper is directional because a QAR is

an implication of the antecedent on the consequent. We emphasize that

the work in this paper and the work in [16] are complementary to each

other, since correlated patterns are in fact originally proposed as a com-

plement to association rules. While the focus in [16] is to mine patterns

with strongly correlated items, the contribution of this paper is to obtain

the implication of one quantitative pattern on the high probability of the

occurrence of another pattern, which is different from the scope of [16].
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7 Conclusions

In this paper, we present an MIC framework that adopts an information-

theoretic approach to mine QARs. We propose the concept of normalized

mutual information and then apply it to discover the informative rela-

tionships between the attributes in a QAR mining problem. Based on

normalized mutual information, we construct an MI graph that captures

the strong informative relationships between the attributes. By defining

an interaction graph that reflects the true relationships between the at-

tributes in QARs, we find that the cliques in the MI graph correspond

to the potential frequent itemsets in the mining problem. We incorpo-

rate the enumeration of the cliques seamlessly into the computation of

frequent itemsets. The clique enumeration limits the mining process to a

smaller but more relevant search space, thereby significantly improving

the mining efficiency. Our experimental results show that MIC speeds up

the mining process for up to orders of magnitudes. More importantly,

MIC obtains most of the high-confidence QARs, while the QARs that are

not returned by MIC are shown to be of little significance based on the

interest measure.

As an on-going work, we consider to incorporate the concept of near-

clique, which is a clique except for one edge, for computing frequent item-

sets into our framework. This may help tolerate the noise in forming a

clique in the MI graph. Other measures of inter-dependence [10] in the

context of QAR mining also deserve attention as a future work.
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