
Storing and Querying XML Data in the Nested

Relational Sequence Database System

Ho Lam, LAU and Wilfred NG

Department of Computer Science
The Hong Kong University of Science and Technology

{lauhl, wilfred}@cs.ust.hk

Abstract. We developed the Nested Relational Sequence Database Sys-
tem (NRSD System), which is built upon the Nested Relational Sequence
Model (NRSM). The NRSM eliminates a substantial amount of redun-
dancy embedded in XML documents and preserves the order of XML
data. In this paper, we demonstrate that the storing and querying of
XML data are desirable over an NRS relation, which we incorporate an
index system into the NRSD System. We introduce a set of NRS op-
erations which allow users to manipulate the XML data effectively and
demonstrate how to use NRS operations to query the XML data stored
in the NRSD System. Our experimental results confirm that the NRSD
System substantially reduces the storage size of data. We also study the
performance of the select and project operations having path expressions
at different nested levels.

1 Introduction

We have proposed the Nested Relational Sequence Model (NRSM) in [3, 4], which
is an extension of the well-established Nested Relational Data Model (NRDM)
[2, 7] in order to cater for nesting structure and node ordering of XML data. The
NRSM supports composite and multi-valued attributes, which are essential for
representing hierarchically structured data objects in XML documents. In addi-
tion, the NRSM extends the NRDM to support ordering of XML data elements,
which allows nested tuple sequences to be defined in an NRS relation.

We developed the NRS Database System (NRSD System) [3, 4], which is
built upon the NRSM. An important feature of the system is that XML data
that share the same path expression can be merged together and store in the
same index table, and thus, eliminates a substantial amount of redundancy in
XML documents. Another feature of the NRSD System is that it preserves the
following three types of order: the value, sibling and ancestor orders as illustrated
in Figure 1. In the sequel we will explain how these features are preserved in the
NRSD System by using an indexing schemes. We also present the experimental
results concerning the resources needed for storing XML documents and the
performance of the select and project operations having various path expressions.



2 The Nested Relational Sequence Data Model

Like the NRDM, the NRSM supports composite and multi-valued attributes,
which are essential for representing hierarchically structured information such
as XML data. In the NRSM, XML data are stored in the NRS relations. The
representation of NRS relations is similar to the Nested Tables (NTs) of the
NRDM, which contains multiple rows and columns. The NRS relations inherit
the desirable features of the NTs, such as minimizing redundancy of XML data
in a document and having more expressive power than conventional relations.
XML documents are represented as merged data trees (MDT), where leaf nodes

v1  v2  v3  v4  v5 

people(1) 

prof(10) 

stud(1010) 
dept 

(1000) 
pname 
(1001)  ~stud 

(101000) 
course 

(101001) 
@sid 

(101010) 

CS 

EE 

Kim 

Sun 

c670 

<c334, 

c670> 

588 

142 

Jerry 

Lam 

Au 

Lou 

null  298 

915 c670 

Sibling Order 

A
nc

es
to

r 
O

rd
er

 
V

al
ue

O
rd

er
 

Sibling Order 

CS 

people 

course 

prof 

dept  stud 

@sid 

pname 

c670 

<c334, 

c670> 

588 

142 

Jerry 

Lam 

EE 
Au 

Lou 

null  298 

915 c670, 

Kim 

Sun 

~stud 

A
nc

es
to

r 
O

rd
er

 

Sibling Order 

Sibling Order 

V
al

ue
O

rd
er

 

(a) MDT, T (b) NRS Relation, R

Fig. 1. (a)A MDT and (b)its corresponding NRS relation

are sequences of data values, called the data nodes, and non-leaf nodes are the
labels of the XML tags and attributes, called the label nodes. The MDTs are
different from the DOM trees in [9] in the way that information with the same
tags are grouped together and the values are stored under the same label node
in a MDT.

The NRSM incorporates three types of order: (1) the value order resulting
from the sequence of data elements in a data node; (2) the sibling order resulting
from the left to right sides for those label nodes which share the same parent;
(3) the ancestor order resulting from the tree levels of the label nodes. Figure 1
portrays the three types of orders in a MDT.

The NRSM preserves the original structure of XML documents, in general,
they can be retrieved from NRS relations without loss of information. Descriptive
information such as comments and processing instructions can also be stored in
an NRS relation. The proposed mapping algorithms [3, 4] between XML docu-
ments and NRS relations are straightforward enough to implement on Oracle,
as adopted in our NRSD System. If an XML document is not associated with
a DTD, we extract an approximated DTD from the input XML document. The
extracted DTD provides a basis for constructing the corresponding NRS schema.



A benefit resulting from this approach is that if several XML documents of simi-
lar structures are combined into a single NRS relation, we are able to generate an
optimized DTD for them. Figure 2 demonstrates the mapping between an XML

c

MDT NRS Relation

XML Document

DTD (Optional) Root

Tag1
Tag2

Tag3

ba

Root

Tag2Tag1

~Tag2

Tag3
a b c NRS Operations

~Tag2

Root

Tag1 Tag3

a c

MDT

ca

Root

Tag1 Tag3

DTD

XML
Document

NRS Relationd e f

d e f

.

.

.

.

.

.

.

.

.

d f ff

Fig. 2. Mapping an XML document into an NRS relation and retrieve XML data using
NRS operations

document and an NRS relation. After we have mapped the XML document into
a MDT, we can generate an NRS relation. The XML semantics and the order of
the document structure are preserved in both MDTs and NRS relations and the
mapping between MDTs and NRS relations is reversible. After an XML docu-
ment is transformed into its corresponding NRS relation, we can then apply a
sequence of NRS operations on the relations.

3 Formulating Queries in the NRSD System

The target of the proposed XML query languages, such as XQuery [9] and XML-
QL [1], is to query XML documents and they are not designed for the information
stored in XML databases. We introduce a set of operations for the NRSM, called
the NRS operations, which is a combination of the refinements of existing relation
algebra [7, 2] together with some newly defined operations such as the rearrange
and swap operations.
An NRS expression, denoted by QueryExpr, is defined by the following BNF

syntax:

QueryExpr ::= Op[Arugment](Range)
Op ::= π | σ | η | µ | ] | ⊕ | ª | ¯ | ω | κ | χ | ς |Σ | α | ⊥ | > | ∪ | − | × | ./
PathExpr ::= PathExpr/Tag | PathExpr//Tag
Tag ::= tag labels | ∗
Argument ::= PathExpr | (ArgumentList) | Cast(Argument)
ArgumentList ::= PathExpr |ArgumentList, PathExpr
Cast ::= INT | CHAR |DATE
Range ::= PathExpr |BETWEEN PathExpr AND PathExpr

Since XML data are considered as strings in a document, we use the casting
functions, Cast() to convert the values from strings to other data types such
as integers or dates. Our query expressions do not have the For-Each clause,



instead, the query expressions loop through each tuple specified by the Range
argument. In the Range argument, the expressions BETWEEN and AND can be
used to limit the range of a query in a declarative way. A set of NRS operations
for manipulating the XML data stored in the NRSM is introduced in our previous
work in [3, 4] . The operations are classified into the following six categories: (1)
Nesting operations, (2) Ordering operations, (3) Basic operations, (4) Structure
operations, (5) Binary operations and (6) Aggregate operations. Examples are
now given to demonstrate how to perform queries using the NRS operations.

3.1 Query Examples

Q1. Return the names of the students who take the course “c670”.
The query Q1 can be formulated by the XQuery expressions as follows:

FOR $s IN document("sample.xml")people/prof/stud

WHERE $s/course = "c670"

RETURN $s/text()

We first transform the XML document “sample.xml” and its DTD into the
corresponding NRS relation, R, which is shown in Figure 1 (b). Then we perform
the following sequence of query expressions:

1. S ← π(/people/prof/stud)(R)
2. T ← σ(/stud/course=”c670”)(S)
3. Rresult ← π(/stud/ stud)(T )

stud*

~stud course* @sid

Jerry 588

Lam 142

Au 298

Lou 915

c670

<c334,

-

c670

c670>

stud*

~stud course* @sid

Jerry 588

Lam 142

c670

<c334,
c670>

Lou 915c670

stud*

~stud

Jerry

Lam

Lou

S RresultT

Fig. 3. Intermediate NRS relations for answering the query Q1

For the sake of clarity, we use the intermediate NRS relations, S and T ,
to show the results in each processing step, as shown in Figure 3. We first
perform the “π” operation “people/prof/stud” over R. Then we perform the “σ”
operation according to the condition “/stud/course = “c670”” over S. Finally,
we perform the “π” operation “/stud/ stud” over T , which generates the required
results Rresult and transform it into the corresponding valid XML document as
follows:



<!ELEMENT stud(#PCDATA)>

<stud>Jerry</stud>

<stud>Lam</stud>

<stud>Lou</stud>

Q2. Create a new XML document with the format given below, where X is the
number of professors, Y is the number of students in the department, and Z is
the name of the department:

<university>

<dept numP="X" numS="Y">Z</dept>

</university>

The query Q2 is formulated as the following sequence of NRS operations:

1. S ← ](university(dept(∼dept,@numP,@numS);
2. T ← ⊕(university/dept/∼dept=R/people/prof/dept)(S);
3. Rresult ← ⊕(university/dept/@numP=ζ(/people/prof/pname)(U))(T )

Rresult ← ⊕(university/dept/@numS=ζ(/people/prof/stud/∼stud)(U))(Rresult);
where U = σ(R/people/prof/dept=university/dept)(R).

First, we create a new NRS relation with the schema university(dept(∼dept,
@numP,@numS)) using the “]” operation. Second, we insert the value of dept
corresponding to the dept of R. Final, we use the “ζ” operation to find out the
number of professors and students in the dept and insert it into Rresult using
the “⊕” operations. The intermediate NRS relations, S and T , are shown in
Figure 4.

S RresultT

Dept

~dept @numP @numS

University

Dept

~dept @numP @numS

CS

University

EE

Dept

~dept @numP @numS

CS 21

University

EE 21

Fig. 4. Intermediate NRS relations for answering the query Q2

3.2 Translating XQuery into NRS operations

The flexible and structured facilities of XQuery [9] have been recognized as
effective way to query XML data. Currently, we are able to translate the XQuery
of the form “FOR-WHERE-RETURN”, which is a fundamental form of XQuery
expressions, into sequences of NRS operations. We now use the following XQuery
expression to illustrate the translation.



FOR $b1 IN path1,

$b2 IN path2,

...

$bn IN pathn,

WHERE condition1, condition2,..., conditionm

RETURN

<tag1>

{

<tag2>$b1/resultPath1</tag2>

<tag3>$b2/resultPath2</tag3>

...

}

</tag1>

Since a query may involve several XML documents, we need to map them
into their corresponding NRS relations, R1, R2, . . ., Rn, before we apply the NRS
operations. After the mapping, the following query expressions are performed:

1. S1 ← π[path1](R1), S2 ← π[path2](R2), ..., Sn ← π[pathn](Rn)
2. T1 ← σ[condition1](Si1), T2 ← σ[condition2](Si2), ..., Tm ← σ[conditionm](Sim)
3. U ← ](tag1(tag2,tag3))

4. Rresult ← ⊕(tag2=T1/path3,tag3=T2/path4,...(U)

First, we translate the XQuery expression “FOR $bi IN pathi” into a se-
quence of “π” operation and store the result into intermediate NRS relations
S1, S2, . . ., Sn. Then, based on the conditions stated in the clauses “WHERE
condition1, condition2, . . ., conditionm”, we perform the “σ” operation on the
involved intermediate NRS relations S1, S2, . . ., Sn and store the required data
in the intermediate NRS relations T1, T2, . . ., Tm. For example, if “conditioni”
is equal to “$b/name = “abc””, we know that S1 is involved and we perform
the “σ” operation on S1. The last step is to return the results in the specified
format stated in the “RETURN ” expression. To achieve this, we perform the
“]” operation to create a new NRS relation using the schema corresponding to
the one stated in the XQuery “RETURN ” expression and perform the “⊕” op-
erations to insert the corresponding results into the NRS relation. In our current
implementation, we can only handle structure of at most two nested levels.

4 Developing the Indexing Scheme in the NRSD System

An NRS relation is stored as a set of index tables (ITs) in the NRSD System.
The schema of the NRS relation is mapped as a global index table (GIT) and
the data value are mapped as various value index tables (VITs). The MDT and
NRS relation Rsample shown in Figure 1 is mapped into the ITs = {g, v1, . . . , vs}
shown in Figure 5.
In the NRSD System, we capture different kinds of order by representing

order using index values, which further reduce the storage size. We use the



g

index name child

1 people 2

2 prof 8,9,10

8 dept v1

9 pname v2

10 stud 41, 42, 43

33 ~stud v3

34 course v4

35 @sid v5

name

c670

c334

index

1.1.1.1

1.1.1.2.1

c670

c670

1.1.1.2.2

1.1.2.2

v
4

name

588

142

index

1.1.1.1

1.1.1.2

298

915

1.1.2.1

1.1.2.2

v
5

index

1.1.1

1.1.2

name

Kim

Sun

v
2

index

1.1.1

1.1.2

name

CS

EE

v1

GIT =  g VITs =  {v1, v2, v3, v4, v5}

name

Jerry

Lam

index

1.1.1.1

1.1.1.2

Au

Lou

1.1.2.1

1.1.2.2

v
3

Fig. 5. The ITs corresponding to Rsample

prefix matching and the dot-notation indexing strategies to handle the orders of
XML data in the NRSD System.

Prefix matching indexing is used in the GIT. We assign the root attribute
with index 1 and for each child attribute, we assign log2k bits to represent its
sibling order, where k is the number of its sibling nodes, and concatenate it after
the index of its parent. For example, in Figure 1, attribute stud, whose index
is 1010, has three children, we assign two bits for each of its child attributes.
The indexes of its children are 101000(40), 101001(41) and 101010(42) as shown
in g of Figure 5. We apply the longest bit match algorithm [6] to search for the
parent of a sequence of nodes. The essential idea of the algorithm is to find
out the longest common prefix of the indexes in an incremental manner. In the
VITs, the indexes are assigned by using the dot notation indexing scheme. For
example, the index for the stud Lam in v3 is 1.1.1.2. From the GIT, the path
expression of v3 is “people/prof/stud/∼stud”. It represents the fact that Lam
is the second stud of the first prof , who is the first people in the first XML
document.

Basically, the implementation of the NRS operations in the NRSD System
is translated into the following sequence of actions. (1) Lookup the correspond-
ing child attributes from the GIT by tracing the path expressions. (2) Perform
queries over the corresponding VITs stated in the child attribute of the GIT.
(3) Return the data required. For example, if we perform the “π” operation on
stud, π[/prof/stud](people). We lookup the GIT for the path people/prof/stud
and know that it has three corresponding VITs with indexes: 40, 41 and 42.
Therefore, we join the values from these three VITs according to their longest
common prefix and return them into tuples. For example, the two course of
stud Lam are assigned with indexes 1.1.1.2.1 and 1.1.1.2.2, the longest com-
mon prefix is 1.1.1.2, which is in the same tuple of stud Lam. In order to avoid
heavy overhead of the machine arising from referencing the GIT extensively. An
in-memory tree is built for storing the global information for performing quick
reference. In general, the size of the GIT is less then 0.1% of a given XML
document and it does not impose any significant burden on the main memory.



5 Preliminary Experimental Results

In order to show the effectiveness of the NRSD System, we have been running
some experiments using real life DBLP XML data [8] on the NRSD System.
The data has maximum twelve child tags per element and four nesting levels
in DBLP XML documents. The experiments are conducted on a computer of
Pentium III 550MHz with 256MB RAM and 30GB hard disk.

5.1 Results for Storing XML Documents in the NRSD System

In the experiment, we load XML documents having different sizes into the NRSD
System. Table 1 shows the results of our experiments, from which we can check
that the table space required for storing an XML document is approximately
85% of its original size. With the growth of document size, the number of ITs
and the size of the GIT become stable. It is due to the fact that the NRSD
System groups and stores the tags which share the same path expression, and
represents orders using indexes. We remark that the size reduction is obtained

Table 1. Experimental results of the NRSD System with different XML document
sizes

Size of NRS
schemas
(bytes)

Number of all
tables in Oracle
DBMS

Table space including
schema and table over-
heads (kilobytes)

Input XML
file size
(kilobytes)

Percentage of
table space re-
quired

414 23 1,987 2,404 82.65%

1368 61 8,159 9,318 87.56%

1380 63 12,399 14,251 87.00%

1404 66 16,722 18,817 88.87%

1425 67 24,076 28.791 83.62%

without performing any compression on the database. This work can serve as a
starting point for applying existing XML data compression technology [5] on the
NRS relations. We also emphasize that we are able to formulate queries in the
NRSD System by using a set of algebraic operators, which is difficult to perform
in a compressed domain. We are improving the grouping algorithm and trying
to further decrease the table space for storing XML data in the NRSD System.
The data size reduction in the NRSD System is useful in practice for exporting
and exchanging XML database objects on the Web.

5.2 Results for Performing Select and Project Queries

In order to study the query performance of the NRSD System, we run six queries
(E1 to E6) over three sample DBLP XML documents of sizes 8.8MB, 24MB and
36MB. The objective of the experiment is to test how path expressions affect
the performance of the “π” and “σ” operations in the NRSD System, since they



are fundamental in NRS query expressions. By studying their performance, we
can understand how to optimize more complex queries. The queries used in the
experiment are formulated as follows.

E1 = π/dblp/inproceedings/author(R)
E2 = π//author(R)
E3 = π//inproceedings/(R)
E4 = σ/dblp/inproceedings/year=′2000′(R)
E5 = σ//year=′2000′(R)
E6 = σ[//year=′2000′,//author=′Sun′](R)

E1 evaluates the performance of the “π” operation with full path expression.
E2 evaluates the performance of the “π” operation on the recursive path expres-
sion (//). E3 evaluates the performance of the “π” operation that require several
outer join operations. E4 evaluates the “σ” operation operation with a condi-
tion specified with full path expression. E5 evaluates the “σ” operation with a
condition specified with recursive path expression. E6 evaluates the “σ” opera-
tion with multiple conditions specified with recursive path expressions. We plot

0
1

2

3
4

5

6
7

8

9
10

8.8MB

24MB

36MB

E1 E2 E3 E4 E5 E6T
im

e 
re

qu
ire

d 
fo

r 
re

tu
rn

 1
00

00


N
R

S
 tu

pl
es

 (
se

c)


Sizes of input
DBLP XML
document

Fig. 6. Performance of the queries E1 - E6

the average time required for the NRSD System to output 10000 NRS tuples in
Figure 6. From E1 and E2, we can see that the number of nesting levels does not
affect the running time of the queries used in the experiments. This is because
the structure of the XML document stored as an in-memory tree saves the time
for looking up the corresponding indexes from the GIT from the database. The
NRSD System requires more time to return the results for queries E3 - E6. This
is due to the fact that the NRS relation are stored in several VITs in the under-
lying Oracle DBMS, join operations are performed to retrieve the data from the
NRSD System , which urges us on further studying the issues of query optimiza-
tion of the join operation. For the performance of the select operation, we first
return the index of tuples that satisfied the conditions and they return the tuple
that match the index. Therefore, it require much more time than the project



operation. We notice that from E4 to E6, when the document size is small, the
ratio of the selecting overhead is high, since the number of tuples returned is
small compared with large document. One interesting observation is that, in E6,
we have two conditions and the number of returned tuples is limited, although
the fraction of selecting overhead is still high, but the number of join operations
required are smaller and results can be returned much more efficiently.

6 Conclusions and Future Work

In this paper, we introduce the storage and manipulation of XML data in the
NRSM. The NRSM is useful in transforming and restructuring the XML relations
to other forms. It also allows users to manipulate the ancestor order in the
schema, the sibling order of tags and the value order in the tuples. We also
demonstrate with examples how to formulate XML queries in terms of NRS
operations and to translate XQuery into a sequence of NRS operations. We
believe that a more user-friendly and high level language similar to standard
SQL can be developed on the basis of NRS operations.
We discuss the experimental results of the NRSD System and show that the

table space required for storing XML data with the NRSD System is significantly
less than the size of the original XML documents, which is mainly due to the
fact that NRSM eliminates the redundant data from the XML documents. We
believe that compression can be further applied on the NRSM such that the
storage size can be further reduced while preserving the querying facilities. We
are improving the grouping algorithm on data nodes which have the same labels.
We are still investigating the performance of other NRS operations apart from
the project and select operations over the NRS databases.

References

1. A. Detsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu. A Query Language
for XML. In: http://www.research.att.com/ mff/files/final.html, (1998).

2. H. Kitagawa and T. L. Kunii. The Unnormalized Relational Data Model. Springer-
Verlag, (1989).

3. H. L. Lau and W. Ng. Querying XML Data Based on Nested Relational Sequence
Model. In: Poster Proc. of WWW, (2002).

4. H. L. Lau and W. Ng. The Development of Nested Relational Sequence Model to
Support XML Databases. In: Proc. of the International Conference on Information
and Knowledge Engineering (IKE’02), pp. 374-380, (2002).

5. H. Liefke and D. Suciu, XMILL: An efficient compressor for XML data. In: Proc.
of SIGMOD, vol. 29, pp. 153-164, (2000).

6. M. A. Weiss. Data Structures and Algorithm Analysis in C++. Addison Wesley,
(1999).

7. M. Levene. The Nested University Relation Database Model. Springer-Verlag,
(1992).

8. M. Ley. Digital Bibliography & Library Project. In: http://dblp.uni-trier.de/,
(2002).

9. World Wide Web Consortium. In: http://www.w3.org/, (2002).


