
Repairing Inconsistent Merged XML Data

Wilfred Ng

Department of Computer Science
The Hong Kong University of Science and Technology

Hong Kong, China
wilfred@cs.ust.hk

Abstract. XML is rapidly becoming one of the most adopted standard
for information representation and interchange over the Internet. With
the proliferation of mobile devices of communication such as palmtop
computers in recent years, there has been growing numbers of web ap-
plications that generate tremendous amount of XML data transmitted
via the Internet. We therefore need to investigate an effective means to
handle such ever-growing XML data in various merging activities such
as aggregation, accumulation or updating, in addition to storing and
querying XML data. Previously, we recognized that FDs are an impor-
tant and effective means to achieve consistent XML data merging, which
we restricted data consistency for leaf nodes in an XML data tree. In
this paper we further extend FDs to be satisfied in an XML document
by comparing subtrees in a specified context of an XML tree. Given
an XML tree T and a set of FDs F defined over a set of given path
expressions, called targeted functional path expressions, we tackle the
problem of repairing the inconsistency with respect to F in the most
concise merged format of T .

1 Introduction

There is now little debate that XML (eXtensible Markup Language) [1] will
play an ever increasing role in web data specification and exchange. This in-
creasing use of XML in web data specification and interchange increases the
need for better tools and techniques to maintain the ever-growing XML data.
Merging can be applied to XML documents in order to aid appending XML frag-
ments/documents, accumulating XML data streams and to combining partial
results for incremental querying. In this paper we develop the notion of merged
XML trees and extend conventional FDs [7] being satisfied in XML trees in order
to generate the most concise merged XML trees.

We follow the assumptions in our previous work (c.f. for details see [8]) when
discussing the application of FDs to maintain data consistency in an XML setting
and assume that DTD is absent in XML documents and that a pre-defined set
of element labels (or tag names in common terms) is available to “spell” the
path languages. The contribution of this work is that we generalise the notions
of merged XML trees in [8] and extend the semantics of an FD being satisfied in
an XML tree in order to cater for the situation when information are obtained
from different XML data sources and therefore merging is necessary.

<STOCK>
<SHARE>

<NAME> Apple </NAME>
<PRICE> 10.0 </PRICE>

</SHARE>
<SHARE>

<NAME> IBM </NAME>
<PRICE> 20.0 </PRICE>

</SHARE>
</STOCK>

Fragment D1a

<STOCK>
<SHARE>

<NAME> Apple </NAME>
<PRICE> 10.1 </PRICE>

</SHARE>
</STOCK>

Fragment D1b
<STOCK>

<SHARE>
<NAME> IBM </NAME>
<PRICE> 20.1 </PRICE>

</SHARE>
</STOCK>

Fragment D1c

<STOCK>
<SHARE>

<NAME> Apple </NAME>
<PRICE> 10.0 </PRICE>

</SHARE>
<SHARE>

<NAME> Apple </NAME>
<PRICE> 10.1 </PRICE>

</SHARE>
<SHARE>

<NAME> IBM </NAME>
<PRICE> 20.0 </PRICE>

</SHARE>
<SHARE>

<NAME> IBM </NAME>
<PRICE> 20.1 </PRICE>

</SHARE>
</STOCK>

(a) A document is formed by di-
rect combining the document fragments
D1a, D1b, D1c − such naive merging is not
concise and inconsistent although individ-
ual fragments are concise and consistent.

(b) Document D2 − a more concise merg-
ing at the STOCK level but the result is
still inconsistent.

<STOCK>
<SHARE>

<NAME> Apple </NAME>
<PRICE> 10.0 </PRICE>
<PRICE> 10.1 </PRICE>

</SHARE>
<SHARE>

<NAME> IBM </NAME>
<PRICE> 20.0 </PRICE>
<PRICE> 20.1 </PRICE>

</SHARE>
</STOCK>

<STOCK>
<SHARE>

<NAME> Apple </NAME>
<PRICE>

<∼PRICE> 10.0 </∼PRICE>
<∼PRICE> 10.1 </∼PRICE>

</PRICE>
</SHARE>
<SHARE>

<NAME> IBM </NAME>
<PRICE>

<∼PRICE> 20.0 </∼PRICE>
<∼PRICE> 20.1 </∼PRICE>

</PRICE>
</SHARE>

</STOCK>

(c) Document D3 − an even more concise
merging at the SHARE level than D2 but
still inconsistent with respect to g.

(d) Document D4 − an even more con-
cise merging at the PRICE level and is
consistent with respect to both f and g.

Fig. 1. Satisfaction of FDs in XML documents.

As a motivating example consider an XML document formed by a naive
merging of three XML fragments D1a, D1b and D1c given in Figure 1(a), which
has STOCK as a context node, and (share) name and (share) price as data
nodes, all of these nodes are represented as their corresponding tags in D1. In
addition, we suppose that the FDs f = SHARE.NAME → SHARE and g =
SHARE.NAME → SHARE.PRICE are specified as constraints, implying
that each share name has a unique piece of share information and each share
has a unique price in the context of stock. We assume that the current price
information may be obtained from the three different XML data fragments D1a,
D1b and D1c as shown in Figure 1(a). Thus at any given time the naive merging
of such information may be inconsistent. We now suppose that at some later
stage the three fragments are merged at the STOCK level to be the document
D2 as shown in 1(b). It can be easily verified that D2 satisfy neither f nor g, and
is therefore inconsistent. However, it is less verbose and thus it is a more concise
representation than a direct merging of D1a, D1b and D1c. These fragments can

be merged at the SHARE level to generate an even more concise representation
D3, which is consistent with respect to f but is still inconsistent with respect
to g, since we have more than one price element for each share. We propose to
further fix this problem by “degenerating” the price node as shown in Figure
1. It can be easily verified that D4 satisfies both f and g, and therefore the
document is thus consistent. We will justify that the document D3 is in fact the
most concise representation of merged XML documents D1a, D1b and D1c with
respect to f , and D4 is in fact the most concise representation of merged XML
documents D1a, D1b and D1c with respect to both f and g.

We adopt the usual notation in set theory and organise the rest of the paper
as follows. In Section 2 we formalise the notion of merging in XML trees. In
Section 3 we define the semantics of a functional dependency being satisfied in
a merged XML tree and adapt the classical chase procedure in the context of
XML, which is called XChase, for maintaining the consistency of an XML tree.
In Section 4 we establish the notion of repairing and show that the output of
XChase is always the consistent and most concise for merging a set of XML
trees. Finally, in Section 5 we give our concluding remarks.

2 Merged XML Documents

In this section we formalise the notion of a merged XML document. We adopt
the usual view that a document D is modeled as a node-labeled data tree TD

(or simply T whenever D is understood). In the sequel, we assume that (1) only
two disjoint finite sets of labels exist in T as follows: E being the set of labels
for element nodes (i.e. tag names) and S being a label denoting text nodes
(i.e. PCDATA in XML documents), (2) an element node is either followed by a
sequence of element nodes or is terminated with a text node, and (3) a countably
infinite set of nodes V and a countably infinite domain of strings S exist.

Definition 1. (Merged XML Tree) A merged XML node-labeled data tree TD

corresponding to an XML document D (or simply an XML tree T) is defined by
T = (V, λ, η, δ, r), where (1) V ⊆ V is a finite set of nodes; (2) λ is a mapping
V → E ∪ {S} which assigns a label l to each node n in V ; a node n in V is
called an element node if λ(n) ∈ E, and a text node if λ(n) = S; (3) η is a partial
mapping that defines the edge relation of T as follows: if n is an element node
in V then η(n) is either a set of element nodes or a set of text nodes in V , and
if n is a text node then η(n) is undefined; and for each n′ ∈ η(n), n′ is called a
child of n, and we say that there is an edge from n to n′, and n in V is called a
leaf node if n′ is a text node; (4) δ is a partial mapping that assigns a string to
each text node: for any node n in V , if n is a text node then δ(n) ∈ S, and δ(n)
is undefined otherwise; (5) r ∈ V is a unique and distinguished root node.

It follows from Definition 1 that when given an XML tree for each n ∈ V ,
there is a unique set of edges (or paths) from root r to n. In addition, XML
trees are finite due to the fact that V contains a finite number of nodes. In
subsequent discussion, the terms XML documents and XML trees will be used

interchangeably, though we remark that the order of tags in an XML document
is ignored in a tree representation according to Definition 1. Given T and n ∈ V
we denote by γ(n) the subtree of T , which takes n as the root. Clearly, we
have the special case γ(r) = T . We now introduce the useful notions related to
comparing two subtrees in our context.

Definition 2. (Equality, Overlapping and Containment of XML Sub-
trees) Let γ(r1) = (V1, λ1, η1, δ1, r1) and γ(r2) = (V2, λ2, η2, δ2, r2) be two XML
subtrees of a given tree T . Let Vi ⊆ V be the set of nodes in γ(ni); λi, ηi and
δi be the mappings restricted on the domain Vi for i ∈ {1, 2}. The XML trees
γ(r1) and γ(r2) is said to be equal, denoted as γ(r1) ≈ γ(r2), if there exists a
bijective mapping ρ from V1 to V2 satisfying that r2 = ρ(r1), and for all n′1 ∈ V1,
λ1(n′1) = λ2(ρ(n′1)), ρ(η1(n′1)) = η2(ρ(n′1)) and (δ1(n′1)) = δ2(ρ(n′1)). We say
γ(r1) and γ(r2) are overlapping if there exists nodes m1 ∈ η1(r1), m2 ∈ η2(r2)
such that γ(m1) ≈ γ(m2), or else we say γ(r1) and γ(r2) are non-overlapping.
We say γ(r1) contains γ(r2) if for all nodes m2 ∈ η2(r2), there exists m1 ∈ η1(r1)
such that γ(m1) ≈ γ(m2), or equivalently γ(r2) is contained in γ(r1).

Informally, two subtrees in T are equal if they are (1) isomorphic in structures
and (2) identical in their corresponding element names and leaf values. Two
subtrees are overlapping if they have equal children as their immediate subtrees.
In our approach we consider only the immediate children for comparison, since we
use the functional path as a means to specify the necessary depth involved, which
will be explained in detail in Section 3. We also remark that using Definition 2
we can compare element nodes based on their subtree equality, overlapping and
containment. In the special case of leaf nodes being the roots of the subtrees,
the equality in our definition reduces to the equality of their respective sets of
data values given by δ. Trivially, if two subtrees γ(r1) and γ(r2) are equal then
they are overlapping. However, the converse may not be true.

IBM 10.1

share

name price

S S

10.0

share

name price

S S

10.1

S

IBM 10.0

share

name price

S S

stock

10.1

S

price

S

name

n2 n3 n4

Apple Apple

share

name price

S

10.0

S

Apple

n1

Fig. 2. Overlapping and containment of financial data

Example 1. In Figure 2, the subtrees γ(n1) and γ(n2) are non-overlapping, the
subtrees γ(n1) and γ(n3) are overlapping since they have common children of
name nodes, and the subtree γ(n4) contains both γ(n1) and γ(n2).

Definition 3. (Mutating a Subtree and Joining of Two Subtrees) Let
γ(r1) = (V1, λ1, η1, δ1, r1) and γ(r2) = (V2, λ2, η2, δ2, r2) be two trees of T .

Given a subtree γ(r1), we define a mutate operator, denoted as µ, to generate a
new subtree which is equal to γ(r1) but has a distinct set of nodes from those
in γ(r1). Formally, µ(γ(r1)) = (V3, λ3, η3, δ3, r3) such that V1 ∩ V3 = ∅ and
there exists a bijective mapping ρ from V3 to V1 satisfying that for all n′1 ∈ V3,
λ3 = λ1 ◦ ρ, η3 = ρ−1 ◦ η1 ◦ ρ and δ3 = δ1 ◦ ρ. We define the join of two distinct
subtrees γ(r1) and γ(r2) (where r1 6= r2) by γ(r1) t γ(r2) = (V1 ∪ V ′

2 , λ1 ∪ λ′2,
η1 ∪ η′2, δ1 ∪ δ′2, r1) where µ(γ(r2)) = (V ′

2 , λ′2, η
′
2, δ

′
2, r1) and V1 ∩ V ′

2 = r1.

The join operation provides us a basis for merging trees with respect to Ω
which will be elaborated later on. Note that the mutation operation is necessary
for technical reasons since the nodes used by γ(r2) cannot be used again in
merging with γ(r1) according to Definition 3. The join operation essentially
collects the children the under the two given subtrees under the root of the first
subtree. Referring to Figure 2 it can be easily checked that γ(n4) = γ(n1)tγ(n2).
The following propositions can be deduced from Definition

Proposition 1. The following statements are true.

1. µ(γ(r1)) ≈ γ(r1).
2. γ(x1) t γ(x2) ≈ γ(x2) t γ(x1).
3. γ(x1) t (γ(x2) t γ(x3)) ≈ (γ(x1) t γ(x2)) t γ(x3). 2

We also need to use the concepts of a path expression, reachable nodes and
the most distant node set (c.f. for details see [8], which are fundamental con-
cepts prior to formalise the notion of XML document merging and the semantics
of FDs in the context of XML trees. Essentially, a path expression in an XML
tree T is essentially a special class of regular expression, which specifies a set of
paths in T . For example, node(FINANCE,STOCK.SHARE.NAME) means
all the nodes of share names and node(FINANCE, ∗.NAME) means all the
nodes of (share, currency or brokers) names in the FINANCE tree. In Figure
2, we can verify that all the NAME nodes of shares are reachable from the root
FINANCE by following the path expression STOCK.SHARE.NAME and all
the NAME nodes of currency are reachable from the root FINANCE by follow-
ing the path expression: FOREIGN EXCHANGE.CURRENCY.NAME.

3 Chasing XML Trees

We formalise the notion of an FD being satisfied in an XML tree, which is
evolved from the one proposed in [8] as follows. We allow FDs to be defined for
non-leaf nodes of an XML tree.

A functional dependency (FD) f over an XML tree T is a statement written
in a triplet as follows, (Q, Q′, {P1, . . . , Pm} → {Pm+1, . . . , Pn}), where Q,Q′

and Pi are definite path expressions such that, for all 1 ≤ i ≤ n, Q.Q′.Pi is a
valid path expression. The expression Q is called the context path expression,
which specifies a set of paths starting from r; the expression Q.Q′ is called
the target path expression, which specifies a set of paths within the context

r

n

n1' ni'

m1' mn'

. . .

... ...

Q'Q'

Q

P
n

P
1

A

Context

Path
Target

Paths

Q'

A Context Node

nk' Target Nodes

Functional Nodes

Functional

Paths

... ...
XML Subtrees under

Functional Nodes

The Root Node

Fig. 3. Path expressions for reasoning FDs in an XML tree

following Q; and finally the expression Q.Q′.Pi is called the functional path
expression. We emphasize that a functional path expression specifies a set of
paths which can reach functional nodes. We denote the targeted functional path
set Ω(Q, Q′) the collection of all possible Pi that follows the path specified the
target path expressions Q.Q′ (i.e. Ω(Q, Q′) = {Pi | Q.Q′.Pi is a functional path
expression }). We assume throughout the paper Q and Q′ denoting the context
path expression and the target path expression and simplify the notations of
targeted functional path set as Ω and the FD f as P1 · · ·Pm → Pm+1 · · ·Pn.
Using different path terminologies we have introduced for an XML tree and
shown in Figure 3, we now define the semantics of FDs in an XML tree T .

Definition 4. (Functional Dependency Satisfication) Let T be an XML
tree, X = P1 · · ·Pm and Y = Pm+1 · · ·Pn. Then the FD X → Y is satisfied
in T (or alternatively holds in T), denoted by T |= X → Y , if, for any node
n ∈ node(r,Q), for any n′1, n

′
2 ∈ node(n,Q′) such that (1) node(n′1, Pi) and

node(n′2, Pi) are non-empty for i ∈ Im, and (2) for any two functional nodes
x1 ∈ node(n′1, Pi) and x2 ∈ node(n′2, Pi), such that γ(x1) and γ(x2) are non-
overlapping, it is also the case that, for j ∈ {m + 1, . . . , n}, if node(n′1, Pj) and
node(n′1, Pj) are non-empty, then for any two functional nodes y1 ∈ node(n′1, Pj)
and y2 ∈ node(n′2, Pj), γ(y1) and γ(y2) are non-overlapping.

Informally, along any two target paths (not necessarily to be distinct) spec-
ified by Q.Q′ in T which reach nodes n′1 and n′2 respectively, whenever all the
children subtrees that follow the paths P1 · · ·Pm starting from n′1 and n′2 ex-
ist and overlap, then there exists corresponding subtrees specified by the path
Pm+1 · · ·Pn also overlap if they exist. Note that there are three essential dif-
ferences between the satisfaction of FDs in the context of an XML tree and a
usual relation. First, the validity of the constraint holds only within the scope
following the context path specified by Q and thus is only localized within the
region of the subtree under a given node in node(r,Q). Second, the semantics of
FDs take into account of the fact that some path specified by the expressions
in XY may have none or more than one occurrences. Third, the comparison

is based on overlapping of subtrees under the corresponding functional nodes
rather than equality of attribute values.

inf

Brokers

inf branches

phone

inf

Brokers

inf

manager secretary
company

Brokers

inf

managercompanycompany

Finance

STA

secretary

STB STB

STC STCSTD

STE STF

STG STG

STH STHSTI STL STLSTK

STi = subtree i

Fig. 4. An example of FD satisfaction in an XML tree

Example 2. In Figure 4, we show an XML tree (possibly) contains the infor-
mation of a broker and the broker’s company (labeled as inf), phone num-
bers, the corresponding details of the manager and the secretary. A company
may have none or more than one secretary. It can be verified that the tree
T with target node BROKERS satisfies the following set of FDs: {NAME →
COMPANY.NAME,PHONE; COMPANY.NAME → MANAGER;
MANAGER → SECERTARY }.

We now ready to formalise the concept of merging by making use of a
targeted functional path set. Let P ∈ Ω. For any n ∈ node(r,Q) and any
n′1, n

′
2 ∈ node(n′, Q′) and for any two functional nodes x1 ∈ node(n′1, P) and

x2 ∈ node(n′2, P), if there does not exist r1 ∈ η(x1) and r2 ∈ η(x2) such that
γ(r1) and γ(r2) are overlapping, we define γ(x1) to be γ(x1)tγ(x2) and γ(x2) to
be γ(x2) t γ(x1). We extend the joining of subtrees to be induced by the nodes
in node(n′, P) for all n′ ∈ node(n,Q′) and all P ∈ Ω, and define a merging
operation which replaces the children (i.e. the subtrees) following the functional
paths specified by Q.Q′.P by the joining of subtrees induced by node(n′, P).

Definition 5. (Merge Operation) The merge of an XML tree T with respect
to a given Ω, denoted by merge(T, Ω), is the XML tree resulting from executing
the following two steps.

1. FOR each P ∈ Ω, any n ∈ node(r,Q), and any pair of n′1, n
′
2 ∈ node(n,Q′),

WHILE there are any two functional nodes x1 ∈ node(n′1, P) and x2 ∈
node(n′2, P) such that if γ(x1) and γ(x2) are overlapping,
DO γ(x1) := γ(x1) t γ(x2) and γ(x2) := γ(x2) t γ(x1).

2. If there exists n′1, n
′
2 ∈ node(n,Q′) such that γ(n′1) ≈ γ(n′2) then remove

γ(n′2).

Essentially, the first step in merge(T, Ω) replaces iteratively any pair of sub-
trees for functional nodes having the same expression by their merged set when-
ever an overlapping occurs. The second step remove some redundant subtrees

following Q.Q′. As an example, it can easily be verified that in Figure 5, the
XML tree is merge(T, Ω) where Ω = {CI (Company Information), PH (Price
Histories)}. The tree is obtained first by replacing the children of share names
(CI and PH) by the join of their overlapping subtrees in the first step. Then,
we remove the second occurrence of the share nodes in the second step, since
they are duplicated under share nodes.

Step 1 Step 2

Stock

share share

H1 H2 H2H1

PH PHCI

IBM Apple

CI

IBM Apple

PH = Price History

CI = Company Information Stock

share

PH

share

H1 Apple H1 H2

CI PHCI

IBM Apple

Stock

share

H2H1AppleIBM

CI PH

(a) (b) (c)

Fig. 5. An example of running the merge operation on an XML tree

Let n ∈ node(r,Q). The XML tree resulting from merge(T, Ω) can be com-
puted in polynomial time in the sizes of node(n,Q′), node(r,Q) and Ω. We
present in Algorithms 1 the pseudo-code for XChase(T, F), which is used for
repairing inconsistency of an XML tree.

Algorithm 1 (XChase(T, F))

1. begin
2. Result := T ;
3. Tmp:= ∅;
4. while Tmp 6= Result do
5. Tmp := Result;
6. if ∃ X → Y ∈ F , for any n ∈ node(r, Q) where r is the root of Result,

for any n′1, n
′
2 ∈ node(n, Q′) such that for all i ∈ Im

(1) node(n′1, Pi) and node(n′2, Pi) are non-empty, and
(2) for x1 ∈ node(n′1, Pi) and x2 ∈ node(n′2, Pi),

γ(x1) and γ(x2) being overlapping,
but ∃j ∈ {m + 1, . . . , n} such that node(n′1, Pj) and node(n′1, Pj)
are non-empty, and for y1 ∈ node(n′1, Pj) and y2 ∈ node(n′2, Pj),
γ(y1) and γ(y2) being non-overlapping

7. then γ(y1) := γ(y1) t γ(y2), γ(y2) := γ(y2) t γ(y1);
8. end while
9. return merge(Result,Ω);
10. end.

Example 3. In Figure 6 we see that the XML tree T at (a) is inconsistent with
respect to F = {P1 → P2P3, P3 → P1}. We use the symbol STi1,...,in to represent
a set of the instances of n subtrees STi1 ,. . . ,STin under a functional node. The
reader can also verify that the XML tree at (b) output from XChase(T, F)
satisfies F , i.e. XChase(T, F) is consistent.

r

Q

n

Q'

n
1
'

P
1

P
3

P
2

n
2
'

P
1

P
3

n
3
'

P
3

n
4
'

P
1

P
3

P
2

P
2

Q'Q' Q'

T

ST0 ST0,1,2

XChase(T,F)

ST0 ST3 ST3ST1ST0,1 ST0,2 ST2ST1,2 ST0,1,2ST0,1,2ST0,1 ST3 ST3ST0,1,2 ST0,1,2

r

Q

n

Q'

n
1
'

P
1 P

2

n
2
'

P
1

P
3

n
3
'

P
3

P
2

Q' Q'

P
3

(a) (b)

Fig. 6. An example of chasing an XML tree

XChase possesses the following desirable properties: (1) it outputs a consis-
tent XML tree, (2) it is unique and can be computed in polynomial time in
the sizes of T and F , and (3) it commutes with the merge operation. The next
theorem shows that the chase procedure outputs a consistent XML tree and
commutes with the merge operation.

Theorem 1. Let Ω be a targeted set of functional paths over T . Then the
following statement is true. XChase(T, F) = XChase(merge(T,Ω), F). 2

4 A Concise Semantic-Preserving XML Forests

In this section we assume throughout all XML trees are maximally merged,
formally T = merge(T, Ω) and justify, by using a formal notion of repairing,
that XChase generates the most concise merged XML tree that is semantic-
preserving with respect to F . Using the notion of conciseness restricted to Ω
we define an XML forest as a conciseness-equivalent class of XML trees and the
join operation of two XML forests. Then we define the concepts of semantic-
preserving forest for T with respect to a set of FDs F to be the join of all
consistent XML forests which are less concise than the forest consisting T .

Definition 6. (Conciseness-Equivalent XML Trees) Let Ω be a targeted
functional set. An XML tree T1 is less concise than another XML tree T2 with
respect to Ω, written T1 vΩ T2 (or simply T1 v T2 whenever Ω are understood
from the context), if, for any node n′1 ∈ node(r1, Q.Q′) in T1, there exists a node
n′2 ∈ node(r2, Q.Q′) in T2 such that for all i ∈ In, for any two functional nodes
x1 ∈ node(n′1, Pi) and x2 ∈ node(n′2, Pi), γ(x2) contains γ(x1). We say that T1

and T2 are conciseness equivalent with respect to Ω (or simply Ω-equivalent),
written T1 ≡Ω T2 (or simply T1 ≡ T2), if T1 vΩ T2 and T1 vΩ T2.

We call a collection of Ω-equivalent XML trees an XML forest with respect
to Ω and denote it by Υ (Ω). We say that T1 semantically preserves T2 if T2 |= f

then T1 |= f . The following result follows from Definition 6, which means our
definition of conciseness preserve the semantics of XML data trees. The converse
of the proposition is clearly not true, since two trees being mutually semantic-
preserving may not be comparable with respect to v.

Proposition 2. If T1 ≡ T2, then T1 (or respectively T2) semantically preserves
T2 (or respectively T1). 2

Q

n

n'

r
1

Q'

P
1

P
2

T1

ST1ST0ST0

Q

n

n'

r
2

Q'

P
1 P

2

P
3

T2

Q

n

n'

r
2

Q'

P
1 P

2

P
4

T3

ST0 ST0 ST1 ST2 ST0 ST0 ST0ST1

STi = A subtree instance i

Fig. 7. A forest of Ω-equivalent trees

Figure 7 illustrates a simple forest having Ω = {P1, P2}. Using the notion of
conciseness, we are able to compare XML trees in some accurate sense and to
define a semantic characterization of XChase later on. The following lemma
shows that XChase result is less or equally concise as the original XML tree T .

Lemma 1. Let F be a set of FDs, Ω be a targeted functional set, and T be an
XML tree. The statement XChase(T, F) v merge(T,Ω) is true. 2

Let FOR(Ω) be the collection of all XML forests w.r.t. Ω. The following
proposition confirms that an XML forest is uniformly concise and consistent.

Proposition 3. Let Υ1, Υ2 ∈ FOR(Ω), T1, T
′
1 ∈ Υ1, and T2, T

′
2 ∈ Υ2. Then the

following statements are true.

1. T1 v T2 if and only if T ′1 v T ′2 for all T ′1 ∈ Υ1 and T ′2 ∈ Υ2.
2. T1 |= F if and only if T ′1 |= F for all T ′1 ∈ Υ1. 2

From Proposition 3 we are able to extend some concepts defined for an XML
tree in Definition 6 to an XML forest. First, the partial order vΩ on FOR(Ω)
is defined as follows: Υ1 v Υ2 if T1 v T2 where T1 ∈ Υ1 and T2 ∈ Υ2. Second, the
satisfaction for an XML forest Υ with respect to F is defined by Υ |= F if, for all
T ′1 ∈ Υ1, T ′1 |= F . We denote by SAT (F) the set of all XML forests that satisfy

F . Finally, a merged XML forest is defined by merge(Υ, Ω) = {merge(T,Ω) |
T ∈ Υ}. We now define the join operation on FOR(Ω) which returns a more
concise forest than two given XML forests.

Definition 7. (Join of Two XML Forests) The join of two forests, Υ1, Υ2 ∈
FOR(Ω), denoted by Υ1 t Υ2, is defined by the set of XML trees that are Ω-
equivalent to an XML tree T such that for any node n′1 ∈ node(r1, Q.Q′) in
T1 ∈ merge(Υ1, Ω), and n′2 ∈ node(r2, Q.Q′) in T2 ∈ merge(Υ2, Ω), there exists
a node n′ ∈ node(r,Q.Q′) in T such that for all P ∈ Ω, γ(x) ≡ γ(x1) t γ(x2),
where x ∈ node(n, P), x1 ∈ node(n′1, P) and x2 ∈ node(n′2, P).

It is easy to see that the join of two merged XML forests is also a merged
XML forest. The next theorem shows the fact that the join operation preserves
the satisfaction of FDs.

Theorem 2. Let Υ1, Υ2 ∈ SAT (F). Then (Υ1 t Υ2) ∈ SAT (F). 2

Q

n

n
1
'

P
1

P
2

n
2
'

Q' Q'

Q

n

n'

r
1

Q'

P
1

P
2

r
2

P
1

P
2

Q

n

n'

r
3

Q'

P
1

P
2

ST0 ST0 ST0 ST0 ST0 ST1 ST0 ST2

Fig. 8. A counter-example to the converse of Theorem 2

The converse of Theorem 2 is false as shown in Figure 8 where ST2 = ST 0 t
ST 1. Let f = P1 → P2 be an FD. It can be verified that Υ1 t Υ2 |= f but
Υ2 6|= f . We now formalise the concept of repairing an XML forest. A repairing
for a given Υ is a less concise but still consistent forest. The best possible repaired
XML forest for Υ with respect to a set of FDs F over Ω is the join of all consistent
forests Υ ′ (i.e. Υ ′ |= F) such that Υ ′ is less concise than Υ .

Definition 8. (Repaired XML Forest) Given Υ . A repaired XML forest for
Υ with respect to F over Ω is an XML forest Υ ′ such that Υ ′ vΩ Υ and
Υ ′ ∈ SAT (F). Let REP (Υ) be the set of all repaired XML forests for Υ . The
best possible repaired XML forest for Υ with respect to F over Ω (or simply
the repairing of Υ if F and Ω are understood from the context), denoted by
repair(Υ, F), is given by

⊔
Υ ′∈REP (F) Υ ′.

We note that the join of XML forests is well-defined, since the join operator
is commutative and associative as shown in Proposition 1. The next theorem
shows the main result in this section. It shows that the output of the XChase
procedure is the best possible repairing, since the XML forest formed by the
collection of all XML trees that are Ω-equivalent to XChase(T, F) is equal to
repair(Υ, F), where T ∈ Υ .

Theorem 3. Let T ∈ Υ . Then XChase(T, F) ∈ repair(Υ, F). 2

5 Concluding Remarks

We have defined the notion of a merged XML tree T with respect to a given
set of FDs F over a targeted set of possible functional paths Ω specified by
a contextual path Q and a target path Q′ in T . The notion of an FD was
extended to merged XML trees in Definition 4, whose satisfaction is defined by
using overlapping immediate children subtrees of corresponding functional nodes
over T , which is different from the usual way of defining FDs. We then defined
XChase over XML trees in Algorithm 1 as a means of repairing inconsistency of
an merged XML tree with respect to a set of FDs F . In addition, we established
the desirable properties in Theorem 1 that XChase outputs a consistent XML
tree and commutes with the merge operation. We further proposed to view
the XML trees that are equivalent in conciseness over Ω as an XML forest in
Definition 6 and defined the concept of the best possible repaired XML forest
with respect to a set of FDs F in Definition 8. By using the join operation on
merged XML forests we are able to show that if two XML forests are consistent
then their join is also a consistent XML forest in Theorem 2. The best possible
repaired XML forest for Υ with respect to F is the join of all consistent XML
forests that are less concise than Υ , in this sense we presented our final result
in Theorem 3, which shows that the chase procedure XChase(T, F) outputs the
best possible repairing of T with respect to F .

Acknowledgements. This work is supported in part by grant HKUST
6185/02E from the Research Grant Council of Hong Kong.

References

1. S. Abiteboul, P. Buneman and D. Suciu. Data on the Web. Morgan Kaufmann
Publishers, (2000).

2. P. Buneman, W. Fan, and S. Weinstein. Interaction Between Path and Type
Constraints. Proc. of the 18th ACM Symposium on Principles of Database
Systems (PODS’99), pp. 56-67, (1999).

3. Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang
Chiew Tan. Keys for XML. Proc. of WWW10, pp. 201-210, (2001).

4. W. Fan, G.M. Kuper and J. Simon. A Unified Constraint Model for XML. Proc.
of WWW10, pp. 179-190, (2001).

5. W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs.
Proc. of the 20th ACM Symposium on Principles of Database Systems,
(PODS’01), (2001).

6. M. Levene and G. Loizou. Maintaining consistency of imprecise relations. The
Computer Journal 39, pp. 114-123, (1996).

7. H. Mannila and K-J Raiha. The Design of Relational Databases. Addison-Wesley,
(1992).

8. W. Ng. Maintaining Consistency of Integrated XML Trees. LNCS Vol. 2419:
Proc. of WAIM, Beijing, China, pp. 145 -157, (2002).

9. J. Wijsen. Condensed Representation of Database Repairs for Consistent Query
Answering LNCS Vol. 2572: Proc. of 9th ICDT, Seina, Italy, pp. 378-393, (2002).

