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Abstract 

This thesis presents a method to extract the tempo from an audio file. First of all, we 

study the audio file for the beats; the interval between two successive beats is called 

the inter-onset interval (IOI). In order to investigate the inter-onset interval, two 

musicians were invited to conduct some experiments on the inter-onset intervals for 

a data set. This data set consists of 50 musical recordings which were extracted from 

audio CDs. 

For our tempo extraction system, an audio file is read into memory and then a 

discrete wavelet transform (DWT) is applied. The input signal is then decomposed 

into four levels of DWT coefficients and a peak detection algorithm is performed to 

extract all peaks from these DWT coefficients. All the peaks are used to calculate the 
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IOI. Some of them are more important for the IOI than others. So, a weight is 

introduced to each IOI in order to increase the accuracy of our system. We define the 

weight according to how many of the IOI’s neighbors give similar values. All the 

weighted IOIs will form a histogram. The histogram is then smoothed out using a 

Gaussian function in order to better estimate the tempo. 

For an input which is in stereo format, we treat it as three different inputs; the left 

channel, the right channel and the mono channel. The mono channel is the average 

of the left and right channels. We pass these three inputs into our system. Then, we 

can select the best one to be our final result. 

The entire system was implemented using Matlab. We test our system using one data 

set of 50 musical recordings and one data set which had been used in a tempo 

extraction contest during the International Conference on Music Information 

Retrieval (ISMIR 2004). We obtained the correct tempo for 47 out of the 50 songs in 

our data set, achieving high accuracy. For the contest, there are in total two sets of 

data we can test with. Our ranking for one set is 2nd out of 12 and the other set is 3rd 

out of 12. This result shows that our system is competitive with the other algorithms 

used in the contest.
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CHAPTER 1 - 

INTRODUCTION 

1.1 Thesis Objective and Motivation 

Accurate and efficient search techniques for digital multimedia are one of the most 

important research areas in the field of computer engineering. An accurate measure 

of the tempo of audio recordings would greatly enhance the power of music search 

and retrieval systems. For example, when we want to determine what the genre of a 

piece of music is, tempo is one of the most important factors. 

The purpose of tempo extraction is to extract the tempo value of any song or music. 

The tempo value is a number which represents the speed of a song or music 

measured by beats per minute (BPM). This work seeks to develop an advanced 

algorithm for the determination of the BPM metric for digital audio recordings. 

For any song or music, we can always count the number of beats within 1 minute to 

get the tempo value, or for example, we can count for 15 seconds and then multiply 

the answer by 4. It is easy to do it manually, but how can a computer manage this? 

This thesis proposes an algorithm to extract the tempo using the discrete wavelet 

transform, so that a computer is manage to do it. 
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1.2 Thesis Organization 

Chapter 2 gives a general review on the previous work done on both on-line and 

off-line tempo extraction algorithms. On-line algorithms process in real time while 

off-line algorithms process in batches. 

In Chapter 3, we perform an analysis of a set of 50 songs to propose an appropriate 

IOI tolerance value to the system and compare the values published by other papers. 

An introduction to the discrete wavelet transform is presented in Chapter 4. The 

reason we chose a discrete wavelet transform to perform tempo extraction is also 

discussed. 

Chapter 5 describes the tempo extraction algorithm, which uses a series of discrete 

wavelet transforms. 

Chapter 6 presents the implementation of our system and the analysis of the results. 

The system uses our 50 song set as input to demonstrate the performance of the 

system. It also uses a data set used in a tempo induction contest as input and shows 

the results. 

Finally, the summary of the thesis as well as some future directions are discussed in 

Chapter 7. 
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CHAPTER 2 - 

PREVIOUS WORK 

2.1 Previous research on tempo extraction 

In this chapter, we first introduce two important parameters. Then we discuss 

various types of tempo extraction. There are two main approaches, on-line and 

off-line. On-line algorithms are also called real time systems. They get the tempo 

value while the music is playing and keep updating the tempo value until it remains 

constant. Off-line algorithms involve inputing audio files into a system. After 

processing the audio file data, the system outputs the tempo value. 

2.2 Two important parameters 

The two parameters which are most pertinent to this thesis are now considered. 

1. Inter-onset interval (IOI) tolerance. The interval between two successive beats 

is called the inter-onset interval (IOI). As discussed, there must be some degree 

of permitted deviation in a system measuring musical beats. The concept is 

illustrated in Figure 2.2-1. In some of the published research the value of the 
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permitted IOI deviation is a fixed time value. In other research a percentage 

value in terms of IOI has been used. 

 

Figure 2.2-1: An illustration of the permitted deviation of inter-onset interval (IOI). 
If the second beat lies within +/-d of the target beat time, then the beat is regarded as 

valid. 

2. BPM tolerance. Figure 2.2-2 illustrates how an algorithm which provides a 

measure of BPM for a musical recording is regarded as ‘correct’ if the 

algorithmically derived BPM value is within a certain range of a previously 

determined ground truth value.  
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Figure 2.2-2: An illustration of the permitted deviation of algorithmically derived 
tempo. If the BPM value determined by an algorithm lies within the permitted range 

of the ground truth value then the algorithm is regarded as having correctly 
identified the BPM value of the musical recording. 

2.3 Tempo extraction using an off-line algorithm 

There are several off-line algorithms which perform tempo extraction. Alonso et al. 

[6] introduced a system that works off-line with a large database containing 489 

songs from several musical genres. The algorithm involves three stages: 

I. A front-end analysis that efficiently extracts onsets. 

II. A periodicity detection block. 

III. The temporal estimation of beat locations.  
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This uses an off-line method and the BPM is calculated from the estimated beat 

locations. For the 489 songs in the database, the author reported that the success rate 

of estimating the tempo was 89.7%. 

2.4 Tempo extraction using an on-line basis 

For the algorithms which are using an on-line method, Curtis et al. [4] describes that 

a history mechanism with a decaying memory of past beats can predict the next beat. 

The tempo can be calculated by all the past beats inside the memory. The predicted 

beat can be used for checking if the tempo is changing or not. However, a short 

memory cannot retain a lot of past events. Although it allows rapid tempo 

fluctuations, it is not stable. A long memory steadies the tempo at the expense of 

ignoring fast tempo changes. 

Another algorithm proposed by Mont-Reynaud [7] demonstrates a tempo tracker 

that pursues two strategies in parallel. One extracts the “important events”. These 

events serve as structural anchors in the music. The important points such as strong 

beats can sometimes be recognized in the rhythmic or melodic parts. The other one 

use an independent method for tracking tempo fluctuations. This method searches 

for repeating patterns in successive durations and keeps running statistics on the 

most common durations. Combining these two methods can solve the memory 
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problem because of two reasons. One of the reasons is that this system does not only 

rely on the memory. The other one is that the flexibility is increased as shown in a 

parallel system. 

 

Figure 2.4-1: Overview of Goto’s beat tracking system 

A beat tracking system (see Figure 2.4-1) is introduced by Goto et al. [1]. It is a 

system that processes the acoustic signals of music in real time. First, the system 

performs an analog to digital conversion from musical acoustic signals. Then, it 

performs a Fast Fourier Transform (FFT) to calculate the frequency spectrum. From 
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the frequency spectrum, the system extracts the onset components and then finds the 

onset times from the onset components. It also detects the base drum and snare drum 

at the same time. Afterward, the system can perform beat prediction. As it is 

performing in real time, it has to predict the next beat given the previous beats. 

The author thinks it would not be accurate enough if there was only one agent to 

predict the beat. In order to increase the accuracy, the author suggested using a total 

of thirty agents to predict the next beat (Figure 2.4-2 shows five agents only as an 

example). Each agent determines the next beat independently. Finally, the system 

chooses the agent which obtained the highest reliability for the result. The reliability 

is obtained as the ratio of its peak value to a recent maximum peak value. The 

reliability of each agent will be increased if an onset time coincides with the beat 

time predicted previously. 

Besides getting the beat, it can determine whether a beat is a strong beat or a weak 

beat, which is based on the base drum sound and the snare drum to determine the 

strong beat and weak beat respectively. The author reported that the system correctly 

tracked beats in 27 out of 30 popular songs under the assumption that the 

time-signature is 4/4 and the beats per minute are between 70 and 180. 
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Figure 2.4-2: Five agents are predicting the next beat in real time for Goto’s beat 
tracking system 

Another real time beat tracking system is presented by Goto et al. [2]. This time, the 

system deals with popular music, particular rock and pop music. This type of music 

contains drum sounds that maintain a beat. The main features are similar to the 

previous system developed by the same author [1] except for the frequency-analysis. 

The frequency-analysis parameters are dynamically adjusted by interaction between 

low-level and high-level processing. The low-level process contains frequency 

analysis while the high-level process contains musical knowledge to determine a 

strong or weak beat. As all the songs contain drum sounds, the system contains eight 

pre-registered drum patterns (see Figure 2.4-3) for comparison. The author reported 

that this system correctly tracked beats in 40 out of 42 popular songs sampled from 

compact discs. 
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Figure 2.4-3: Examples of pre-registered drum patterns used by Goto’s beat tracking 
system for popular music 

A new system was modified by Goto et al. [3] and attained a better performance 

compared with their previously described system [2]. The new system improved the 

method for detecting the snare drum. First, the noise components are quantized. 

Second, the system calculates how widely it is distributed along the frequency axis. 

Another improvement is that the agents themselves are not totally independent of 

each other. They track beats according to different strategies utilizing auto- and 

cross-correlation of detected onset times to predict the next beat. Also, agents are 

grouped into pairs. Each agent evaluates the reliability of its own hypothesis and two 

agents in a pair try to track beats with different ranges of tempi. This enables one 

agent to track the correct beats even if the other agent tracks beats with double or 

half the correct tempo. In this example, the system used twenty eight agents and the 

author reported that it correctly tracked beats in 42 out of 44 songs. 
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Figure 2.4-4: A block-diagram of the whole system for Jensen’s algorithm 

Jensen et al. [9] presented an algorithm for finding the beat location and interval (see 

Figure 2.4-4). This algorithm consists of four parts. First, it performs feature 

extraction for the input, followed by peak detection. It then updates the beat 

induction histogram. The beat induction histogram is a histogram that collects all the 

beat intervals and plots the weight of each interval. The system then estimates the 

beat location by using the weight of the peaks. The first two parts of this algorithm 

are similar to the others. The core part of the method is the beat induction histogram 
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(see Figure 2.4-5). It is a histogram of note onset intervals. For every new note onset 

occurance, the histogram is updated by adding a Gaussian shape, of which the center 

is placed at the intervals corresponding to the distance to the previous note onset. 

The maximum of the beat induction histogram gives the current beat interval. 

 

Figure 2.4-5: A selection of beats in the beat induction histogram from Kristoffer’s 
algorithm. The maximum histogram position of the beat induction histogram 

gives the current beat interval. 

A new system was developed by Goto et al. [5] that can perform beat tracking with 

the audio signals that have no drum sound. As there is no drum sound, the system 
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cannot use the old method previously described in [1], [2], [3] to detect the drum 

patterns. So, the system utilizes the following musical knowledge: 

I. Sounds are likely to occur on beats. 

II. Chords are more likely to change at the beginning of measures that at other 

positions.  

III. Chords are more likely to change on beats than in other position between two 

successive correct beats. 

As there is no drum, it is more difficult to track the beat correctly. The author 

reported that the system correctly tracked beats in 34 out of 40 popular songs that 

did not include drum sounds. The accuracy of this system decreases when there is no 

drum sounds. 

2.5 Tempo extraction using the discrete wavelet transform 
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Figure 2.5-1: Block-diagram of George’s beat detection algorithm based on the 
DWT. WT – Wavelet Transform, LPF – Low Pass Filter, FWR – Full Wave 

Rectification, ↓– Down-sampling, Norm – Normalization, ACR – Autocorrelation, 
PKP – Peak Periodicity, Hist – Histogram. 

Some algorithms use discrete wavelet transform (DWT) to perform tempo extraction. 

George et al. [8] described a method using DWT to perform this. This algorithm 

(see Figure 2.5-1) detects the most salient periodicities of the signal. First the signal 

is decomposed using the DWT. By applying a low pass filter, full wave rectification 

and down-sampling for each band, we can extract the time domain amplitude 

envelope of each band separately. Then, we sum up the envelopes of each band and 

compute an autocorrelation function. The first five peaks of the autocorrelation 

function are detected and their corresponding periodicities in beats per minute (BPM) 

are calculated and added in a histogram. By repeating this process over the signal, 

the final histogram is the estimated tempo of the song in BPM.   

From the above work on on-line and off-line algorithms, a general picture of tempo 

determination algorithms has been given. In the next chapter the nature of musical 

beat information is analysed, prior to determining an appropriate tempo extraction 

system. 
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CHAPTER 3 - 

ANALYSIS OF INPUT DATA 

3.1 The importance of the analysis of the input data 

As discussed in Chapter 1, one of the primary parameters of musical recordings is 

the tempo of the recording, commonly expressed as a BPM (beats per minute) value. 

The BPM measure is a key parameter for music search and retrieval systems and 

related fields such as genre categorization, beat tracking and musical transcription. 

However, musicians do not play music using precise time intervals between each 

beat. For example, time deviations between successive beats are a consequence of 

musical expression. Therefore, an algorithm which attempts to determine the tempo 

of a musical recording must appreciate that a ‘normal’ beat involves some time 

deviation.  

There are two motivations for analyzing the input data. Firstly, although the range of 

techniques employed by BPM estimation algorithms varies considerably, the 

majority expressly allow for some form of beat deviation in their methodology. 

However, there is no known measure of what ‘normal’ deviation is. As a result the 

range of permitted beat deviation varies greatly from algorithm to algorithm. If an 
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expression for normal beat deviation was derived then such algorithms could 

employ the expression during beat analysis, which should result in significantly 

greater accuracy. 

The second issue arises when the performance of a tempo estimation algorithm is 

being assessed. BPM results are typically compared to a ‘ground truth’ measure 

obtained by human subjects, with the algorithmically determined BPM value 

regarded as correct if it falls within a percentage range of the ground truth value. 

However, because of the lack of understanding of normal deviation from the ground 

truth BPM measure, the BPM tolerance values used by published studies vary 

considerably. For an illustration of this consider two recent research competitions in 

which tempo estimation was a major task. A BPM tolerance value of 4% was used 

by one competition (the International Conference on Music Information Retrieval 

(ISMIR 2004) Audio Description Contest [10]) and the significantly different value 

of 8% by another (the Music Information Retrieval Evaluation eXchange (MIREX 

2005) – Audio Tempo Extraction [18]). A measure of normal deviation could be 

used to more accurately determine the range of values for which a BPM result 

should be considered correct.  

The issue of beat deviation is a critical one for both these parameters. Indeed, there 

is a general case to be made where algorithmic methods for tempo estimation are 



 17

gradually reaching a nadir of performance. As an indication of this the top four best 

scores for the MIREX 2005 contest were very closely clustered at 0.670, 0.675, 

0.675, and 0.689 [18], although a discussion of the scoring method used by that 

contest is outside the scope of this paper. An appropriate measure of beat deviation 

may give rise to increased performance of the tempo estimation field as a whole. 

To address these issues we assembled a set of musical recordings. We then analysed 

the performance of two subjects in which they followed the beat of the recordings 

via tapping tests. The beat deviation of the two subjects was considered in the light 

of deviation values used by previous research. To address the issue of individual 

beat deviation we propose a power curve measure of deviation across BPM which 

can be used by algorithms which perform beat detection. 

3.2 Our song set 

A set of 50 musical recordings was collected for our study. The recordings were 

extracted from standard commercially available audio CDs and were stored in 

non-compressed format. During the process of accumulating the set any song which 

was found to have a varying tempo was discarded. The set of recordings were 

selected to include a wide range of styles and musical structures. A summary of the 

different styles is shown in Table 3.1. 
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6 Alt/Indie 3 Ballad 3 Blues 2 Classical  
2 Country 2 Electronica 1 Folk Rock 1 Heavy Metal 
1 Instrumental 6 Jazz 3 Latin 5 Pop 
5 Reggae 7 Rock 2 Soul 1 Synth Pop 
     

50 Total    

Table 3.1: Categories of the 50 songs in our set. 

To ensure that the songs could be located by future researchers all albums were 

checked as being available for purchase over the Internet. A complete list of the 

songs and associated information is available in Table 3.2. 

Song Album Artist Genre 
Addicted to love Now that's what I call music 1986 Robert Palmer Rock 
Baby please don't go They call me muddy waters Muddy Waters Blues 
Bachelorette Homogenic Bjork Alt/Indie 
Besito pa ti Mongo introduces la lupe Mongo Santamaria Latin 
Breakfast in bed UB40 UB40 Reggae 
Buenas noches from a lonely room Buenas noches from a lonely room Dwight Yoakam Country 
Chariots of fire Chariots of fire Vangelis Electronica 
Country feedback Out of time R.E.M Alt/Indie 
Do you want to You could have it so much better Franz Ferdinand Rock 
Domingo Stella Yello Synth pop 
Firestarter The fat of the land Prodigy Pop 
Five circles Chariots of fire Vangelis Electronica 
Freeddie freeloader Kind of blue Miles Davis Jazz 
Friendly fire Guns in the ghetto UB40 Reggae 
Guns in the ghetto Guns in the ghetto UB40 Reggae 
Hunter Homogenic Bjork Alt/Indie 
I am a rock Sounds of silence Simon & Garfunkel Folk Rock 
I cried for you After hours Sarah Vaughan Jazz 
I got you Buenas noches from a lonely room Dwight Yoakam Country 
I wish I know Pure jazz chillout Billy Taylor Trio Jazz 
Knock on wood Knock on wood Eddie Floyd Soul 
Layla Now that's what I call music 1982 Derek & The Dominoes Rock 
Lie to me Rei momo David Byrne Alt/Indie 
Loco de amor Rei momo David Byrne Reggae 
Maggic McGill Morrison hotel The Doors Blues 
Maybe someday Bloodflowers Cure Alt/Indie 
Mi tonada montuna La coleccion cubana Ibrahim Ferrer Latin 
Mofo Pop U2 Alt/Indie 
My heart will go on Titanic music from the motion picture Celine Dion Ballad 
Nerve centre The city Vangelis Instrumental 
No expectations The first 10 years Joan Baez Ballad 
No surprises OK computer Radiohead Pop 
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Paranoid android OK computer Radiohead Pop 
Play dead Debut Bjork Alt/Indie 
Pride Rattle and hum U2 Rock 
Right here, right now You re come a long way, baby Fat Boy Slim Pop 
Roadhouse blues Morrison hotel The Doors Blues 
Song for Bob Dylan Hunky dory David Bowie Rock 
Summertime After hours Sarah Vaughan Jazz 
The pan piper Sketches of spain Miles Davis Jazz 
The ride of the valkyries Classical music for dummies Wagner Classical 
The soul cages Soul cages Sting Rock 
The thing that should not be Master of puppets Metallica Heavy metal 
Una fuerza inmensa La coleccion cubana Ibrahim Ferrer Latin 
Wednesday morning 3am Wednesday morning 3am Simon & Garfunkel Pop 
Who's crying now Who's crying now Joyce Sims Soul 
Will O the wisp Sketches of spain Miles Davis Jazz 
With god on our side The first 10 years Joan Baez Ballad 
Word up Word up Gun Rock 
Work Uprising Bob Marley Reggae 

Table 3.2: A complete list of the 50 songs with associated information 

3.3 The experiment 

Two people were employed for this study. Both were female, aged approximately 25 

years old, musically trained to western exam grade 8 standard, and regularly active 

in musical accompaniment and teaching. In this section they are referred to as 

subject A and subject B. The two subjects were not known to each other and did not 

confer in any way during the assessment. Both subjects were required to process 

each of the 50 songs in our set. For each recording the procedure was as follows. 

The subjects first familiarized themselves with the music by listening to it as many 

times as they desired. They were then required to formally identify the time 

signature and therefore the main beat. They then listened to the song and tapped a 

key on a computer keyboard each time that a beat occurred. For each tap the time 
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interval relative to the previous tap was recorded by a software program. The 

subjects were required to record a continuous tap sequence from the start of the 

music onwards, for a minimum duration of 65 seconds. After the tap sequence for a 

song was recorded the time interval data was transferred to a spreadsheet for further 

analysis. Each individual time interval was checked. If any missing or double taps 

were identified the subjects were required to re-do the complete tap sequence for 

that recording. The average IOI value was used to determine a BPM value for each 

tapping sequence. 

For 10 of the 50 songs the two subjects disagreed on the time signature. That is, one 

subject typically identified the main beat as being double or half that identified by 

the other subject. This is not an error as such, it is common that even professional 

musicians perceive the primary beat of a song differently to other musicians. This is 

particularly the case for songs which have a relatively more complex rhythmic 

structure, which is true for a number of songs in our set of 50. As any up- or 

down-scaling of the deviation data might falsely skew subsequent analysis no 

processing took place to resolve such conflicts. Consequently, the two subjects 

exhibited a different range of BPM values for the same 50 songs. The results for 

subject A cover a range of 49.5 BPM to 185.6 BPM, and the results for subject B 
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cover a range of 65.5 BMP to 174.9 BPM. A histogram of the 100 BPM values is 

shown in Figure 3.3-1. 
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Figure 3.3-1: A histogram of BPM values for the 100 sets of tapping data. 

The minimum, maximum and average tapping durations for subject A were 65.6, 

234.1, and 104.9 seconds respectively, and for subject B it was 85.2, 202.1 and 

120.7 seconds respectively. However, in our subsequent analysis we do not use 

every recorded tap interval. Relatively more taps were recorded for relatively faster 

tempo recordings, as the interval between beats is shorter. However, an arbitrary 

data set with relatively more data tends to demonstrate relatively less deviation. In 

order to avoid this potential influence our analysis uses the first 96 IOI values for 
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each song. The value of 96 comes from the minimum quantity of tapping intervals 

recorded for any song in our study. 

3.4 Data analysis 

Our study is concerned with identifying a measure of the normal deviation of beats 

across a range of BPM. Before determining the measure of beat deviation across 

BPM it is appropriate to first consider whether the tapping data is approximately 

normal in shape, so that standard deviation analysis can be applied. 

3.4.1 Skewness and kurtosis 

For this reason skewness and kurtosis values of the 100 sets of tapping data were 

derived. Skewness provides a measure of the symmetry of a data set about the mean; 

kurtosis provides a measure of how peaked or flat the data is relative to a normal 

distribution. 

The skewness values for each of the 100 tapping sequences are shown in Figure 

3.4-1. A value of zero indicates a perfectly normal distribution. Although there are 

many individual songs which do not exhibit a negligible value, the average skew 

value is 0.065 and the standard deviation is 0.38. We suggest that the songs which 

exhibit non-negligible values do so primarily because they have relatively more 

varied rhythmic patterns.  
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Figure 3.4-1: A graph of skewness across BPM for the 100 sets of tapping data. 

The 100 sets of tapping data were then analysed for excessive kurtosis. Figure 3.4-2 

shows a plot of the excessive kurtosis values across BPM. The average excess 

kurtosis is 0.805, and the standard deviation is 2.36. There is therefore, on average, a 

mild excess of kurtosis. That is, the distribution of tapping data tends to have a 

slightly longer tail on the right hand side compared to the left. However, Figure 

3.4-2 shows that just a few sets of tapping data exhibit greatly excessive kurtosis, 

with the great majority of tapping data exhibiting relatively minor levels of excess 

kurtosis. We propose that the few songs exhibiting greatly excessive kurtosis are 

likely to be the result of complex rhythmic structures which have influenced the 

tapping measures of the subject. 
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Figure 3.4-2: A graph of excess kurtosis across BPM for the 100 sets of tapping 
data. 

We conclude that, based on the limited data available, it is sufficient to regard the 

sets of tapping data as having a normal distribution. 

3.4.2 Standard deviation 

The standard deviation was calculated for each of the 100 sets of tapping data, and is 

shown in Figure 3.4-3. A best fit power curve is shown for each subject, for easier 

comparison. A basic observation is that IOI deviation is inversely proportional to the 

song BPM. The general pattern of deviation across BPM is almost identical for both 

subjects, although subject B exhibits a minor but consistently higher level of 

deviation across BPM. The correlation coefficient between the two subjects is 

0.9984. It is well known that different musicians playing the same piece of music 
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express different levels of timing deviation. The difference between subjects may be 

due to slight differences in musical interpretation and/or the way they perform a 

piece. As the difference in patterns of deviation between the subjects is minor, for 

subsequent analysis we aggregate both sets of 50 tapping data into a superset of 100. 

 

Figure 3.4-3: A plot of standard deviation of IOI values across BPM for all 100 sets 
of tapping data, using the first 96 IOI values in each set. The best fit power curve for 

subject A is the longer of the two curves. Each data point plotted in the graph 
represents the average deviation of the 96 intervals in one of the 100 sets of tapping 

data. The graph in total involves the analysis of 9700 individual taps. 

The minimum, maximum and standard deviation for the 100 sets of tapping data are 

shown in Figure 3.4-4, together with power curves of best fit for each. The 

minimum deviation of IOI values from their mean (that is, the difference between 

the closest IOI value to the mean IOI value and the mean IOI value itself) has an 

average value of 3.31ms, with a minimum and maximum of 0.08ms and 14.39ms 
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respectively. The low values are to be expected for a normal distribution of data 

containing 96 values. The standard deviation of IOI values has an average value of 

30.38ms, with a minimum and maximum of 16.69ms and 58.29ms respectively. The 

maximum deviation of IOI values from the mean has an average value of 86.71ms, 

with a minimum and maximum of 41.96ms and 245.22ms respectively. 

 

Figure 3.4-4: Minimum, mean and maximum deviations of the tapping data plotted 
across BPM for all 100 sets of tapping data. The values of IOI mean (that is, 

standard) deviation lie in the range of 16.7-58.3ms. 

The question we wish to address is this: which level is the most appropriate for a 

beat estimation algorithm? Figure 3.4-5 illustrates a perfect normal distribution for 

an arbitrary data set and the quantity of data included at varying levels of standard 

deviation. At the most commonly considered level of deviation, that of 1 SD, only 

68.3% of the data is included. With 31.7% of the data ‘lost’, it is probable that this 
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level does not involve enough of the data for our purposes. Higher levels of 

deviation, which would include greater amounts of the data, are more likely to be 

appropriate. In the following section we describe how we processed our tapping data 

at varying levels of standard deviation in order to help identify the most appropriate 

one. 

 

Figure 3.4-5: Measures of standard deviation and the corresponding percentage of 
data included, for a perfect normal distribution. 

3.5 Most appropriate IOI tolerance 

Prior to considering an appropriate measure of IOI deviation we must first determine 

an appropriate measure of success. If we define valid beats that are detected by an 

arbitrary beat analysis system as A, and valid events which are not detected as B, 

then a percentage measure of recall can be defined as follows: 

Equation 1: Recall 100
)(
×

+
=

BA
A  

We processed the 100 sets of tapping data to determine values of recall according to 
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different IOI tolerances. The six different tolerance values we used are multiples of 

standard deviation (SD), starting from a value of 0.5SD and proceeding to 3SD in 

half SD increments. The results are shown in Figure 3.5-1. At the lowest tolerance 

level of 0.5SD, on average only 68.7% of the valid beats in the 100 sets of tapping 

data are detected, with the lowest level of recall for one song being 47.9%, and the 

highest level of recall being 94.8%. In contrast, the highest tolerance level of 3SD 

results in an average of 98.9% of valid beats being detected, with the lowest level of 

recall for one song being 94.8%, and the highest level of recall being 100%. 

 
Figure 3.5-1: Recall measures for the 100 sets of tapping data at varying levels of 

standard deviation. The maximum and minimum values of the candlestick line 
indicate the best and worst recall measures encountered. 

Acoustic events may be falsely detected as valid beat events by a beat detection 

algorithm. If we use C to represent acoustic events falsely identified as valid beats 

by the system then a measure of precision can be defined as follows: 
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Equation 2: Precision 100
)(
×

+
=

CA
A  

An accurate understanding of precision would be of great assistance in designing 

beat analysis systems. However, there are significant problems in measuring 

precision in the context of this work. For example, in order to assess precision we 

could artificially introduce noise into our tapping data, and then determine the value 

of precision, but the result would be dependant on the quantity and distribution of 

such artificially introduced beats. Furthermore, the quantity of false events accepted 

as true by a system depends greatly upon the algorithm being used. Therefore it is 

not possible to measure precision in the context of our study. 

However, it is possible to estimate the value of C across a range of values for IOI 

deviation, and hence to suggest the balance between A, B, and C. In Figure 3.5-2, 

the three measures are shown contrasted across a range of IOI tolerance values, 

expressed as a percentage. The section of the graph concerning valid beats not 

detected by a system is based upon our experience in processing the 100 sets of 

tapping data (see Figure 3.5-2, to be discussed later). The balance between valid 

beats and invalid beats accepted by the system is derived from heuristic experience. 

Clearly, the goal is to choose a level of tolerance which maximizes A and minimizes 

B and C. With reference to Figure 3.5-2, it can be seen that this level of tolerance 

would lie somewhere in the range 10-20%. 
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Figure 3.5-2: A partly heuristic illustration of valid beats not detected, valid beats 
detected, and invalid beats detected for an arbitrary beat detection system, across a 

range of IOI tolerance values expressed as a percentage of the IOI value. The portion 
shown assigned to B is based on the results of our analysis discussed later, shown in 

Figure 3.6-2. 

After considering the results of our recall analysis we suggest that an acceptance 

level of 2SD is an appropriate compromise between valid and false beat acceptance. 

At this level the majority of the valid beat data is accepted (97.1% on average, as 

illustrated in Figure 3.5-1). The worst recall for any single set of tapping data in our 

set of 100 was 89.6%, and the best result was 100%. Tolerance levels higher than 

2SD invite the possibility that too many false events become accepted as valid beats; 

tolerance levels lower than that reduces the number of accepted valid events to an 

unacceptably low level. 

The level of 2SD can be approximated by the following expression of a power curve 

of best fit: 
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Equation 3: Permitted IOI deviation = 320.67x-0.3388, where x is the tempo value. 

3.6 A comparison with previously published tolerance values 

3.6.1 A survey of previously published values 

We carried out a survey in order to consider our suggested expression for IOI 

tolerance in the context of previous research. We found many papers did not state 

either the permitted IOI tolerance or the permitted BPM tolerance. Some beat 

estimate research does not employ an IOI tolerance at all (for example, the beat 

tracking algorithm described by Sethares [27]). As such techniques cannot easily be 

considered within the context of this thesis they have not been included.  

Our survey included every paper submitted for two recent research competitions in 

which tempo estimation was a primary element. Those conferences are the 

International Conference on Music Information Retrieval (ISMIR 2004) Audio 

Description Contest [10] and the Music Information Retrieval Evaluation eXchange 

(MIREX 2005) [18] competition. In total, we identified 11 papers that stated an 

accepted tolerance for the final BPM result, 7 papers that stated the permitted 

tolerance values for individual IOI values, and only 3 papers that stated both. These 

are summarized in Table 3.3. The values in column two are those for d shown in 

Figure 2.2-1, and the values for column three are those of a shown in Figure 2.2-2. 
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Paper IOI tolerance BPM tolerance (%) 

Klapuri [10] 17.5% 10 

Gouyon [11], Peeters [12], Uhle & Herre 

[13], Gouyon & Dixon [14]; 

ISMIR 2004 - 4 

Alonso [15], Alonso [16], Alonso [17] - 5 

Davies & Brossier [19]; 

MIREX 2005 - 8 

Davies & Plumbley [20] 15% 10 

Klapuri [21] - 10 

Hainsworth & Macleod [22] 15% 20 

Dixon [24] 70ms - 

Jensen & Andersen [25] 50ms - 

Dixon [23] 40ms - 

Jensen & Andersen [26] 20ms - 

Table 3.3: IOI and BPM tolerances stated in previously published papers. An empty 
cell indicates that the corresponding value was not stated in the paper. ISMIR and 
MIREX refers to the two contests concerning tempo estimation described in the 
main text. When assessing the results of tempo estimation algorithms tolerance 

values of 4% and 8% respectively were used in those competitions. 

3.6.2 Permitted IOI tolerance and our study 

As demonstrated previously, there is a negative relationship between beat deviation 

and BPM. It therefore makes sense if this relationship is employed when 

determining a value for permitted IOI time deviation. That is, relatively longer IOI 
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values should have a relatively longer permitted deviation. One way to achieve this 

is by using an IOI tolerance value which takes the form of a percentage measure of 

the IOI value. In our review we found several papers that did this. As summarized in 

Table 3.3, two different values of 15% and 17.5% were encountered. Other papers 

that stated tolerance values for IOI used fixed time values, meaning that their 

method did not exploit the relationship between deviation and BPM. We 

encountered values of 20, 40, 50 and 70ms. Both the percentage and fixed values we 

encountered have been plotted in Figure 3.6-1, together with our suggested curve 

previously labeled Equation 3. 

 

Figure 3.6-1: Permitted IOI deviation for papers included in Table 3.3, with our 
suggested curve “y = 320.67x-0.3388” shown superimposed. Each of the 100 plotted 
data points represents the 2SD point for one of the sets of tapping data in our study.      
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One question of interest is the performance of previously published tolerance values. 

We took the permitted IOI tolerance values from the published papers listed in Table 

3.3 and applied them to our 100 sets of tapping data and determined the 

corresponding recall measures. The results are shown in Figure 3.6-2. 

 

Figure 3.6-2: Recall measures across a range of permitted IOI deviation values. Each 
data point represents the result of processing 100 sets of tapping data. The candle bar 

for each data point indicates the lowest and highest recall measures encountered 
when processing one of the tapping sets. The five circles indicate values that have 

previously been used in published research, shown in Table 3.3. 

As would be expected, levels of recall increase as IOI tolerance increases. The 

lowest published IOI tolerance we encountered was 4%. Figure 3.6-2 reveals that at 

that level of tolerance, only 59.1% of valid beats would have been detected if that 

tolerance value was applied to our 100 sets of tapping data. That is, the tolerance 

value would have resulted in a failure to detect approximately 40.9% of the beats. 

The next smallest tolerance we encountered, that of 5%, would have resulted in 
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29.4% of all beat events not being detected if it had been used on our song set. The 

largest tolerance value we encountered, that of 20%, is shown at the rightmost point. 

It would have resulted in 99.75% of all beat events in our 100 sets of tapping data 

being detected, with only 0.25% of beat events missed. However, as discussed 

before, this data should be interpreted in conjunction with measures of precision, 

and that is not within the scope of this thesis. 

3.6.3 Permitted BPM tolerance and our study 

When assessing the performance of a tempo estimation algorithm, all previous 

research that we encountered used a percentage measure to express the range within 

which the BPM result was regarded as correct. The resulting values are shown in 

Figure 3.6-3 together with our curve. 
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Figure 3.6-3: Accepted tolerance of the final BPM result for papers included in 
Table 3.3, with our suggested curve “y = 320.67x-0.3388” shown superimposed. Each 
of the 100 plotted data points represents the 2SD point for one of the sets of tapping 

data in our study  

As discussed before, our curve is selected to approximate the ‘natural’ beat 

deviation of the 50 songs in our set. We believe it is appropriate to apply the same 

measure of deviation to BPM tolerance. Accordingly, we suggest that many of the 

values used in previous research are inappropriate. Values of 4%, 5% and also 8% 

appear to be too restrictive for measures of BPM tolerance. Higher values of 10% 

come close to our curve; yet we encountered higher values still, (20% in one paper) 

giving a range which includes almost every beat in our set of 50 songs, however this 

may be too liberal. We propose that the same power curve equation of Equation 3 

would be a more appropriate choice. In the event that a percentage measure is 

preferable, our analysis demonstrates that 10% or 12% would have similar results. 
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3.7 Conclusion 

In this chapter we have looked at the two related issues of permitted beat deviation 

and BPM deviation. By analyzing the performance of musicians entering tapping 

sequences for 50 songs we determined appropriate expressions for permitted beat 

deviation and BPM deviation. Both parameters are considered in the light of 

previous studies. We are hopeful that this work will improve the performance of all 

algorithms which require some form of beat identification. Our system would use 

Equation 3 for the permitted IOI deviation. 
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CHAPTER 4 - 

DISCRETE WAVELET TRANSFORM 

4.1 Introduction of discrete wavelet transform 

In this chapter, the details of the discrete wavelet transform are described. After the 

analysis of the input data, the next stage is to use the discrete wavelet transform to 

change the input data from the time domain into the frequency domain. It is very 

common to analyze the audio data in the frequency domain, as some important 

features can only be seen in the frequency domain. 

In order to explain what the discrete wavelet transform is, we must first explain what 

a continuous wavelet transform is. This is because a discrete wavelet transform is 

devised by a continuous wavelet transform. So, we would like to introduce what a 

continuous wavelet transform is. It is defined as the sum over all the time of the 

signal multiplied by scaled, shifted versions of the wavelet function Ψ: 

Equation 4: ∫
∞

∞−

= dttpositionscaletfpositionscaleC ),,()(),( ψ  
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Figure 4.1-1: A continuous wavelet transform breaks down a signal into constituent 
wavelets of different scales and positions 

A continuous wavelet transform breaks down a signal into constituent wavelets of 

different scales and positions (see Figure 4.1-1). The results of the CWT are many 

wavelet coefficients C, which are a function of scale and position. Multiplying each 

coefficient by the appropriately scaled and shifted wavelet yields the constituent 

wavelets of the original signal. 

It is a fact that the output of a wavelet transform is a time-scale view of a signal. 

What is the meaning of scale? Scaling a wavelet means stretching or compressing it 

(see Figure 4.1-2). The highest scale corresponds to the most stretched wavelet. It 

compares the longest portion of the signal, so is responsible for the low frequency 

part. 

 

Figure 4.1-2: Low scale (left) and high scale (right) of the wavelet 
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Another feature of the wavelet is the position. It is determined by the shifting of a 

wavelet. Shifting means delaying or hastening its onset (see Figure 4.1-3). 

 

Figure 4.1-3: Original wavelet function (left) and shifted wavelet function (right) 

After knowing what scaling and shifting are, how does the wavelet transform 

actually work? This process produces wavelet coefficients that are a function of 

scale and position. There are a total of five steps to perform this process: 

I. Take a wavelet and compare it to a section at the start of the original signal. 
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II. Calculate the coefficient, C, that represents how closely correlated the wavelet 

is with this section of the signal. The higher C is, the more the similarity. 

Figure 4.1-4 shows an example that results in a low value of C because it is not 

similar. More precisely, if the signal energy and the wavelet energy are equal to 

one, C may be interpreted as a correlation coefficient. 

 

Figure 4.1-4: Calculate a coefficient, C, to show how similar the wavelet and the 
signal are. 

III. Perform a time shift so as to shift the wavelet to the right. Repeat steps 1 and 2 

until you have covered the whole signal (see Figure 4.1-5). 

 

Figure 4.1-5: Shift the wavelet to another position 
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IV. Scale the wavelet and repeat steps 1 through 3 (see Figure 4.1-6). 

 

Figure 4.1-6: Scale the wavelet by stretching it 

V. Repeat steps 1 through 4 for all scales. 

When the above five steps are done, the coefficients produced at different scales by 

different sections of the signal are obtained. However, calculating the coefficients at 

every possible scale is a lot of work. It is possible to choose only a subset of scales 

and positions to be much more efficient. If we choose the scales and positions based 

on powers of two, it is called the discrete wavelet transform.  

4.2 Why the discrete wavelet transform is used 

There are a few methods that perform a transformation from time domain to 

frequency domain. The reason this system uses the discrete wavelet transform but 

not the other transformations is discussed in the following paragraphs. 

Some of the tempo extraction algorithms analyze the signal in the frequency domain, 

so, we need to apply a transformation to change the input signal from the time 
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domain into the frequency domain. There are many types of transformation which 

can perform the above transform, such as the Fourier transform (see Figure 4.2-1). 

 

Figure 4.2-1: The original signal in the time domain (left). After the Fourier 
transform, the signal is transformed into the frequency domain (right) 

The Fourier transform breaks down a signal into constituent sinusoids of different 

frequencies (see Figure 4.2-2). This is extremely useful because the signal’s 

frequency content is very important. 

 

Figure 4.2-2: A Fourier transform breaks down a signal into constituent sinusoids of 
different frequencies with different amplitudes 

However, it has a serious drawback. After the signal is transformed to the frequency 

domain, time information is lost. When looking at a Fourier transform of a signal, it 

is impossible to tell when a particular event took place. If the signal properties do 

not change much over time, that is, it is a stationary signal, this drawback is not very 
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important. However, in our case we want to extract the tempo from a signal which is 

music from an audio CD, which would not be a stationary signal. So, the Fourier 

transform is not suitable as a tempo extraction algorithm. 

In order to correct this deficiency, Dennis Gabor (1946) adapted the Fourier 

transform to analyze only a small section of the signal at a time. This technique is 

called windowing the signal. The whole method is called short-time Fourier 

transform (STFT) (see Figure 4.2-3). By using STFT, it maps a signal into a 

two-dimensional function of time and frequency. 

 

Figure 4.2-3: The original signal in time domain (left). By using the short time 
Fourier Transform with windowing technique, the output would become frequency 

against time (right) 

The STFT provides some information about both when and at what frequencies a 

signal event occurs. This information can be obtained with limited precision, and 

that precision is determined by the size of the window. However, when you choose a 

particular size for the time window, the window size remains the same for all 
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frequencies. Many signals require a more flexible approach, such as varied window 

sizes, to determine more accurately either time or frequency. 

 

Figure 4.2-4: The original signal in time domain (left). By using the Wavelet 
Transform, the output would become scale against time (right). Low scale means 

high frequency while high scale means low frequency 

A wavelet transform uses the windowing technique with variable sized regions (see 

Figure 4.2-4). This allows the use of long time intervals when we want more precise 

low frequency information, and shorter time intervals when we want high frequency 

information. 

 

Figure 4.2-5: Time domain, frequency domain, short time Fourier transform and 
wavelet analysis views of a signal 
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A comparison between time-based, frequency-based, STFT and wavelet analysis can 

be easily seen in Figure 4.2-5. Wavelet transform is the best among these for the 

purpose of tempo extraction because it contains the time information with a flexible 

window size. So, it is used for our tempo extraction system. The details of how to 

apply this transformation are discussed in section 5.2.  
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CHAPTER 5 - 

TEMPO EXTRACTION ALGORITHM 

5.1 Overview of the system 

For our tempo extraction system, there are total five stages from top to bottom (see 

Figure 5.1-1). First, a discrete wavelet transform is applied to the audio data for four 

iterations to obtain the DWT coefficients, cD1 to cD4. Second, a peak detection is 

performed for cD1 to cD4 concurrently. After getting the peaks of these coefficients, 

the beat intervals are calculated from these peaks. Then, we combine four sets of 

beat interval information to create a histogram. Finally, we improve the histogram 

by smoothing with a Gaussian function. After these five stages, the tempo of the 

audio data can be obtained. 
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Figure 5.1-1: Overview of the tempo extraction system 

5.2 Data Input 

Any audio file can be the input data. It can be a song or some music without vocals. 

The duration of the audio can be any length but with a minimum of 5 seconds. The 

tempo cannot be accurate if the duration is less than 5 seconds for our system. 
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5.2.1 Input file format 

For the file format, our system supports the Microsoft WAV and mp3 format. For a 

better result, an uncompressed WAV file is preferred. This is because mp3 format 

has been compressed so that some raw data has been lost in order to decrease the file 

size. It is the same for the compressed WAV file format. So, an uncompressed WAV 

is the best format as none of the raw data have been altered. 

The sampling rate is also important. It is better to use a 44100Hz WAV file than a 

22050Hz or lower sampling rate. The Nyquist-Shannon sampling theorem states that 

the sampling frequency has to be greater than twice the Nyquist frequency. In other 

words, the sampling frequency must be at least twice the maximum frequency 

component of the signal. If the sampling rate is smaller than or equal to twice the 

Nyquist frequency, the high frequency components will no longer be reconstructed. 

Figure 5.2-1 shows an example that using a low sampling rate to sample a high 

frequency sinusoidal signal. As a result, the high frequency components will become 

low frequency components as shown in Figure 5.2-1. Then those components mix 

with the original lower frequency components. This is called aliasing. In conclusion, 

a high sampling rate is important. 
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Figure 5.2-1: A sinusoidal signal of frequency f sampled using a sampling rate s 
where s ≤ 2f 

5.2.2 Our input data sets 

In our system, two sets of input data are utilized: 

I. One of them consists of 50 uncompressed WAV files that are extracted from 

audio CDs in a 44100Hz, stereo format. The duration of each song is at least 4 

minutes. These 50 WAV files contain several genres as discussed in section 

3.2.  

II. The other set was used by a tempo induction contest which was organized 

during the International Conference on Music Information Retrieval (ISMIR 

2004). It contains 698 excerpts of dance music and 465 song excerpts of 30 

seconds and 20 seconds length respectively. They are all uncompressed WAV 

files in 44100Hz and mono format. 

For the input data, we need to have a tempo value in order to compare our system 

result. We define these tempo values to be the ground truth tempo. We obtain the 
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ground truth data of our 50 songs by the experiment described in section 3.3. If two 

subjects agree on the time signature, the ground truth is obtained by taking the 

average of two tempos. If not, the author of this thesis would be the third party to 

determine the time signature. The tempo derived by the subject, which is not the 

same time signature as the author, are multiplied or divided by two or three to make 

the time signature the same. Finally, taking the average of these two tempos will 

give the ground truth tempo. For example, assume that subject A says 90 BPM and 

subject B says 160 BPM. As the two subjects do not agree on the time signature, the 

author as a third party will decide on the time signature. If it is a relatively slow song, 

the tempo of subject A might remain 90 BPM while that of subject B becomes 160 

BPM divided by 2, which is equal to 80 BPM. Finally, the ground truth tempo of 

this example is 85 BPM by taking the average of these two values. 

5.3 Applying the discrete wavelet transform 

A discrete wavelet transform is applied to all these input data to change from time 

domain into frequency domain for further analysis. In discrete wavelet transform, 

we use the term approximations and details. The approximations are the high-scale, 

low-frequency components of the signal, while the details are the low-scale, 

high-frequency components. 
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Figure 5.3-1: Signal S passes through two filters to get signal A and signal D 

Consider an original signal, S, passes through two complementary filters and 

emerges as two signals A and D (see Figure 5.3-1). Note that the number of samples 

of output signal A and that of output signal D combined together is twice as much 

data as we started with. Suppose the original signal S consists of 1000 samples of 

data. Then the resulting signals A and D would total 2000 samples of data. However, 

we want 1000 samples instead of 2000 samples. We use a technique called 

downsampling. For this we can use different downsampling factors. As we want to 

get 1000 samples instead of 2000 samples, we use the downsampling factor equal to 

2. So, we may keep only one sample out of two in both A and D. After performing 

downsampling, we get two sequences called cA and cD (see Figure 5.3-2). These 

sequences are called DWT coefficients. 
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Figure 5.3-2: Signal A and D get 1000 samples (left). Signal cD and cA get 500 
coefficients by downsampling (right). (↓) in the right figure means downsampling. 

To gain a better appreciation of this process, let us perform a DWT of a signal (see 

Figure 5.3-3). Our signal, S, is a pure sinusoid with high-frequency noise added to it. 

The detail coefficients cD are small and consist mainly of a high-frequency noise, 

while the approximation coefficients cA contain much less noise than the original 

signal S. This is because the detail coefficients cD filter out the low frequency 

components of the original signal which remains the high frequency components 

that in this example are the noise. 

 

Figure 5.3-3: A DWT is applied to signal S to obtain cD and cA 



 54

The decomposition process can be iterated, with successive approximations being 

decomposed in turn. The original signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree (see Figure 5.3-4). 

 

Figure 5.3-4: A wavelet decomposition tree with four iterations 

For our tempo extraction system, we use four iterations to obtain cD1 to cD4. For an 

input data which is in format 44100Hz, the frequency band of cD1 to cD4 is shown 

in Figure 5.3-5.  
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Figure 5.3-5: The frequency band of cD1 to cD4 if the input data is in format 
44100Hz 

We choose several iterations because different songs are better for tempo analysis at 

different frequency bands. We informally examined several songs. For frequencies 

lower than approximately 1000Hz we found too much acoustic influence by audio 

sources which were often not directly relevant to the beat of the music. Therefore 

more than four iterations is not appropriate for the tempo extraction system. 

5.4 Peak detection 

After we obtain cD1 to cD4 by four iterations of discrete wavelet transform, a peak 

detection process is applied for each of cD1 to cD4. We perform the peak detection 

because the beat may occur at the peak of the DWT coefficients. If all the peaks are 
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detected, we can focus on the peaks only to get the beat intervals. There are two 

stages in the peak detection process. They are full wave rectification and the moving 

window technique. 

5.4.1 Full wave rectification 

Full wave rectification is a process to convert all the negative values into positive 

values, while the positive values remain unchanged. Here is an example of a full 

wave rectification. The original signal is a sine wave, and the rectified signal is 

shown in Figure 5.4-1. 

 

Figure 5.4-1: The original signal is a sine wave (upper graph). After applying full 
wave rectification, the rectified signal is obtained (lower graph) 

The DWT coefficients contains positive values and negative values. We need to 

apply the full wave rectification to the DWT coefficients so that all the negative 

values become positive values. This is because peaks may appear in either the 
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positive or the negative values, so we need to compare both parts to find the peak. 

However, if full wave rectification is applied, all peaks can be obtained by finding 

the local maximum. 

5.4.2 Moving window 

After the full wave rectification is applied, all the DWT coefficients become positive 

values. We can obtain the peak by locating the local maximum of a moving window. 

For our system, we assume the tempo of the input is less than 240 BPM. For a song 

that is 240 BPM, it will have one beat every 0.25 second. By the above assumption, 

we can ensure there are no two peaks within 0.25 of a second. So, a window of 0.25 

of a second is chosen. This window is slided along the entire DWT coefficients to 

find the local maximum. 

Next, we need to define the step size of the moving window. If the step size is too 

small, the running time of the system is increased. If the step size is too big, the 

accuracy of the peak detection algorithm is decreased. There is a trade off for setting 

the step size. The step size of our system is 1/20 of the window’s width, that is 12.5 

milliseconds. So, for example, it follows that the window needs to move twenty 

times to process 0.25 of a second.  
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A peak is obtained if the local maximum position is the same for over 90% of the 

window width, that is more than or equal to 18 times. For example, you can see a 

moving window in Figure 5.4-2. There are overlapping windows moving along at 

12.5 milliseconds for 20 steps. Point A, from the time that the window touches it, is 

a local maximum position. It is still the local maximum position when the window 

leaves point A. As the window moves 20 steps, point A is a local maximum position 

for 20 times while the window is moving. So, point A is considered to be a peak. 

Point B only reaches the maximum 9 times while the window is moving, so point B 

will not be considered a peak because its maximum is less than 18 times. 

 

Figure 5.4-2: An example showing the moving window with each number 
representing the full wave rectified DWT coefficient. The width of the moving 

window is 0.25 of a second. The local maximum within the window is shown in gray. 
Point A is a peak as it is a local maximum over 90% of the assessed length of time 

while point B is not. 
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5.5 Beat interval estimation 

After getting all the peaks from four DWT coefficients, we assume all these peaks 

are the beat positions. By calculating the time difference of each beat position, we 

can obtain N-1 beat intervals from N peaks. For example, four peaks are detected. 

The positions of these peaks are 0 second, 0.5 second, 1.1 second and 1.4 second as 

shown in Figure 5.5-1. We can calculate the time difference by subtracting from the 

neighbors. The beat intervals of these peaks are 0.5 of a second, 0.6 of a second and 

0.3 of a second. 

 

Figure 5.5-1: Three beat intervals are calculated from four peaks 

5.6 Histogram of beat interval 

By collecting all the beat intervals, we can create a histogram to analyze the data. 

Each beat interval is added to a histogram counting the number of occurrences. An 

example of a beat interval histogram is shown in Figure 5.6-1. The beat interval 

which has the maximum occurrence is most likely to be the tempo of the input data. 

From this example, we can see the maximum occurrence beat interval is 0.478 of a 
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second. We use the following equation to convert the beat interval into beats per 

minute (BPM). 

BPM = 60 / beat interval 

So, the tempo of this example is 60 / 0.478 = 125.5 BPM.  

 

Figure 5.6-1: Histogram of beat interval 

5.7 Improvement of the histogram 

By using the above histogram alone, the performance of this tempo extraction may 

not be so good. In order to improve the performance of the system, we need to 

improve the histogram so as to make the system more accurate. 

5.7.1 Introducing weight to the occurrence of beat intervals 

We can process occurrences of beat intervals with some weights to increase the 

accuracy of the system. There are many methods to introduce weighting of 
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occurrence of beat intervals. We need to define the weight in a reasonable way in 

order to increase the performance. 

For example, we get a beat interval called ‘B’. If all the neighbors have similar 

values of ‘B’, then the weight of ‘B’ should be very high. Similarly, if all the 

neighbors get different values of ‘B’, the weight of ‘B’ should be very low. So, we 

can define the weight according to how many neighbors of ‘B’ get similar values. 

There are two parameters that we can set. The first one is how many neighbors we 

should compare. The second one is the definition of similar values. 

For the first parameter, our system uses four beat intervals on each side of ‘B’. 

Therefore, there are eight beat intervals for comparison. If we use too many beat 

intervals for comparison, the weight would be not accurate as the far neighbors may 

get a different value. If the number of beat intervals is too small, the weights are not 

so useful. So, our system uses a total of eight beat intervals for comparison (see 

Figure 5.7-1. 
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Figure 5.7-1: Eight beat intervals are used for comparison. 

For the second parameter, as we discussed in section 3.5, the permitted IOI deviation 

should be a value which is relative to the tempo of the song. Our proposed value is 

calculated by the formula y=320.67x-0.3388 where x is the tempo of the song and y is 

the proposed permitted IOI deviation value. However, we do not know what the 

tempo of the song is at this stage. So, we use the beat interval value ‘B’ for a 

reference in order to calculate the formula x = 60 / B. Then, we can get the value of 

y by using the above x. By using the value of y, we can define two IOIs are similar 

if the difference between y and the beat interval value ‘B’ is smaller than y (see 

Figure 5.7-2). 
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Figure 5.7-2: Similar beat (left) and not similar beat (right). 

After fixing these two parameters, we calculate the weight by counting the number 

of similar beat intervals out of nine beat intervals. We use weighting of occurrence 

of beat intervals instead of the occurrence of beat intervals alone in order to increase 

the performance. 

5.7.2 Smoothing out the histogram 

Sometimes, the histogram would encounter some special cases. 

I. Consider an example where the histogram of beat intervals gets multiple 

maximum occurrences (see Figure 5.7-3). In this example, which beat interval 

should we choose to calculate the tempo as there is more than one maximum 

occurrence point? 
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Figure 5.7-3: A histogram of beat interval which gets multiple maximum 
occurrences 

II. Consider another case where the maximum occurrence occurs at the low 

density region of beat interval (see Figure 5.7-4). We can simply choose the 

maximum occurrence position to calculate the tempo. However, this maximum 

is not the majority in the distribution of the beat interval. The major region is 

around 0.4 second but not 0.8 second. So, it may not be accurate enough if we 

simply choose the maximum occurrence without consider the distribution. 

 

Figure 5.7-4: A histogram of beat intervals in which the maximum occurs at the 
lowest density region of beat intervals 
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For these two problems discussed previously, we can solve both problems with a 

single solution: smoothing the histogram by multiplying a Gaussian function to each 

data item. After the histogram is smoothed out, we can get the beat interval from the 

maximum amplitude. 

 

Figure 5.7-5: The smoothed histogram of the first example which is shown in Figure 
5.7-3 

Figure 5.7-5 shows the smoothed histogram of the first example. The multiple 

maximum occurrences have disappeared. So, we can now get the maximum 

amplitude of the new figure to calculate the tempo. For this example, the beat 

interval is 0.416 second at the maximum amplitude. So, the tempo is 144.2 BPM. 
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Figure 5.7-6: The smoothed histogram of the second example which is shown in 
Figure 5.7-4    

The smoothed histogram of the second example is shown in Figure 5.7-6. The 

original maximum occurrence is no longer the maximum amplitude. This is because 

the Gaussian function can make use of the distribution of the beat interval. It will get 

higher amplitude in the major region while the minor region will get smaller 

amplitude. For this example, the beat interval is at 0.389 of a second at the 

maximum amplitude. So, the tempo is 154.2 BPM. 

5.7.3 Analyzing the left and right channels 

If the input is in stereo format, we can perform the tempo extraction algorithm in a 

different way. We can make use of the left and right channels to do a further 

analysis. If we listen to a song carefully, we may find that sometimes the sounds 

coming from the left channel are different to that of the right channel. For example, 

in some songs the background music is in the left channel and the vocals are in the 
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right channel. Also, different instruments often occur in different channels. This 

means that the beat may be easier to be extracted in a channel compared to another. 

The overview of the system for stereo input is shown in Figure 5.7-7. For an input 

which is in stereo format, we treat it as three different inputs; the left channel, the 

right channel and the mono channel. The mono channel is the average of the left and 

right channels. We pass these three inputs into our system which are described in 

section 5.1. Then, we can select the best one to be our final result. The question is 

how to select the best one among these three histograms. 
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Figure 5.7-7: Overview of our algorithm if the input is in stereo format 

We can first define a confidence value for a given histogram. Our system defines it 

as the area under the peak with a width of 0.1 of a second over the entire area under 

the curve (see Figure 5.7-8). We use the value 0.1 second because it is the same 

width as that of the 3SD of the gaussian function. Therefore, every histogram will 

get a confidence value. Finally, our system will choose the tempo by a confidence 
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value test, which obtains the final tempo by getting the maximum confidence value, 

to be the final tempo.  

 

Figure 5.7-8: The confidence value is defined as the area under the peak with 0.1 
second width (gray in color) over the entire area under the curve 
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CHAPTER 6 - 

EXPERIMENTATION AND RESULTS 

6.1 Implementation 

In this chapter, we present the implementation of our system and some experimental 

results. The system was implemented using Matlab version 7.0.4. It was developed 

and run on a Pentium 4 2.4GHz machine with 512MB RAM operated in a Microsoft 

Windows XP environment. 

For any input audio data, our system checks if the audio is stereo or not. If it is 

stereo, we can treat it as three different inputs as discussed in section 5.7.3. Next, the 

input is read into the memory. Our system can let the user select how many seconds 

to be analyzed and the starting time. By default, it would be the first 180 seconds of 

the input. We select 180 seconds because it is always the majority part of a typical 

song which is less than six minutes. If the input is less than 180 seconds, the entire 

input is read into memory. 

After reading the input data into memory, a discrete wavelet transform is applied 

using the command ‘dwt’ in Matlab. After the transformation, we keep the DWT 
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coefficients only. The input data which is stored in memory are freed in order to 

have more free memory in the system. 

 

Figure 6.1-1: An overview of the tempo extraction system 

For a reminder, the overview of the tempo extraction system is shown again in 

Figure 6.1-1. For these DWT coefficients, the detail coefficients cD consist mainly 
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of the high-frequency part of the input, while the approximation coefficients cA 

consist mainly of the low-frequency part. This is the first level of the transformation. 

We name the detail coefficients and the approximation coefficients as cD1 and cA1 

respectively. For the cA1, DWT is applied again for further decomposition. For our 

system, four levels of DWT is used. In the following part, we focus on the detail 

coefficients. 

For the detail coefficients, we apply a peak detection to it. The details of the peak 

detection have been discussed in section 5.4. While we are writing the code, we 

need to remind ourselves that our system uses a 0.25 second width window to find 

the local maximum position. Then, the window moves with the step size to 12.5 

milliseconds to find the next local maximum position until the window reaches the 

end of the detail coefficients using a while loop in Matlab. Every time a local 

maximum position is recorded, it will assign a counter for it. If the same position is 

acting as the local maximum, the counter of that position is increased by 1. In the 

end, we will typically end up with a lot of local maximum positions with counter 

values. 

Remember that a peak is obtained if the local maximum position is the same for 

over 90% of the window width. The step size is 12.5 milliseconds and the window 

width is 0.25. That means a window needs to move 20 times for one window width. 
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So, a position can have a maximum counter value equal to 20. By calculating 90% 

of the maximum counter value, our system removes the positions which get a 

counter value less than 18. Finally, the remaining positions are the peaks. 

Our system calculates the IOIs between all the peaks. The details have been 

described in section 5.5. For every IOI, a weight is introduced to it like we discussed 

in section 5.7.1. The weight is calculated by checking if the neighbor IOIs is within 

the beat deviation value. By setting a different beat deviation value, a different 

weight is obtained. We used the value which was suggested in section 3.5 for our 

system. The weighted IOI are added to a histogram for further analysis. 

There are four levels of detail coefficients. All four levels repeat the above steps to 

get four histograms. These histograms are added together to obtain the final result by 

finding the maximum position using the command ‘max’. Finally, Our system 

calculates the tempo by converting the IOI into BPM for final output. 

6.2 Using our song set 

In Table 3.2, a complete song list is shown. All 50 songs are in stereo format, so we 

can get three outputs for each one as explained in section 5.7.3. We then select the 

final result among them by getting the maximum confidence value.  
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When we get the final result from the system, we compare it with the ground truth 

tempo. Our system evaluates the result by calculating the BPM deviation percentage. 

This is defined by the minimum percentage of tempo estimates of the ground truth 

tempo, double, half, three times, and one third of the ground truth tempo. The 

mathematical expression is shown in Equation 5. 
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E is the BPM deviation percentage, S is the system estimated tempo and G is the 

ground truth tempo. 

For our system, we use 4% to determine whether the result is correct or not. Our 

system chooses 4% as ISMIR 2004 [10] used this value as well. Table 6.1 shows the 

complete results of 50 songs. For more song details, see Table 3.2. There are 3 songs 

out of 50 which are regarded as not correct as the BPM deviation percentage is over 

4%. The average BPM deviation percentage of these 50 songs is 2.15%. 

Song Ground truth 
tempo (BPM)

System tempo 
output (BPM) Error (%) Mono Left Right 

Addicted to love 113.5 111.5  1.8 111.5  111.5  111.5 

Baby please don't go 148.6 144.9  2.5 145.5  145.1  144.9 

Bachelorette 98.3 96.2  2.1 96.4  96.4  96.2 

Besito pa ti 158.2 154.5  2.3 154.3  154.5  157.7 

Breakfast in bed 72.9 144.4  1.9 144.0  142.7  144.4 

Buenas noches from a lonely room 98.5 96.8  1.7 96.6  96.7  96.8 

Chariots of fire 68.5 136.4  0.9 137.0  137.3  136.4 

Country feedback 73.4 144.6  3.0 144.9  144.3  144.6 

Do you want to 126.9 123.4  2.8 123.4  123.4  123.8 

Domingo 128.4 125.3  2.4 125.3  125.3  125.3 
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Firestarter 138.2 141.8  2.6 140.3  96.4  141.8 

Five circles 65.6 132.7  2.3 130.4  130.7  132.7 

Freeddie freeloader 130.8 128.8  1.5 128.5  128.1  128.8 

Friendly fire 182.6 89.0  1.3 89.0  89.0  89.0 

Guns in the ghetto 138.2 136.0  1.6 136.0  135.9  136.0 

Hunter 80.7 80.2  0.6 80.1  80.2  80.0 

I am a rock 114.9 113.0  1.7 113.5  113.0  113.2 

I cried for you 75.4 150.8  0.0 150.8  150.8  150.8 

I got you 173.7 84.6  1.3 84.6  84.6  84.7 

I wish I know 122.4 122.6  0.2 122.9  122.6  122.8 

Knock on wood 119.7 118.5  1.0 118.2  118.5  118.7 

Layla 115.1 113.2  1.7 112.8  113.3  113.2 

Lie to me 133.8 132.0  1.3 132.0  132.0  132.0 

Loco de amor 130.7 127.4  2.5 127.0  127.4  127.4 

Maggic McGill 93.2 92.9  0.3 92.7  92.9  92.6 

Maybe someday 90.8 90.3  0.6 90.1  90.1  90.3 

Mi tonada montuna 159.4 155.5  2.4 156.0  154.3  155.5 

Mofo 91 89.4  1.8 89.7  89.7  89.4 

My heart will go on 99.4 99.1  0.3 99.2  99.1  99.5 

Nerve centre 80.1 158.9  1.6 158.9  158.7  158.8 

No expectations 80.8 80.3  0.6 80.3  80.3  80.6 

No surprises 77.2 155.2  1.0 154.8  155.2  154.1 

Paranoid android 83.6 81.9  2.0 81.9  81.9  81.9 

Play dead 77.7 154.3  1.4 154.5  154.3  154.2 

Pride 107.2 105.8  1.3 104.7  105.8  103.6 

Right here, right now 125.9 123.9  1.6 123.8  123.9  124.0 

Roadhouse blues 122.8 121.2  1.3 121.4  121.2  121.6 

Song for Bob Dylan 70.3 138.2  3.4 138.2  138.1  138.1 

Summertime 72.2 156.9  17.3 156.9  156.9  156.9 

The pan piper 73.4 145.1  2.3 145.5  145.1  145.8 

The ride of the valkyries 93.3 82.0  12.1 82.0  82.8  90.8 

The soul cages 106.3 105.0  1.2 105.0  105.0  105.0 

The thing that should not be 112.9 111.7  1.1 111.7  111.6  111.3 

Una fuerza inmensa 78 154.9  1.4 154.9  155.3  155.7 

Wednesday morning 3am 107.6 101.6  5.6 105.4  105.2  101.6 

Who's crying now 105.4 104.0  1.3 104.0  104.1  103.7 

Will O the wisp 71.4 141.8  1.4 142.2  141.8  142.6 

With god on our side 150.3 149.2  0.7 149.2  148.5  147.5 

Word up 119.4 117.4  1.7 117.4  117.1  117.1 

Work 127.8 126.8  0.8 126.8  127.1  126.9 

 

Table 6.1: Result of our song set. The boxes with bold borders are chosen by the 
system as the preferred tempo ‘answer’ because the confidence value (not shown) is 

the maximum among the mono / left / right signals. 

By sorting the BPM deviation percentage, we can have a better view for the results. 

This is shown in Figure 6.2-1. 
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Figure 6.2-1: BPM deviation percentage sorted in ascending order 

For the evaluation percentage of BPM deviation, we can consider what happens if 

we use other values instead of 4%. Table 6.2 shows a range of values used in 

evaluating our song set, with the corresponding result. Based on these results, it is 

difficult to choose what percentage should be used for evaluation. We choose 4% 

mainly because there is a contest that also used this value. This issue is further 

discussed later. 

BPM deviation (%) 1 2 3 4 5 6 7 

Number of songs consider 

as correct (out of 50) 
12 35 46 47 47 48 48 

Table 6.2: Using a range of evaluation percentage of BPM deviation on our song set 
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Many IOI tolerances have been discussed previously in section 3.6.1. These values 

are used for our system when we calculate the weight of an IOI. We have tried two 

different types of IOI tolerance. One type is a constant value and the other type is 

the percentage value of IOI. 

For the first type of IOI tolerance which is a constant time, the result is listed in 

Table 6.3 and plotted in Figure 6.2-2. The best constant value is 40ms among these 

four values proposed by different papers. Table 6.3 shows that if the IOI tolerance is 

too small like 20ms, it would be too strict for the neighbor beats. As long as the IOI 

tolerance is more than 40ms, the result would be good. However, it gets worse for 

higher values. 

IOI tolerance 20ms 40ms 50ms 70ms 100ms

Average BPM deviation percentage 2.85 2.15 2.16  2.18  2.29 

Table 6.3: Using a range of constant IOI tolerance in our algorithm 
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Figure 6.2-2: A graph of average percentage error across a range of constant IOI 
tolerance 

The result for the second type of IOI tolerance which is relative to the current IOI, is 

listed in Table 6.4 and plotted in Figure 6.2-3. Previous research used 15% and 

17.5% only. We show the trend by testing four values which are two values from 

each side. They are 10%, 12.5%, 20% and 22.5%. This table shows that if we keep 

increasing the percentage, we can get a better result up to 20%. However, the result 

becomes worse if we keep increasing it. 

IOI tolerance 10% 12.5% 15% 17.5% 20% 22.5%

Average BPM deviation percentage 2.89 2.56 2.55 2.42  2.10  2.18 

Table 6.4: Using a range of percentage IOI tolerance in our system 
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Figure 6.2-3: A graph of average percentage error across a range of percentage IOI 
tolerance 

Without any improvements of the histogram, our system can only get an average 

value of BPM deviation for our 50 song set of 2.79%. After the smoothing of the 

histogram, the average becomes 2.66%. By introducing the weight to the occurrence 

of beat intervals, the average becomes 2.45%. Finally, with the analysis of the 

mono/ left/ right signals, the final result becomes 2.15%. Table 6.5 summarises the 

results. 

Gaussian smoothing off on on on 

Introduce weighting off off on on 

Mono / Left / Right off off off on 

Average BPM deviation 2.79% 2.66% 2.45% 2.15% 

Table 6.5: Average BPM deviation for the 50 songs in out set achieved by adding 
successive improvements 
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6.3 Using the set from a previous contest – ISMIR 2004 

For the previous contest set (ISMIR 2004 [10]) there are dance music and song 

excerpts. For the dance music, there are 698 inputs of 30 second duration. For the 

song excerpts, there are 465 inputs, 20 seconds in length. For the result, we use the 

same evaluation method as used for the contest. 

The evaluation method calculates two accuracy values. Accuracy 1 is the percentage 

of tempo estimates within 4% of the ground truth tempo. Accuracy 2 is the 

percentage of tempo estimates within 4% of either the ground truth tempo, or double, 

half, three times, or one third of the ground truth tempo. Accuracy 2 is the same as 

Equation 5 defined in section 6.2. 

Twelve algorithms were submitted to the contest organizer. All twelve algorithms 

were evaluated, eleven of which are reported in the released document. Figure 6.3-1 

and Figure 6.3-2 present the results for each algorithm including our algorithm, 

ordered alphabetically with our algorithm at the end: A1 is AlonsoACF, A2 is 

AlonsoSP, D1 is DixonACF, D2 is DixonI, D3 is DixonT, KL is Klapuri, SC is 

Scheirer, T1 is TzanetakisH, T2 is TzanetakisMM, T3 is TzanetakisMs, UH is Uhle 

and RT is our algorithm. For each algorithm, accuracy 1 and 2 are given in light and 

dark shadings respectively. 
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The eleven dance music results, including ours, are shown in Figure 6.3-1. The 

winning algorithm gets the result 63.18% and 90.97% for accuracy 1 and accuracy 2 

respectively. For our system, we get 58.88% and 83.24% for accuracy 1 and 

accuracy 2 respectively. If our algorithm is compared with these eleven algorithms, 

our position is 2nd out of 12 for accuracy 1 and 3rd out of 12 for accuracy 2. 

 

Figure 6.3-1: Accuracies 1 (light) and 2 (dark) on the dance music data set 

The eleven song excerpt results, including ours, are shown in Figure 6.3-2. The 

winning algorithm gets 58.49% and 91.18% for accuracy 1 and accuracy 2 

respectively. Our system gets 41.51% and 66.45% for accuracy 1 and accuracy 2 

respectively. If our algorithm is compared to the other eleven algorithms, our 

position is 3rd out of 12 for accuracy 1 and 7th out of 12 for accuracy 2. 
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Figure 6.3-2: Accuracies 1 (light) and 2 (dark) on the songs data set 

 

6.3.1 Using other BPM deviation values 

In this section, we use a range of BPM deviation values. The results of our system 

using the dance music data set are listed in Table 6.6 and plotted in Figure 6.3-3. We 

cannot apply the BPM deviation percentage values to the other algorithms. So, only 

our algorithm was assessed. From Figure 6.3-3 we can see the BPM deviation 

percentage needs to be large enough to permit an acceptable level of BPM deviation, 
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and it should not be too large that every algorithm has a good result. We agree with 

the ISMIR 2004 contest choice of 4%. 

BPM deviation (%) 1 2 3 4 5 6 7 

Accuracy 1 39.11 47.99 55.59 58.88 60.32 60.89  61.46 

Accuracy 2 51.58 67.19 78.65 83.24 85.53 86.96  88.40 

Table 6.6: Using a range of evaluation percentage of BPM deviation on the dance 
music data set 

 

Figure 6.3-3: A graph of accuracy 1 & 2 using a range of percentage of BPM 
deviation on the dance music data set 

Similarly, we can also use different evaluation percentage of BPM deviation values 

to test with. The results of our system on the songs data set are listed in Table 6.7 

and plotted in Figure 6.3-4. The result is similar to the dance music data set. 

BPM deviation (%) 1 2 3 4 5 6 7 

Accuracy 1 24.09 33.55 39.14 41.51 43.01 43.87  44.73 

Accuracy 2 37.42 53.33 61.72 66.45 70.32 72.69  73.98 

Table 6.7: Using a range of evaluation percentage of BPM deviation on the songs 
data set 
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Figure 6.3-4: A graph of accuracy 1 & 2 using a range of percentage of BPM 
deviation on the songs data set 

6.4 Using songs with karaoke version 

It is interesting to find out whether tempo extraction is easier for a normal song or a 

karaoke (i.e non-vocal) version of the same song. Our system is applied to two songs 

that have a karaoke version. The first one called ‘Heaven’ and the second one called 

‘Make my day’. The result is shown in Table 6.8. It indicates that a normal song 

may be easier for the tempo extraction process. One of the reasons for this may be 

that the voice contains some extra information compared to the karaoke version. 

However, this test was performed on only two songs, and so cannot be considered as 

a general rule. 
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Song Ground truth tempo (BPM) System tempo output (BPM) Error (%)

Heaven 135.8 135.7 0.1  

Heaven (Karaoke) 135.8 135.9 0.1  

Make my day 114.8 113.8 0.9  

Make my day (karaoke) 114.8 110.0  4.2  

Table 6.8: Comparison of tempo extraction for two normal songs with their karaoke 
(i.e. non-vocal) version 
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CHAPTER 7 - 

CONCLUSION 

7.1 Summary 

In this thesis, a tempo extraction algorithm has been proposed. Our algorithm is an 

off-line algorithm, which means it is not running in real time. Audio data with WAV 

or MP3 format can be the input for tempo extraction. The best format for the input is 

the uncompressed WAV format with 44100Hz and stereo. 

As our system is an off-line one, the whole input data is read into the memory in the 

first step. Then, a discrete wavelet transform is applied to the audio data, which is 

stored in the memory, for four iterations to obtain the DWT coefficients. A peak 

detection algorithm is applied to these four sets of DWT coefficients. Four sets of 

peaks are obtained by the peak detection algorithm. The IOIs are calculated from 

these peaks and then a weight is introduced to each IOI value. A histogram is 

created by using all these weighted IOIs. The histogram is then improved by 

smoothing with a Gaussian function. We can get the beat interval from the 

maximum amplitude of the improved histogram. Finally, the tempo can be 

calculated from the value of beat interval. 
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We have proposed an equation to calculate the beat deviation from the tempo. This 

equation is the power curve fit based on actual data obtained from two musicians. 

Our algorithm uses this equation when determining the weight of an IOI, so as to 

improve the performance of the tempo extraction system. 

Our algorithm is tested with 50 songs from audio CDs. The complete list is shown in 

Table 3.2. The tempo extracted from the system is compared with the tempo 

obtained from two musicians. To evaluate the result, we use an error measure which 

was used in the tempo extraction contest in ISMIR 2004 [10]. We find 47 out of 50 

are correct if we use the same error measure used in the contest.  

Our algorithm is also tested with the data used in the tempo extraction contest in 

ISMIR 2004 [10]. The evaluation method calculates two accuracy values. Accuracy 

1 is the percentage of tempo estimates within 4% of the ground truth tempo. 

Accuracy 2 is the percentage of tempo estimates within 4% of either the ground 

truth tempo, or double, half, three times, or one third of the ground truth tempo. 

There are in total two sets of data we can test with. For accuracy 1, our position for 

one set is 2nd out of 12 and 3rd out of 12 for the other set. For accuracy 2, our 

position for one set is 3rd out of 12 and 7th out of 12 for the other set. 
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7.2 Future Work 

Our tempo extraction system can be extended in numerous ways. We can improve 

the peak detection algorithm of our system. The current peak detection algorithm 

uses a moving window. We can adjust the step size of the moving window and the 

number of times it should peak for the local maximum. Or, we can change the peak 

detection algorithm using another method such as calculating the derivative. 

Another possible improvement would be to use agents to determine the weight of 

each IOI. One method would be the use of a set of different agents working 

independently from each other. Each agent would calculate its own weight. The final 

weight would then be the sumation of all the values given by the agents. Finally, the 

weight would be added to the histogram for further analysis. 

The current system is an off-line system. We can extend it into a real time system by 

getting the input continuously and then apply the DWT to it. While the coefficients 

are updating, the peak detection could be performed at the same time, as it is using 

the moving window technique. As long as the moving window is fast enough to 

output the peaks the histogram can be updated in real time. The tempo value can be 

retrieved from the histogram while it is updating. So, it can be extended to be a real 

time system. 
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We could also extend the system to identity the beat locations. This has a number of 

useful applications. For example, a lighting effect can be displayed on the beat while 

the music is playing. This could be achieved by extending the current system. The 

peak detection algorithm described previously has identified all the peaks. One 

simple method to determine the beat is to identify the peak with the minimum beat 

deviation as the best peak. When the best peak is obtained, we can identity all the 

beat locations by adding or subtracing multiples of IOI from the best peak. 
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APPENDIX A 

In this appendix we show the actual codes used in our tempo extraction system. The 

following codes were written in Matlab Version 7.0.4.365 (R14) Service Pack 2.  

There are two files, ‘run.m’ and ‘peakdetection.m’. The file ‘run.m’ extracts all the 

tempo from each song in a directory called ‘batch’. All the input files should be 

placed in ‘batch’ under the working directory in order to run these codes. The result 

will be shown in a text file called ‘result.txt’. The file ‘peakdetection.m’ is a 

function which is called by ‘run.m’. It performs the tempo extraction from the input 

signal ‘d’, and stores the tempo value in a variable called ‘indexbpm’. 

<run.m> 

%This program will extract all the tempo from each song in ‘batch’ and output the result to ‘result.txt’. 

%Any sampling rate of the input file is fine. 

clear; 
timesforloop = 4; 
  
%Read all the files in the directory called ‘batch’ 

D = dir('batch'); 
for numsong=1:length(D) 
    if (D(numsong).isdir == 0) 
        file=strcat('batch\',D(numsong).name) 
        clear d; 
        clear dstereo; 
        l=length(file); 
  
        %Check the format of input (mp3 or wav) 
        if strcmp(file(l-2:l),'mp3') 
            SIZ=mp3read(file,'size'); 
            [dstereo,sr] = mp3read(file,min(SIZ(1),44100*180)); 



 96

        end 
        if strcmp(file(l-2:l),'wav') 
            SIZ=wavread(file,'size'); 
            [dstereo,sr] = wavread(file,min(SIZ(1),44100*180)); 
        end 
         

        %Check if the input is stereo or not, SIZ(2) equals to 2 means it is stereo 
        if SIZ(2)==2 

%For the left channel 

            d=dstereo(1:length(dstereo),1); 

            peakdetection; 
            for i=1:timesforloop+1 
                indexbpm3(2,i)=indexbpm(i); 
                accuracy3(2,i)=accuracy(i); 
            end        
            hgcf = gcf; 
            saveas(hgcf, [file(1:l-4) 'left'], 'png'); 

 
%For the right channel 

            d=dstereo(1:length(dstereo),2); 
            peakdetection; 
            for i=1:timesforloop+1 
                indexbpm3(3,i)=indexbpm(i); 
                accuracy3(3,i)=accuracy(i); 
            end         
            hgcf = gcf; 
            saveas(hgcf, [file(1:l-4) 'right'], 'png'); 
             

%For the mono 
            d=mean(dstereo'); 
            peakdetection; 
            for i=1:timesforloop+1 
                indexbpm3(1,i)=indexbpm(i); 
                accuracy3(1,i)=accuracy(i); 
            end 
            hgcf = gcf; 
            saveas(hgcf, [file(1:l-4) 'mono'], 'png'); 
        else 

%If the input is not stereo 
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            d=dstereo; 
            peakdetection; 
            for i=1:timesforloop+1 
                indexbpm3(1:3,i)=indexbpm(i); 
                accuracy3(1:3,i)=accuracy(i); 
            end 
            hgcf = gcf; 
            saveas(hgcf, [file(1:l-4) 'mono'], 'png');         
        end 
  
        result(numsong).bpm = indexbpm3; 
        result(numsong).accuracy = accuracy3; 
    end 
end 
 

%Prepare the output format of ‘result.txt’ for appropriate import into Excel later 

clear res; 
for numsong=1:length(D) 
    if (D(numsong).isdir == 0) 
        for loop=1:timesforloop+1 
            for channel=1:3 
                res(numsong,1,channel,loop) = result(numsong).bpm(channel,loop); 
                res(numsong,2,channel,loop) = result(numsong).accuracy(channel,loop); 
            end 
        end 
    end 
end 
for numsong=1:length(D) 
    if (D(numsong).isdir == 0) 
        for loop=1:timesforloop+1       
            for channel=1:3         
                fil(numsong,channel+3*(loop-1))=res(numsong,1,channel,loop); 
                reswrite(numsong,channel+3*(loop-1))=res(numsong,2,channel,loop); 
            end 
        end 
    end 
end 
fil=round(fil*10)/10; 
for loop=1:timesforloop+1   
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    quickwrite(:,loop*6-5:loop*6-3) = fil(:,loop*3-2:loop*3); 
    quickwrite(:,loop*6-2:loop*6) = reswrite(:,loop*3-2:loop*3); 
end 
save 'batch\result.txt' quickwrite -ASCII; 
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<peakdetection.m> 

%This program extracts the tempo from the input signal ‘d’, and the result is stored in ‘indexbpm’ 

 

%Initialization  

indexbpm = 0; 
valuepeak = 0; 
numpeak = 0; 
accuracy = 0; 
firstTime = true; 
start = 1; 
secondToRun = 180; 
clear peak_diff2 
clear peak_diff2int 
clear peak_diff2loop 
peak_diff2(ceil(sr/2))=0; 
peak_diff2int(ceil(sr/2))=0; 
for i=1:timesforloop 
    peak_diff2loop(i,ceil(sr/2))=0; 
end 
section=1; 
loopcounter = 1; 
clear ca 
clear cd 
ca(1).data = d(1:min(length(d),44100*secondToRun)); 

 

%Repeat the following for 4 iterations for cD1 to cD4 in order to create the histogram 

while (loopcounter <= timesforloop) 
    loopcounter = loopcounter + 1 

    %Apply the discrete wavelet transform 
    [ca(loopcounter).data,cd(loopcounter).data] = dwt(ca(loopcounter-1).data,'db5'); 
     

    %Apply full wave rectification 

abs_cd(loopcounter).data = abs(cd(loopcounter).data); 
  
    %Apply moving window for getting the peak position 

    clear peak_window; 
    i=1; 
    thold=20; 
    window_size=round( (sr/8) / (power(2,loopcounter-2)) ); 
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    window_move=round(window_size/thold); 
    width=window_size; 
    while(i<length(abs_cd(loopcounter).data)-width) 
        [mm,ii]=max(abs_cd(loopcounter).data(i:i+width)); 
        peak_window.data(ceil(i/window_move)) = i+ii-1; 
        i=i+window_move; 
    end 
  
    %Calculate the IOI from the peak position 

    clear peak_count; 
    peak_count.sample(1) = peak_window.data(1); 
    peak_count.count(1) = 1; 
    j=1; 
    for i=2:length(peak_window.data) 
        if peak_window.data(i)==peak_count.sample(j) 
            peak_count.count(j) = peak_count.count(j) + 1; 
        else 
            j=j+1; 
            peak_count.sample(j)=peak_window.data(i); 
            peak_count.count(j)=1; 
        end 
    end 
  
   %Filter out any peaks which are not the maximum for 90% of the time 

   clear peak_thold; 
    j=1; 
    for i=1:length(peak_count.sample) 
        if peak_count.count(i)>=(0.9*thold) 
            peak_thold(j)=peak_count.sample(i); 
            j=j+1; 
        end 
    end 
    peak_diff = diff(peak_thold); 
  
    %Compute the weight of each IOI 

   num_delta = 4; 
    clear delta_peak_diff; 
    for i=num_delta+1:length(peak_diff)-num_delta 
        delta_peak_diff(i)=0; 
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        %By using Equation 3 "y = 320.67 x-0.3388", we set the beat deviation 
        TEMPBPM = (sr/2*60) / peak_diff(i); 
        ms = 320.67*power(TEMPBPM,-0.3388); 
        W = ms * 22050 / 1000;     %change ms to W 
  
        W = W / (power(2,loopcounter-2)); 
        for j=-num_delta:num_delta 

            %To check whether two IOIs are similar 
            if abs(peak_thold(i+j) - (peak_thold(i)+j*peak_diff(i)))<=W 
                delta_peak_diff(i) = delta_peak_diff(i)+1; 
            end 
        end 
    end 
  

    %Construct the histogram 

    for i=num_delta+1:length(peak_diff)-num_delta 
        new_peak_diff = peak_diff(i) * (power(2,loopcounter-2)); 
        if (new_peak_diff <= sr/2) 
            peak_diff2(new_peak_diff)=peak_diff2(new_peak_diff) + 

delta_peak_diff(i)/(2*num_delta+1); 
            peak_diff2int(new_peak_diff)=peak_diff2int(new_peak_diff) + 1; 
            peak_diff2loop(loopcounter-1,new_peak_diff) = 

peak_diff2loop(loopcounter-1,new_peak_diff) + delta_peak_diff(i)/(2*num_delta+1); 
        end 
    end 
end 
  
%Smooth the histogram with a Gaussian function 

h = fspecial('gaussian',[1 2205],360); 
peak_diff3 = conv(h,peak_diff2); 
peak_diff4 = peak_diff3(1103:(round( length(peak_diff2) )+1102)); 
 

%Extract the tempo from the maximum position in the histogram 
[valuepeak,indexdiff] = max(peak_diff4); 
  
%Plot the graph 
y = (0:1/22050:1-1/22050); 
subplot(2,1,1), stairs(y,peak_diff2,'b'); 
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ylabel('Occurrence'); 
xlabel('Beat interval (second)'); 
subplot(2,1,2), plot(y,peak_diff4); 
ylabel('Amplitude'); 
xlabel('Beat interval (second)'); 
  
%Change the unit of the final output from number of samples into beats per minute 

indexbpm = (sr/2*60)/indexdiff; 

 

%Compute the confidence value 
integ = sum(peak_diff4(indexdiff-1102:indexdiff+1102)); 
accuracy = 100*integ/sum(peak_diff4); 
  
%Calculate the individual band results 

for i=1:timesforloop 
    peak_diff3loop(i).data = conv(h,peak_diff2loop(i,:)); 
    peak_diff4loop(i).data = peak_diff3loop(i).data(1102:(round( length(peak_diff2loop(i,:)) 

+1103))); 
  
    [valuepeakloop(i),indexdiffloop(i)] = max(peak_diff4loop(i).data); 
  
    indexbpmloop(i) = (sr/2*60)/indexdiffloop(i); 
    integ(i) = sum(peak_diff4loop(i).data(indexdiffloop(i)-1102:indexdiffloop(i)+1102)); 
    accuracyloop(i) = 100*integ(i)/sum(peak_diff4loop(i).data); 
    indexbpm = [indexbpm indexbpmloop(i)]; 
    accuracy = [accuracy accuracyloop(i)]; 
end 

 


