

1

Independent Project
2018 Spring – 6910A

A talkative agent

Supervisor: Prof. David ROSSITER

CAO chen

2

Contents

Abstract ..3

1. Introduction ..3

2. Design ..3

2.1LSTM ... 3

2.2 Seq2seq... 4

2.3Loss Function ... 5

2.4Optimize .. 5

2.5Prediction ... 6

3. Implementation ...6

3.1Text Processing ... 6

⚫ Corpus ... 6

⚫ Build the dictionaries.. 6

⚫ Handle some low frequency words .. 7

⚫ Batching processing .. 7

⚫ Create the Feed_Dict .. 7

3.2Tesorflow .. 7

➢ Training .. 7

➢ Interactive .. 11

4. Further work.. 12

5. Conclusion .. 13

3

Abstract
In this project, I used Tensorflow framework to build a recurrent neural network model

through python3 to train the chatbot. After a series of tuning and several trainings with

GPU, I could achieve the basic communication between the program and the user.

1. Introduction
Nowadays, computing power is greatly enhanced. In particular, the Nvidia graphics

card can support the deep learning related framework: Tensorflow. Individuals can also

partially implement AI training. Therefore, I try to build a dialogue system to complete

the interaction between the program and the user. I will use python3 to complete the

text processing, model building, word vector embedding, Tensorflow training and

prediction. Because of the large amount of machine calculations and the data loaded, it

can't be completed without processing, so I will also use some techniques to

approximate the processing.

2. Design
In terms of this project, I intend to use the Recurrent Neural Network to train the chatbot

as well as do the predictions to interact with users. The reason why I choose RNN is

that RNN could involve more mapping in the hidden layer, represented by the recurrent

according to the time step, and reflect the relationships between the current word with

previous states. However, the problem of gradient explosion as well as low efficiency

would always occur because calculating the current gradient need to include all the

previous gradient by chain rules. Thus, I choose the Long Short-Term Memory(LSTM)

as basic cells for my designed Neural Networks.

2.1LSTM

4

 Figure 1. Demonstration of LSTM

There are four components in LSTM, namely, Input gate, Forget gate, Output gate and

New Memory cell.

The structure of LSTM is just like Figure 1, it can learn long-term dependencies, which

means that this structure can memory the useful information happened previously in a

short or long time ago and forget useless information for the current state. For the

dialogue system, there are about 400 thousand of conversations prepared for training in

the corpus. Therefore, it is not appropriate to throw so many sentences in the fully

connected RNN and compute the probability of current word for the given words.

2.2 Seq2seq

5

 Figure 2. Structure of Seq2seq

The main feature of Seq2seq model is including the encoder and decoder, which means

that the questions or input sentences are mapped into an intermediate matrix

representing the main features of the data and then decoded to the corresponding answer.

Seq2seq is appropriate for this chatting task because it can handle the flexible length of

sequences compared with traditional RNN structures. In general, every input word and

previous states could obtain a probability of different word in the dictionary and return

the max one in a timestamp of RNN. Thus, if the size of output sequence is same as the

input sequence, which is obvious not good for dialogue system.

To achieve the Seq2seq model, at least two basic LSTM RNN cell are needed. One of

the cell is used as encoder and the other is used as decoder.

2.3Loss Function
The loss function of the network is the Softmax function for probability of P(y|x). X is

the given words and Y is the predicted word..

2.4Optimize
Adam optimization method involved with quadratic gradient correction is used because

6

it has the ability of avoiding the local and convergence fast.

2.5Prediction
As shown in Figure 3, during the test, the decoder outputs the current word based on

the weights of trained model and the word from the previous state.

 Figure 3. How decoder predicts

3. Implementation

3.1Text Processing
⚫ Corpus

Use the cornel corpus including plenty of movie scripts involved with kinds of

dialogues.

⚫ Build the dictionaries

To create the corresponding input and output sequence that the model could handle, two

dictionaries are needed. One is called word2id, the other is called id2word.

7

⚫ Handle some low frequency words

Some uncommon words would affect the quality of interactive because it is wired to

say some unfamiliar words in daily oral scenarios. And the “nltk” package of Python

could help us with its encapsulated functions:

⚫ Batching processing

It is not possible to throw all the train data into the Neural Network once time for our

general machine, and what we need to do is getting samples from the processed

conversations and converting these samples to sequence batches with the help of

word2id dictionary just built. The batches involve input sequence, output sequence,

target sequence and weights. The size of every batch is set according to the length od

the encoder and decoder.

⚫ Create the Feed_Dict

After creating those batches, I could use these batches to feed the part of placeholders

called “encoderInputs”, “decoderOutputs” I have just set in the session prepared for the

training or predictions.

3.2Tesorflow

➢ Training

⚫ Construct session

After building the inference model and setting the loss function as well as the optimizer,

I could start to train models. First, the object of session should be created and open.

⚫ Enable device

I choose to train the model with GPU of NVIDIA because it has more calculation units.

8

The default GPU is enabled after executing this following code:

with tf.device('/gpu:0')

⚫ Manage the model and parameters

The session object could be saved after completing every epoch with encapsulated

function as:

saver.save(sess, model_name)

And the session could be reloaded to continue to train or be used for test with

encapsulated function:

saver.restore(sess, modelName)

⚫ Sampled_softmax

The probability of next word given existing words should be calculated with Softmax

function as . The numerator represents the

current word and the denominator represents the sum of all the vocabularies in the

dictionary of Word2id just built. However, it is too much slow to include all the

vocabularies to calculate the probability of one word. So, approximation method is

needed.

One encapsulated function of approximation is tf.nn.sampled_softmax_loss(), which

could return a vector of loss prepared for minimized. This function would approximate

the probability by negative sampling according to the positive one.

⚫ Projection

To achieve the sampled_softmax approximation, the original dimension of vocabulary

size should also be projected into the size of approximated that could fit the dimension

for weights as well as bias.

⚫ Dropout

9

Dropout mechanism should also be introduced to prevent the underfitting. It could drop

some units of the RNN structures according to the specific probability.

⚫ Embeding

 Figure 4. How word vector works in LSTM

One necessary component of RNN training for NLP is word vectors, equivalently the

embedding matrix. Although the dictionary word2id been built for every word has been

built, it is not appropriate to represent words only by their IDs because they are

independent with each other. And the embedding matrix could map words into another

space to show their relationships.

⚫ Training process

10

Figure 5. Initial model

Figure 6. changed Model 1

 Figure 7. changed model 2

One problem when training is the loss value too big equal to 2.8. Can be seen from the

training process, the loss value is initially more than 5 and decreased fast during the

former epochs. However, the value fluctuates at 3 and finally ends up at 2.86.

The initial model in figure 5 is set by the empirical knowledge that looks not good, and

so I try to adjust the model from two aspects. The one is increasing the rate of dropping

11

the original NN units by adjusting the parameter of DropoutWrapper, the value of keep,

from 0.9 to 0.8, as shown in figure 6. And it comes to underfitting and bad performance

if adjusting the value to 0.7 or less .

On the other hand, I also increase the number of epoch one more time (from 30 to 60)

just like the figure 7. As seen in the figure, the final loss value has decreased

significantly to 2.32 even though it has fluctuated at 2.8 for a long time.

➢ Interactive

⚫ Q&A

 Figure 8. Result before optimization

12

 Figure 9. Result after optimization
As can been seen from the above two pictures, the prediction results in figure 8 without

model optimization are bad and give some no sense answers. While the agent could

give better answers for the same questions after optimization, which looks much better.

⚫ Analysis

Due to the limited dimensions word vectors, lack of a large amount of artificially

annotated text data, especially the computational power of the personal computer, this

agent cannot perform very accurate Q&A. My current consideration is that the main

reason of this problem is caused by The RNN model based on the probabilistic of

current word given previous word. It means that even asking the original sentence of

the train set to the agent may not get the correct answer, because partial words of the

question may appear in the former text separately and corresponding answers are

different, which affects the probability a lot.

4. Further work
Although I could not possess the powerful resource to make a marvelous smart agent,

13

but I think a function may be helpful to make the agent more intelligent: if the answer

is found to be inaccurate, the same question and the answer can be input at certain times,

then loaded into the training set, and the new training set is input into the model in the

next training, just like teaching children to speak. This function would significantly

increase the probability of a correct match for a specific question.

5. Conclusion
This project achieves the purpose of function to interact with users by a series of work

from initial text processing to the final model adjustment. And it also proves that

individuals could achieve this kind of training complex models with existing

electronical devices. Although during the training process, it would come into some

awkward situations that the calculation is too large for normal process units, we could

still find approximation ways to achieve the similar outcomes.

