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Abstract. Vague information is common in many database applications due to
internet-scale data dissemination, such as those data arising from sensor networks
and mobile communications. We have formalized the notion of a vague relation
in order to model vague data in our previous work. In this paper, we utilize Func-
tional Dependencies (FDs), which are the most fundamental integrity constraints
that arise in practice in relational databases, to maintain the consistency of a vague
relation. The problem we tackle is, given a vague relation r over a schema R and
a set of FDs F over R, what is the “best” approximation of r with respect to
F when taking into account of the median membership (m) and the imprecision
membership (i) thresholds. Using these two thresholds of a vague set, we define
the notion of mi-overlap between vague sets and a merge operation on r. Satis-
faction of an FD in r is defined in terms of values being mi-overlapping. We show
that Lien’s and Atzeni’s axiom system is sound and complete for FDs being satis-
fied in vague relations. We study the chase procedure for a vague relation r over
R, named VChase(r, F ), as a means to maintain consistency of r with respect to
F . Our main result is that the output of the procedure is the most object-precise
approximation of r with respect to F . The complexity of VChase(r, F ) is poly-
nomial time in the sizes of r and F .

1 Introduction

Fuzzy set theory has long been introduced to handle inexact and imprecise data by
Zadeh’s seminal paper in [1]. In fuzzy set theory, each object u ∈ U is assigned a
single real value, called the grade of membership, between zero and one. (Here U is
a classical set of objects, called the universe of discourse.) In [2], Gau et al. point out
that the drawback of using the single membership value in fuzzy set theory is that the
evidence for u ∈ U and the evidence against u ∈ U are in fact mixed together. In
order to tackle this problem, Gau et al. propose the notion of Vague Sets (VSs), which
allow using interval-based membership instead of using point-based membership as
in FSs. We have shown in our previous work [3] that the interval-based membership
generalization in VSs is more expressive in capturing vague data semantics.

In a vague relation, each object with a vague membership belongs to a VS. A vague
membership (also called a vague value) is a subinterval [α(u), 1− β(u)] of the unit in-
terval [0,1], where 0 ≤ α(u) ≤ 1−β(u) ≤ 1. A true (false) membership function α(u)



(β(u)) is a lower bound on the grade of membership of u derived from the evidence for
(against) u.

In order to compare two vague values, we define the median membership, Mm =
(α + 1 − β)/2, which represents the overall evidence contained in a vague value, and
the imprecision membership, Mi = (1 − β − α), which represents the overall impre-
cision of a vague value. With Mm and Mi, we have the one-to-one correspondence
between a vague value, denoted by [α, 1 − β], and a mi-pair vague value, denoted by
< Mm,Mi >, for a given object. We further extend the notion of mi-overlap to VSs.

Integrity constraints ensure that changes made to the database do not result in a loss
of data consistency. The notion of a Functional Dependency (FD) [4], the most fun-
damental integrity constraints, being satisfied in a vague relation can be formalized in
terms values being mi-overlapping rather than equal. We show that Lien’s and Atzeni’s
axiom system [5, 4] is sound and complete for FDs being satisfied in vague relations.
A vague relation is said to be consistent with respect to a set of FDs F if it satisfies F .
We define the chase procedure for a vague relation r over R, named V Chase(r, F ), to
tackle the consistency problem with respect to F , defined on vague relations [3]. Our
main result is that the output of the procedure is the most object-precise (or O-precise
in our notation) approximation of r with respect to F .

Here we give a motivating example. Consider a vague relation schema R = {S, T},
where S stands for the evidence of a sensor ID and T stands for the temperature moni-
tored by a sensor. Here S and T are vague concepts, their values are all represented
by VSs. Suppose the attributes S and T share the common universes of discourse,
U = {0, 1, . . . , 10}. A vague relation r1 over R is shown in Table 1, where the at-
tributes S and T are vague. The VS <0.8,0.1>/0 means the evidence for “the sensor
ID is 0” is 0.8 and the imprecision for it is 0.1. The median membership threshold C
and the imprecision membership threshold I are called the mi-thresholds. For simplic-
ity, we only show the elements in the values of S and T that satisfy the mi-thresholds.
Intuitively, this means that the elements in the relation all have strong evidence relative
to the thresholds. The saying that two VSs mi-overlap means they have at least one
common object which satisfies the mi-thresholds (i.e., 0.8 ≥ C and 0.1 ≤ I in this
example). We regard two mi-overlapping VSs are similar to each other to some extent
and extend the classical FD concept to vague relations. Suppose that the FD S → T is
specified as a constraint, meaning that same sensor reads same temperature in a vague
sense.

We assume a vague relation r1 over R, where the current temperature may be ob-
tained from different sensors. Thus, at any given time the information may be inconsis-
tent. It can be verified that r1 satisfies S → T and is consistent. Suppose later a vague
tuple was inserted into r1, we have the vague relation r2 shown in Table 2. It can be
verified that r2 does not satisfy S → T and is inconsistent, since the evidence of S
shows that the two tuples have the common object 0 mi-overlapped, but the values of
T do not have a common object and thus do not mi-overlap. The vague relation r2 can
be approximated by the less O-precise relation r3, shown in Table 3. It can be verified
that r3 satisfies S → T and is consistent. The vague relation r3 (one tuple) is in fact the
most O-precise approximation of r2. The transformation from r2 to r3 is based on the
VChase procedure introduced later.



Table 1. Sensor relation r1

S T
<0.8,0.1>/0 <0.9,0>/0

Table 2. Sensor relation r2

S T
<0.8,0.1>/0 <0.9,0>/0
<0.9,0.2>/0 <0.8,0.1>/1

Table 3. Sensor relation r3

S T
<0.9,0.1>/0 <0.9,0>/0 +

<0.8,0.1>/1

We define the merge operation which replaces each attribute value in r by the mi-
union of all attribute values with respect to the same reflexive and transitive closure un-
der mi-overlap. This leads to a partial order on merged vague relations and the notion of
a vague relation being less O-precise than another vague relation. This partial order in-
duces a lattice on the set of merged vague relations, which we denote by MERGE(R),
based on object-equivalence (O-equivalence for short) classes. We define the VChase
procedure for a vague relation r over R as a means of maintaining consistency of r with
respect to F . We investigate the properties of the VChase procedure showing amongst
other results that it outputs a consistent vague relation. The output of VChase is unique.
VChase can be computed in polynomial time in the sizes of r and F , and the procedure
commutes with the merge operation.

The main contributions of this paper are fourfold. First, we develop the notions of
median membership and imprecision membership to capture the essential information
and in maintain consistency of vague data. Second, we define a partial order on merged
vague relations which induces a lattice based on O-equivalence classes. We also define
a partial order based on the vague values which induces a complete semi-lattice in each
O-equivalence class. Third, we extend the satisfaction of an FD in a vague relation in
terms values being mi-overlapping rather than equal and show that Lien’s and Atzeni’s
axiom system is sound and complete for FDs being satisfied in vague relations. Finally,
we propose the chase procedure for a vague relation r over R, named VChase, as a
means of maintaining consistency of r with respect to a set of FDs F . Our main re-
sult is that the output V Chase(r, F ) of the VChase procedure is the most O-precise
approximation of r with respect to F .

The rest of the paper is organized as follows. Section 2 presents some basic concepts
related to mi-pair, which are used to enhance vague sets and their operations. In Section
3, we discuss the merge operation, based on the less O-precise order. In Section 4, FDs
and the V Chase procedure of vague relations are introduced. In Section 5, we give a
semantic characterization of the V Chase procedure of a vague relation, which is also
consistent with respect to a set of FDs. Related work is presented in Section 6. And in
Section 7, we offer our concluding remarks.

2 Vague Sets and Mi Memberships

In [6, 3, 7], some basic concepts related to the vague relational data model are given.
Here we explain how and why the median membership and the imprecision membership
are useful to represent vague data. We assume throughout V is a vague set and U is the
universe of discourse for V .



2.1 Median Memberships, Imprecision Memberships and Mi-pair Vague Sets

In order to compare vague values, we need to introduce two derived memberships for
discussion. The first is called the median membership, Mm = (α + 1 − β)/2, which
represents the overall evidence contained in a vague value and is illustrated in Fig. 1.

Definition 1. (Median membership) The median membership of an object u ∈ U in
a vague set V , denoted by MV

m(u), is defined by MV
m(u) = (α(u) + 1 − β(u))/2.

Whenever V and u are understood from context, we simply write Mm.

It can be checked that 0 ≤ Mm ≤ 1. In addition, the vague value [1,1] has the
highest Mm, which means the corresponding object totally belongs to V (i.e. a crisp
value). The vague value [0,0] has the lowest Mm, which informally means that the
corresponding object “totally” does not belong to V (i.e. the empty vague value). The
higher Mm is, the more crisp the vague value represents.

1

( 1 )/2
m

Fig. 1. Median membership of a vague
set

1

1i

Fig. 2. Imprecision membership of a
vague set

The second is called the imprecision membership, Mi = (1− β − α), which repre-
sents the overall imprecision of a vague value and is illustrated in Fig. 2.

Definition 2. (Imprecision membership) The imprecision membership of an object
u ∈ U in a vague set V , denoted by MV

i (u), is defined by MV
i (u) = 1− β(u)−α(u).

Whenever V and u are understood from context, we simply write Mi.

It can be checked that 0 ≤ Mi ≤ 1. In addition, the vague value [a, a](a ∈ [0, 1])
has the lowest Mi which means that we know exactly the membership of the corre-
sponding object (that is, reduced to a fuzzy value). The vague value [0,1] has the high-
est Mi, which informally means that we know “nothing” about the precision of the
corresponding object. The higher Mi is, the more imprecise the vague value represents.

Proposition 1. The median membership and the imprecision membership of an object
satisfy the inequality: Mi

2 ≤ Mm ≤ (1− Mi

2 ).

Proposition 1 shows that the median and imprecision memberships actually relate
to each other.



Definition 3. (Mi-pair Vague Set) An mi-pair VS vague set, in U = {u1, u2, . . ., un}
is characterized by a median membership function, MV

m , and an imprecision member-
ship function, MV

i , where MV
m : U → [0, 1], and MV

i : U → [0, 1]. V is given as
follows: V =

∑n
i=1 < MV

m(ui),MV
i (ui) > /ui. <MV

m(ui), MV
i (ui)>/ui is called

an element of V and <MV
m(ui), MV

i (ui)> is called the (mi-pair) vague value of the
object ui.

Using Mm and Mi, we have a one-to-one correspondence between a vague value,
[α, 1−β], and mi-pair vague value, <Mm,Mi>. From now on, a vague set or a vague
value refers to an mi-pair vague set or an mi-pair vague value, respectively.

Table 4. A sensor vague relation r

S T L
t1 <0.7,0.4>/0 + <0.5,1>/3 <0.8,0.3>/0 + <0.6,0.1>/1 <0.4,0.3>/0 + <0.6,0.3>/1
t2 <0.8,0.1>/0 + <0.1,0.1>/1 <0.9,0.1>/1 + <0.5,0.1>/2 <0.6,0.6>/0 + <0.5,0.2>/2
t3 <0.9,0.2>/1 + <0.5,0.1>/2 <0.3,0.2>/2 <0.2,0.2>/0
t4 <0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

Example 1. Let R = {S, T, L} be a vague relation schema, where S stands for a sensor
ID, T stands for the temperature monitored by a sensor and L stands for a location area
ID. A sensor vague relation r having 4 tuples {t1, t2, t3, t4} is shown in Table 4. For
those vague elements not listed in the relation, we assume they all have a special vague
value <0, 1>, which represents the boundary of all vague values, since any median
membership is greater than or equal to 0 and any imprecision membership is less than
or equal to 1.

2.2 Existence and Overlap of Vague Sets

We next define the concepts of an mi-existing VS and overlapping VSs. The underly-
ing idea is to check if vague values satisfy the predefined mi-thresholds: C as a crisp
threshold (0 ≤ C ≤ 1), and I as an imprecision threshold (0 ≤ I ≤ 1).

Definition 4. (Mi-existing) Given V and the mi-thresholds C and I , if ∃u ∈ U ,
such that MV

m(u) ≥ C and MV
i (u) ≤ I , then u is an mi-existing object, <MV

m(u),
MV

i (u)>/u is an mi-existing element, and V is an mi-existing VS under C and I .

By Definition 4, it follows that V is not mi-existing if all the objects in V are not
mi-existing under C and I .

Definition 5. (Mi-overlap) Given two vague sets V1 and V2, if ∃u ∈ U , such that
MV1

m (u) ≥ C and MV2
m (u) ≥ C, MV1

i (u) ≤ I and MV2
i (u) ≤ I , then V1 and V2

mi-overlap under mi-thresholds C and I , denoted by V1 ∼mi V2(C, I). u is called the
common mi-existing object of V1 and V2 under C and I . Otherwise, V1 and V2 do not
mi-overlap under C and I , denoted by V1 6∼mi V2(C, I). We simply write V1 ∼mi V2

and V1 6∼mi V2, if C and I are known from the context.



By Definition 5, it follows that V1 and V2 do not mi-overlap if there is no common
mi-existing object of V1 and V2 under C and I .

Example 2. Given C=0.2 and I=0.9, it can be checked that t1[L] and t2[L] in Table 4
mi-overlap, i.e. t1[L] ∼mi t2[L](0.2, 0.9). However, if C=0.2 and I=0.5, we find that
t1[L] and t2[L] do not mi-overlap, that is, t1[L] 6∼mi t2[L](0.2, 0.5).

Using the mi-existing objects of VSs, we define mi-union and mi-intersection of
VSs.

Definition 6. (Mi-union) Given two vague sets V1 and V2 under the mi-thresholds C
and I , the mi-union of V1 and V2 is a vague set V3, written as V3 = V1 ∨ V2, whose
median membership and imprecision membership functions are related to those of V1

and V2 given as follows. Let u ∈ U .

1. If u is an mi-existing object in both V1 and V2,
MV3

m (u) = max(MV1
m (u),MV2

m (u)), MV3
i (u) = min(MV1

i (u),MV2
i (u));

2. If u is an mi-existing object in V1 but not in V2,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u);

3. If u is an mi-existing object in V2 but not in V1,
MV3

m (u) = MV2
m (u), MV3

i (u) = MV2
i (u);

4. If u is not an mi-existing object in both V1 and V2,
MV3

m (u) = MV1
m (u),MV3

i (u) = MV1
i (u), if MV1

m (u) ≥ MV2
m (u);

MV3
m (u) = MV2

m (u),MV3
i (u) = MV2

i (u), otherwise.

Since the fourth case of Def. 6 adopts the vague value from either V1 or V2, de-
pendent on which has the higher median membership, it guarantees that the mi-union
of two non-mi-existing elements cannot “upgrade” to an mi-existing element. That is
to say, it always keeps the elements that do not satisfy mi-thresholds to be non-mi-
existing.

Definition 7. (Mi-intersection) Using the same set of notations of Definition 6, the
mi-intersection of VSs V1 and V2 is a VS V3, written as V3 = V1 ∧ V2, is defined as
follows:

1. If u is an mi-existing object in both V1 and V2,
MV3

m (u) = max(MV1
m (u),MV2

m (u)), MV3
i (u) = min(MV1

i (u),MV2
i (u));

2. If u is an mi-existing object in V1 but not in V2,
MV3

m (u) = MV2
m (u), MV3

i (u) = MV2
i (u);

3. If u is an mi-existing object in V2 but not in V1,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u);

4. If u is not an mi-existing object in both V1 and V2,
MV3

m (u) = MV1
m (u),MV3

i (u) = MV1
i (u), if MV1

m (u) ≥ MV2
m (u);

MV3
m (u) = MV2

m (u),MV3
i (u) = MV2

i (u), otherwise.

Note that the cases 1 and 4 in Definition 7 are identical to their counterparts in
Definition 6.



3 Merge Operation of Vague Relations

In this section, we define the merge of a vague relation r as the operation which replaces
each attribute value (represented by a VS) in r by the mi-union of all attribute values
with respect to the same reflexive and transitive closure under mi-overlap. This leads
to the concept of a less object-precise partial order on merged vague relations.

From now on, we let R = {A1, A2, . . . , Am} be a relation schema and r be a vague
relation over R. We also assume common notation used in relational databases [4] such
as the projection of a tuple t[A].

The semantics of a vague set, t[Ai], where t ∈ r and Ai ∈ R, are that an ob-
ject u ∈ Ui has the vague value <Mm(u),Mi(u)> in t[Ai]. The intuition is that, for
those objects which are not mi-existing, we regard their memberships are too weak to
consider in the process of chasing the inconsistency with respect to a set of FDs.

We now define the merge operation which replaces each attribute value of a tuple in
a vague relation by the mi-union of all attribute values with respect to the same reflexive
and transitive closure under mi-overlap.

Definition 8. (Merged relation) Given A ∈ R and mi-thresholds C and I , we con-
struct a directed graph G = (V, E), where V = πA(r). An edge (t1[A], t2[A]) is in
E iff t1[A] ∼mi t2[A](C, I). Let G+ = (V +, E+) be the reflexive and transitive clo-
sure of G. The merge of r, denoted by merge(r), is the vague relation resulting from
replacing each t[A] by

∨{t[A]′|(t[A], t[A]′) ∈ E+} for all A ∈ R.

We let MERGE(R) be a collection of all merged relations over R under C and I .

Example 3. Given C=0.2 and I=0.9, the vague relation merge(r), is shown in Ta-
ble 5, where r is shown in Table 4. For example, since t1[L] ∼mi t2[L](0.2, 0.9)
and t2[L] ∼mi t3[L](0.2, 0.9), we replace t1[L], t2[L] and t3[L] by <0.6,0.2>/0 +
<0.6,0.3>/1 + <0.5,0.2>/2. Note that the first two tuples in r (t1 and t2) have been
merged into a single tuple (t′1) in merge(r). With different mi-thresholds C and I ,
we may have different merge results. If we set C=0.2 and I=0.5, then t1[L] 6∼mi

t2[L](0.2, 0.5). In this case, we obtain merge(r) shown in Table 6. We see that the
first two tuples (t′1 and t′2) are not merged.

Table 5. A relation merge(r) under C = 0.2 and I = 0.9

S T L
t′1 <0.8,0.1>/0 +

<0.1,0.1>/1 +
<0.5,1>/3

<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.2>/0 + <0.6,0.3>/1 +
<0.5,0.2>/2

t′2 <0.9,0.2>/1 +
<0.5,0.1>/2

<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.2>/0 + <0.6,0.3>/1 +
<0.5,0.2>/2

t′3 <0.5,0.1>/3 +
<0.8,0.2>/4

<0.4,0.4>/3 <0.4,0.2>/3



Table 6. A relation merge(r) under C = 0.2 and I = 0.5

S T L
t′1 <0.8,0.1>/0 + <0.1,0.1>/1 +

<0.5,1>/3
<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.4,0.2>/0 +
<0.6,0.3>/1

t′2 <0.8,0.1>/0 + <0.1,0.1>/1 +
<0.5,1>/3

<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.6>/0 +
<0.5,0.2>/2

t′3 <0.9,0.2>/1 + <0.5,0.1>/2 <0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.4,0.2>/0 +
<0.6,0.3>/1

t′4 <0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

There are two levels of precision we consider in vague sets for handling inconsis-
tency. The first is the object-precision, which intuitively means the precision according
to the cardinality of a set of mi-existing objects. The second is, given the same object,
the vague values have different mi precision, which we term the value-precision.

We first define a partial order named less object-precise on VSs based on mi-
existing objects and extend this partial order to tuples and relations in MERGE(R).

Definition 9. (Less object-precise and object-equivalence) We define a partial order,
less object-precise (or less O-precise for simplicity) between two vague sets V1 and V2

as follows:
V1 vO V2 if the set of mi-existing objects in V1 is a superset of the set of those in

V2. We say that V1 is less O-precise than V2.
We extend vO in r as follows. Let t1, t2 ∈ r. t1 vO t2 if ∀Ai ∈ R, t1[Ai] vO

t2[Ai]. We say that t1 is less O-precise than t2.
Finally, we extend vO in MERGE(R) as follows: Let r1, r2 ∈ MERGE(R).

r1 vO r2 if ∀t2 ∈ r2, ∃t1 ∈ r1 such that t1 vO t2. We say that r1 is less O-precise
than r2.

We define an object-equivalence between V1 and V2, denoted as V1
.=O V2, iff

V1 vO V2 and V2 vO V1. Similar definitions of object-equivalence are extended to
tuples and relations.

Thus, an object-equivalence relation on MERGE(R) induces a partition of
MERGE(R), which means all vague relations equivalent to each other are put into
one O-equivalence class. Given any two vague relations in an O-equivalence class of
MERGE(R), each tuple in one vague relation has a one-to-one correspondence in the
other vague relation. With in an O-equivalence class of MERGE(R), we still have to
consider the second level of precision as follows:

Definition 10. (Less value-precise and value-equivalence) Let V1
.=O V2. We define

a partial order, less value-precise (or less V -precise for simplicity), between V1 and V2

as follows:
Let a = <MV1

m , MV1
i > and b = < MV2

m , MV2
i > be the respective vague values of

a common mi-existing object u in V1 and V2. If MV1
m ≤ MV2

m and MV1
i ≥ MV2

i (that
is, a is less crisp and more imprecise than b), then we say a is less V -precise than b,
denoted as a vV b.



V1 vV V2 if the vague value of each mi-existing object in V1 is less V -precise than
that of the same object in V2. We say that V1 is less V -precise than V2.

We extend vV in r as follows. Let t1, t2 ∈ r and t1
.=O t2. t1 vV t2 if ∀Ai ∈ R,

t1[Ai] vV t2[Ai]. We say that t1 is less V -precise than t2.
Finally, we extend vV in an O-equivalence class of MERGE(R) as follows. Let

r1
.=O r2. r1 vV r2 if ∀t1 ∈ r1, ∃t2 ∈ r2 such that t1 vV t2. We say that r1 is less

V -precise than r2.
We define a value-equivalence, denoted as V1

.=V V2 iff V1 vV V2 and V2 vV V1.
Similar definitions are extended to tuples and relations.

According to Definition 10, we define V -join ∪ and V -meet ∩ under vV of vague
values of a given object, that is, < Mx

m, Mx
i > ∪< My

m, My
i > = < max{Mx

m,My
m},

min{Mx
i ,Mx

i } > and < Mx
m, Mx

i > ∩ < My
m, My

i > = < min{Mx
m,My

m},
max{Mx

i ,Mx
i } >. It is easy to check that the less V -precise order vV induces a com-

plete semi-lattice by using ∪ and ∩ as shown in Fig. 3.
It can be checked that <1,0> is the top element according to the less V -precise

order. Note that for some mi-pair vague values, V -meet may cause the corresponding
vague value [α(u), 1−β(u)] beyond the legal range [0,1], which is not valid. From now
on, we restrict our discussion to the V -meet that gives rise to valid vague values as a
result.

Given any mi-thresholds C and I , if <C, I> is a valid vague value, then we can use
<C, I> as a cut-off boundary to construct a complete lattice, rather than the original
complete semi-lattice shown in Fig. 3, induced by the less V -precise order vV . For
example, given <C, I> = <0.5, 0.5> (or <0.6, 0.4>), which is a valid vague value,
in the dotted-line region in Fig. 3, all vague values form a complete lattice, since given
any two values in the enclosed region, we have their greatest lower bound and lowest
upper bound. However, if <C, I> is not a valid vague value, then we have a complete
semi-lattice, since some values in the enclosed region constructed by <C, I> do not
have their greatest lower bound. For instance, in the dotted-line region with respect to
an invalid vague value <0.1, 0.3>, all vague values form a complete semi-lattice, since
for <0.1, 0.2> and <0.2, 0.3>, we do not have their greatest lower bound.

From Definition 9, we can deduce that MERGE(R) is a lattice based on O-
equivalence classes with respect to vO. In this lattice, each node is an O-equivalence
class, in which all vague relations are O-equivalent. The top node is the O-equivalence
class of ∅O, i.e. the set of vague relations with an empty set of tuples. The bottom node
is the O-equivalence class, in which all vague relations have only one tuple and all
mi-existing objects in vague relations form the universes of discourse.

Example 4. For simplicity we just assume U = {0, 1} and R = A, we construct the
lattice for MERGE(R) under C=0.5 and I=0.5 according to O-equivalence classes.
As shown in Fig. 4, all O-equivalence classes (the nodes represented by circles) form
a lattice based on vO. Each node in the lattice is actually the set of all vague relations
(represented by tables with single attribute) which are O-equivalent to each other. For
instance, r1 and r2 are two vague relations with two tuples such that r1

.=O r2. Simi-
larly, we have r3

.=O r4, where r3 and r4 are two vague relations with only one tuple.
Inside each node, based on vV in Definition 10, all vague relations in the node form



<0,0>

<0.1,0>

<0.2,0>

<0.3,0>

<0.4,0>

<0.5,0>

<0.6,0>

<0.7,0>

<0.8,0>

<0.9,0>

<1,0>

<0.9,0.1> <0.9,0.2>

<0.8,0.1> <0.8,0.2> <0.8,0.3> <0.8,0.4>

<0.7,0.1> <0.7,0.2> <0.7,0.3> <0.7,0.4> <0.7,0.5> <0.7,0.6>

<0.6,0.1> <0.6,0.2> <0.6,0.3> <0.6,0.4> <0.6,0.5> <0.6,0.6> <0.6,0.7> <0.6,0.8>

<0.5,0.1> <0.5,0.2> <0.5,0.3> <0.5,0.4> <0.5,0.5> <0.5,0.6> <0.5,0.7> <0.5,0.8> <0.5,0.9> <0.5,1>

<0.4,0.1> <0.4,0.2> <0.4,0.3> <0.4,0.4> <0.4,0.5> <0.4,0.6> <0.4,0.7> <0.4,0.8>

<0.3,0.1> <0.3,0.2> <0.3,0.3> <0.3,0.4> <0.3,0.5> <0.3,0.6>

<0.2,0.1> <0.2,0.2> <0.2,0.3> <0.2,0.4>

<0.1,0.1> <0.1,0.2>

A cut-off boundary <0.5,0.5> (a valid vague value)

leading to a complete lattice

A cut-off boundary <0.6,0.4> (a valid vague value)

leading to a complete lattice

A cut-off boundary <0.1,0.3> (an invalid vague value)

leading to a complete semi-lattice

Fig. 3. A complete semi-lattice of vague values of an object u

a complete lattice (when the cut-off boundary is a valid vague value) or a complete
semi-lattice (when the cut-off boundary is not a valid vague value). In the complete
(semi-)lattice, the top element is the vague relation in which all vague values of objects
are <1,0>, and if the cut-off boundary <C,I> is a valid vague value, then the bottom
element is the vague relation in which all vague values of objects are <C,I>. For exam-
ple, in the lattice shown in Fig. 6, which is the bottom node of the lattice in Fig. 4, each
table represents a single attribute vague relation. The top is the single attribute vague
relation rt with one tuple <<1,0>/0+<1,0>/1>. The bottom is the vague relation rb

with single tuple <<0.5,0.5>/0+<0.5,0.5>/1>, and the vague value of each object is
<C,I>.

Given different mi-thresholds, a lattice induced by vV exists inside each node. For
instance, we have the lattice of MERGE(R) under C=0.5 and I=0.4 as shown in Fig.
5. The bottom elements in each node are different from those in Fig. 4, since the mi-
thresholds are different.

Now, we extend the mi-existing of VSs given in Definition 4 to tuples as follows:
t[X] is mi-existing, if ∀A ∈ X , t[A] is mi-existing, where X ⊆ R. We also extend the
concept of mi-overlap given in Definition 5 to tuples t1, t2 ∈ r under mi-thresholds C
and I as follows: t1[X] ∼mi t2[X](C, I), if ∀A ∈ X , t1[A] ∼mi t2[A](C, I) where
X ⊆ R.

Example 5. We can verify that t1 ∼mi t2(0.2, 0.9) in the relation shown in Table 4.

4 Functional Dependencies and Vague Chase

Functional Dependencies (FDs) being satisfied in a vague relation r can be formalized
in terms values being mi-overlapping rather than equal. The VChase procedure for r is
a means of maintaining consistency of r with respect to a given set of FDs.
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<0.5,0.5>/0

<0.6,0.5>/0<0.5,0.4>/0

<1,0>/0

<0.5,0.5>/1

<0.6,0.5>/1<0.5,0.4>/1

<1,0>/1

<1,0>/0

<1,0>/1

<0.5,0.5>/0+<0.5,0.5>/1

<1,0>/0+<1,0>/1

<0.5,0.5>/0
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r
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r
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r
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4

Fig. 4. A lattice of MERGE(R) under C=0.5
and I=0.5

<0.5,0.4>/0

<0.6,0.4>/0<0.5,0.3>/0

<1,0>/0

<0.5,0.4>/1

<0.6,0.4>/1<0.5,0.3>/1

<1,0>/1

<1,0>/0

<1,0>/1

<0.5,0.4>/0+<0.5,0.4>/1

<1,0>/0+<1,0>/1

<0.5,0.4>/0

<0.5,0.4>/1

ØO

Fig. 5. A lattice of MERGE(R) under C=0.5
and I=0.4

<0.5,0.5>/0+<0.5,0.5 >/1

<1,0>/0+<1,0>/1

<0.5,0.4>/0+<0.5,0.5 >/1 <0.5,0.5>/0+<0.5,0.4 >/1

<0.5,0.4>/0+<0.5,0.4 >/1

<0.6,0.5>/0+<0.5,0.5 >/1 <0.5,0.5>/0+<0.6,0.5 >/1

<0.6,0.5>/0+<0.6,0.5 >/1

r
b

r
t

Fig. 6. A lattice within the bottom node of the lattice of MERGE(R) of Fig. 4

4.1 Functional Dependencies in Vague Relations

We formalize the notion of an FD being satisfied in a vague relation. Lien’s and Atzeni’s
axiom system is sound and complete for FDs being satisfied in vague relations.

Definition 11. (Functional dependency) Given mi-thresholds C and I , a Functional
Dependency over R (or simply an FD) is a statement of the form X →C,I Y , where
X, Y ⊆ R. We may simply write X → Y if C and I are known from context. An
FD X → Y is satisfied in a relation r, denoted by r ² X → Y , if ∀t1, t2 ∈ r,
t1[X] ∼mi t2[X](C, I), then t1[Y ] ∼mi t2[Y ](C, I), or t1[Y ] or t2[Y ] are not mi-
existing.

A set of FDs F over R is satisfied in r, denoted by r ² F , if ∀X → Y ∈ F ,
r ² X → Y . If r ² F we say that r is consistent with respect to F (or simply r is
consistent if F is understood from context); otherwise if r 6² F then we say that r is
inconsistent with respect to F (or simply r is inconsistent). We let SAT (F ) denote the
finite set {r ∈ MERGE(R)|r ² F}.

Example 6. Let F = {S →0.2,0.9 TL, L →0.2,0.9 S} be a set of FDs over R, where
R is the relation schema whose semantics are given in Example 1. We can verify that



r ² S →0.2,0.9 TL but that r 6² L →0.2,0.9 S, where r is the relation shown in Table 4.
Thus r ∈ SAT ({S →0.2,0.9 TL}) but r 6∈ SAT (F ). Consider also merge(r) shown
in Table 5, we have merge(r) ∈ SAT ({S →0.2,0.9 TL}) but merge(r) 6∈ SAT (F ).
If we change the mi-thresholds from 0.2 and 0.9 to 0.2 and 0.5, the result is different.
Let F = {S →0.2,0.5 TL, L →0.2,0.5 S} be a set of FDs over R. We can verify that
r 6² S →0.2,0.5 TL and that r 6² L →0.2,0.5 S. Thus r 6∈ SAT ({S →0.2,0.5 TL})
and r 6∈ SAT (F ). Consider also merge(r) shown in Table 6, we have merge(r) 6∈
SAT ({S →0.2,0.5 TL}) and merge(r) 6∈ SAT (F ).

We say that F logically implies an FD X →C,I Y over R written F ² X →C,I Y ,
whenever for any domain D, ∀r ∈ RELD(R), if r ² F holds then r ² X → Y also
holds.

Here we state the well known Lien’s and Atzeni’s axiom system [5, 4] for incom-
plete relations as follows:

1. Reflexivity: If Y ⊆ X , then F ` X → Y .
2. Augmentation: If F ` X → Y holds, then F ` XZ → Y Z also holds.
3. Union: If F ` X → Y and F ` X → Z hold, then F ` X → Y Z holds.
4. Decomposition: If F ` X → Y Z holds, then F ` X → Y and F ` X → Z hold.

Definition 12. (Soundness and Completeness of Axiom system) Whenever an FD
X → Y can be proven from F using a finite number of inference rules from Lien’s and
Atzeni’s axiom system [4], we write F ` X → Y .

Lien’s and Atzeni’s axiom system is sound if F ` X → Y implies F ² X → Y .
Correspondingly, Lien’s and Atzeni’s axiom system is complete if F ² X → Y implies
F ` X → Y .

The proof of the following theorem is standard [4], which we establish a counter
example relation to show that F 6` X → Y but F 6² X → Y . Due to lack of space, we
omit all proofs in this paper. However, all proofs will be contained in the full version of
it.

Theorem 1. Lien’s and Atzeni’s axiom system is sound and complete for FDs being
satisfied in vague relations.

4.2 Vague Chase

We define the chase procedure for maintaining consistency in vague relations. Assum-
ing that a vague relation r is updated with information obtained from several different
sources, at any given time the vague relation r may be inconsistent with respect to a set
of FDs F . Thus we input r and F into the VChase procedure and its output, denoted by
V Chase(r, F ), is a consistent relation over R with respect to F . The pseudo-code for
the algorithm V Chase(r, F ) is presented in Algorithm 1.

We call an execution of line 6 in Algorithm 1 a VChase step, and say that the VChase
step applies the FD X → Y to the current state of V Chase(r, F ).



Algorithm 1 V Chase(r, F )
1: Result := r;
2: Tmp := ∅;
3: while Tmp 6= Result do
4: Tmp := Result;
5: if X →C,I Y ∈ F , ∃t1, t2 ∈ Result such that t1[X] ∼mi t2[X](C, I), t1[Y ] and t2[Y ]

are mi-existing but t1[Y ] 6∼mi t2[Y ](C, I) then
6: ∀A ∈ (Y −X), t1[A], t2[A]:=t1[A] ∨ t2[A];
7: end if
8: end while
9: return merge(Result);

Table 7. Vague relation V Chase(r, F ) under C=0.2 and I=0.9

S T L
<0.8,0.1>/0 + <0.9,0.2>/1 <0.8,0.3>/0 + <0.9,0.1>/1 <0.6,0.2>/0 + <0.6,0.3>/1
+ <0.5,0.1>/2 + <0.5,1>/3 + <0.5,0.1>/2 + <0.5,0.2>/2
<0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

Table 8. Vague relation V Chase(r, F ) under C=0.2 and I=0.5

S T L
<0.8,0.1>/0 + <0.9,0.2>/1 <0.8,0.3>/0 + <0.9,0.1>/1 <0.4,0.2>/0 + <0.6,0.3>/1
+ <0.5,0.1>/2 + <0.5,1>/3 + <0.5,0.1>/2 + <0.5,0.2>/2
<0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

Example 7. The vague relation V Chase(r, F ) is shown in Table 7, where r is shown
in Table 4 and F = {S →0.2,0.9 TL, L →0.2,0.9 S} is the set of FDs over R.
We can verify that V Chase(r, F ) |= F , i.e. V Chase(r, F ) is consistent, and that
V Chase(r, F ) = V Chase(merge(r), F ), where merge(r) is shown in Table 5. If
F = {S →0.2,0.5 TL, L →0.2,0.5 S} is the set of FDs over R, we can also verify
that V Chase(r, F ) |= F , which is as shown in Table 8, and that V Chase(r, F ) =
V Chase(merge(r), F ), where merge(r) is shown in Table 6.

From Tables 7 and 8, we see that different mi-thresholds C and I may give rise to
different VChase results (the corresponding values of L in the first tuple).

The next lemma shows that V Chase(r, F ) is less O-precise than merge(r) and
unique. Its complexity is polynomial time in the sizes of r and F .

Lemma 1. The following statements are true:

1. VChase(r, F) vO merge(r).
2. VChase(r, F) is unique.
3. VChase(r, F) terminates in polynomial time in the sizes of r and F .



The next theorem shows that the VChase procedure outputs a consistent relation
and that it commutes with the merge operation.

Theorem 2. The following two statements are true:
1. VChase(r, F) ² F, i.e. VChase(r, F) is consistent.
2. VChase(r, F) = VChase(merge(r), F).

5 The Most O-precise Approximation of a Vague Relation

The V Chase(r, F ) procedure can be regarded as the most O-precise approximation
of r, which is also consistent to F . In this section, we first define the join of vague
relations, which corresponds to the least upper bound of these relations in the lattice
MERGE(R) based on O-equivalence classes. (Recall the lattices shown in Figures 4
and 5.) Next, we define the most O-precise approximation of r with respect to F to be
the join of all the consistent and merged relations which are less O-precise than r. Our
main result is that V Chase(r, F ) is the most O-precise approximation of r with respect
to F . Thus, the VChase procedure solves the consistency problem in polynomial time
in the size of r and F .

We now define the join operation on relations in the lattice of MERGE(R) based
on O-equivalence classes.

Definition 13. (Join operation) The join of two vague relations, r1, r2 ∈MERGE(R),
denoted by r1 t r2, is given by

r1 t r2 = {t|∃t1 ∈ r1, ∃t2 ∈ r2 such that ∀A ∈ R, t1[A] ∼mi t2[A](C, I),
t[A] = t1[A] ∧ t2[A]}.

It can be verified that the O-equivalence class that consists of r1 t r2 is the least
upper bound with respect to the O-equivalence classes of r1 and r2 in MERGE(R).
From now on we will assume that r1, r2 ∈ MERGE(R).

The next theorem shows that if two relations are consistent then their join is also
consistent.

Theorem 3. Let r1, r2 ∈ SAT (F ). Then r1 t r2 ∈ SAT (F ).

The most O-precise approximation of a vague relation r over R with respect to F is
the join of all consistent relations s such that s is a merged relation that is less O-precise
than r.

Definition 14. (Most O-precise approximation) The most O-precise approximation
of a vague relation r with respect to F , denoted by approx(r, F ), is given by

⊔{s|s vO

merge(r) and s ∈ SAT (F )}.

The next lemma shows some desirable properties of approximations.

Lemma 2. The following statements are true:

1. approx(r, F) is consistent.
2. approx(r, F) vO merge(r).
3. approx(r, F) .=O merge(r) iff r is consistent.



The next theorem, which is the main result of this section, shows that output of the
VChase procedure is equal to the corresponding most O-precise approximation. Thus,
the vague relation V Chase(r, F ), which is shown in Table 7, is the most O-precise
approximation of r with respect to F , where r is the relation over R shown in Table 4
and F is the set of FDs over R specified in Example 6.

Theorem 4. V Chase(r, F ) .=O approx(r, F ).

6 Related Work

The problem of maintaining the consistency with respect to FDs of a relational database
is well-known. However, in many real applications, it is too restrictive for us to have FDs
hold in relations. For example, the salary of employees is approximately determined by
the number of working years. The discovery of meaningful but approximate FDs is
an interesting topic in both data mining and database areas [8]. Thus, many research
works on approximate FDs have been proposed [9–11]. In order to deal with uncertain
information including missing, unknown, or imprecisely known data, probability theory
[12–15], fuzzy set and possibility theory-based treatments [16, 17] have been applied
to extend standard relational databases and FDs [18–22]. Based on vague set theory,
we apply some useful parameters such as the median and imprecision memberships to
characterize uncertain data objects. The parameters are used to extend various concepts
such as satisfaction of FDs in vague relations.

The work in [23] introduces the notion of imprecise relations and FDs being satis-
fied in imprecise relations in order to cater for the situation when the information may
be obtained from different sources and therefore may be imprecise. However, we apply
the interval-based vague memberships, which capture positive, neutral and negative in-
formation of objects, and extend the “equally likely objects” assumption used in [23].
The imprecise set in [23] can also be considered as the O-equivalent VS in our work.

7 Conclusions

In this paper, we extend FDs to be satisfied in a vague relation. We define the mi-overlap
between vague sets and the merge operation of a vague relation r which replaces each
attribute value in r by the mi-union of all attribute values with respect to the same re-
flexive and transitive closure under mi-overlap. We also define a partial order on merged
vague relations which induces a lattice on the set of merged vague relations based on
O-equivalence classes. Inside each O-equivalence class, we define a partial order based
on the vague values of mi-existing objects which induces a complete semi-lattice. Sat-
isfaction of an FD in a vague relation is defined in terms values being mi-overlapping
rather than equality. Lien’s and Atzeni’s axiom system is sound and complete for FDs
being satisfied in vague relations. We define the chase procedure VChase as a means
of maintaining consistency of r with respect to F . Our main result is that VChase out-
puts the most O-precise approximation of r with respect to F and can be computed
in polynomial time in the sizes of r and F . Our result suggests a mechanical way that
maintains the consistency of vague data. It is both interesting and challenging to use



the VChase result to provide more effective and efficient evaluation of SQL over vague
relations as a future work.
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