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1 Introduction

In the recent years, big data become a popular topic in many fields around the world.

People keep studying on the applications of big data to improve service and life. In

many aspects with high dimensional data and complicated behaviours, the traditional

machine learning and statistical approaches have limitation to construct a model to

predict the target precisely. Deep learning is a relatively new technology, which uses

neural networks to simulate the work of humans’ brains to learn things from data.

Time-series prediction is a common techniques widely used in many real world applica-

tions such as weather forecasting and financial market prediction. It uses the continuous

data in a period of time to predict the result in the next time unit. Many time-series

prediction algorithms have shown their effectiveness in practice. The most common

algorithms now are based on Recurrent Neural Networks(RNN), as well as its special

type - Long-short Term Memory(LSTM) and Gated Recurrent Unit(GRU).

Stock market is a typical area that presents time-series data and many researchers study

on it and proposed various models. In this project, a simple multi-layered LSTM model

and a dual-stage attention based LSTM model are used to predict the stock price. The

following chapters will introduce the detailed models, implementation and test result.

2 A Multi-layered LSTM Model

2.1 Background

As can be known that, traditional artifical neural network assume that all the inputs are

independent to each other, which is unexpected for time-series prediction. However,

RNN apply same operations on every element in the series and every operation is

dependent on result calculated previously. In other words, RNN can memorize former

information in the several past steps.

RNN has a limitation that it can not learn and connect the information between very

large gap in the series. Therefore, a specil improved network, LSTM is introduced to
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Figure 1: Repeat module in RNN

Figure 2: Repeat module in LSTM

solve this problem. LSTMs have the same chain like structure like RNN but different

repeat module structure. Instead of RNN’s single neural network layer shown in Figure

1, there are multiple layers interacting in a special form, which is presented in Figure

2.

The most significant things in LSTMs is the cell states, which stands by the horizontal

line at the top part of Figure 2. The cell state behaves like a conveyor belt so it

keeps running in the chain of LSTMs with some linear functions transformation, which

retains the previous information. The LSTM allows three gates to add or remove

information to the cell state and those gates are commonly formed by an activation

function layer(usually sigmoid) and a point-wise multiplication operation.
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Figure 3: 5-layer LSTM model

2.2 Model

The first try of model is a simple one with stacked layers. The model consists of 5 layers

in total where the first two are LSTM layers and the remaining are dense layers. The

structure is shown in Figure 3. As can be seen, the first LSTM layer use the features of

data as input, in this project task, OHLCV(open, high, low, close, market value) can

be regarded as the input features so the input has n× T × 5 dimensions(for simplicity,

only 5 is used because n × T is general in all vectors), or 1 if only close price is used.

Then the second LSTM layer accept a dimension-32 vector and output a 128 one. Then

there will be three linear layers, which gradually dense the vectors into dimension 1.

3 A Dual-stage Attentioned based LSTM Model(DA-

LSTM)[3]

3.1 Background

3.1.1 Encoder-decoder model

Encoder-decoder model is proposed to solve seq2seq problem, which accepts an sequence

as input and output another sequence[1]. It has become popular in many applications

especially for natural language processing. The model processes data in two stages. As

5



shown in Figure 4, encoder is used to transfer the input sequence to a fixed-size vector

while decoder is to convert the vector back to a sequence.

Figure 4: Encoder-decoder model

Encoder and decoder can be implemented with various models such as CNN/RNN/L-

STM/GRU and any customized combinations. Although te encoder-decoder model is

classical and widely used, it has weakness to limit its effeteness. The most significant

one is that the only contact between two phases is the coding vector, which means

encoder needs to compress all information from input to a fixed-size vector. Such pro-

cessing methods has two shortcomings, one of which is that the coding vector may

not represent all the semantic information from input sequence. The other one is that

the information coming ahead will be lighten or overridden by that coming later. The

sequence length longer, the problem severer. Therefore it actually affects the precision

of the model.

3.1.2 Attention

To solve the problems of encoder-decoder model, an attentioned mechanism][2] is pro-

posed by researchers. When the model is going to output, it will generate a attention

range to emphasize the part which should get ”more attentioned” in the sequence. The

output is produced based on attentions and repeat previous procedure. The schematic

diagram is shown in Figure 5.

The new attention based model does not require encoder process all the information

in to a fixed-size vector. It encodes the input sequence to a vector sequence. In the
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Figure 5: Attention mechanism

second phase, the decoder will pick a sub-sequence from the vector sequence and process.

Therefore every output makes full use of information in the input sequence, which results

into a more accurate model.

3.2 Detailed Model

The core of the project is to combine the encoder-decoder model with attention mech-

anism to handle the finical time series prediction. As mentioned before, the model will

be divided into two stages - encoder and decoder. Meanwhile, in the encoder, a novel

idea is that the input uses a driving time series. For example, if we are going to predict

the stock price of AAPL.US, the stock price of Microsoft, Alphabet and other tech com-

panies can be the driving series because they may have influence on Apple Inc. stock.

In the decoder phase, the Apple stock price is input with the encoder hidden state -

coding vector. A temporal attention automatically select the relevant components in

the coding vector. With these definition, the model can extract the useful information

as much as possible. The model structure is illustrated in Figure 6.
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Figure 6: Model structure

3.2.1 Encoder

In the encoder, the dimension of input is n × T × m, where m is the hidden size of

LSTM defined by users. A multi-layer perceptron is constructed to achieve the attention

mechanism which adaptive pick the most relevant information in the driving series. The

perception accepts the concatenation of ht−1(hidden state in the last time step) and

st−1(cell state in the last time step).

et = W 1
e tanhW 2

e [ht−1; st−1] +W 3
e xt

where W 1
e ∈ RT , W 2

e ∈ RT×2m and W 3
e ∈ RT×T are weight parameters need to be

learned by the model. et is the vector of weights measuring the importance of features

in the driving series at time t(xt). the softmax function is applied on it to get at, which

has the sum 1. After that, the driving series will be multiplied with the attention weight

at to x̄t. Finally the LSTM will accept x̄t and ht−1 as its input, then update the hidden

state at that time, ht. Both the perceptron and the LSTM can be trained together and

the encoder focus its attention on some significant feature in the time series.
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3.2.2 Decoder

The decoder generate the output yt from both previous target series y1, y2...yt−1 and

the intermediate vector from encoder’s hidden state h. In order to follow the input

attention in the encoder, another attention mechanism is applied to pick the relevant

information from hidden state of the encoder. Similarly, there is also a multi-layer

linear functions to enable the attention. LSTM cell state st−1 and previous decoder

hidden states dt−1(with dimension k) are concatenated as input as well.

lt = W 1
d tanhW 2

d [dt−1; st−1] +W 3
dh

where W 1
d ∈ Rm, W 2

d ∈ Rm×2k and W 3
d ∈ Rm×m are weight parameters need to be

learned by the model. lt represents the importance of the elements of intermediate vec-

tor from encoder and βt is the weight after softmax. An context vector ct is introduced

by summing up the multiplication of l1..lt and h1...ht.

ct =
T∑
i=1

hiβi

After that the context vector can be concatenated with the history target series [y1...yt−1]

and then it as well as previous decoder hidden state dt are put into LSTM to update

dt. Finally several linear layers is constructed to fully connect the concatenation of dT

and cT into the final result.

yt = W 1
y (W 2

y [dT ; cT ] + b1) + b2

4 Implementation

This section will briefly introduce the design. The detailed implementation can be

found in the source code.
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4.1 Framework

The two neural network models in the project are implemented with a Python deep

learning framework called Pytorch, which is easy for defining custom deep learning mod-

els. In addition, Pandas, Numpy and Scikt-learn is used for data processing, Matplotlib

for visualize the train and test result.

4.2 Structure

The code structure is simple. It includes a dataset class to do preprocessing of training

and testing data, a model class contains the definition of the model introduced before

and a trainer class conducting the training and testing. The trainer allows a mini-batch

training which can utilizes GPU computation as much as possible.

5 Test and Evaluation

5.1 Environment

Because my laptop because does not have a NVIDIA GPU enabling CUDA, a Google

compute engine(GCE) with Ubuntu 16.04 LTS is used for training the model to accel-

erate the processing speed. The testing phase is much less computation than training

so it will be run on my Macbook.

5.2 Datasets

For the first simple model, this project use the OHLCV of AAPL.US as input and

target time series.

For DA-LSTM, the stock price of Microsoft is used as driving series and the stock price

of Apple is the target series. Since Apple went public earlier than Microsoft, the data is

cropped as the same time span. The dataset is divided into training set and validation
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set at the split ratio of 0.8.

5.3 Configuration

For each model, it will be trained for 50, 100, 200, 300, 400, 500 epochs. They uses

means square error as loss function. The batch size is set as 128, for both training and

testing. The model will be automatically saved at each checkpoint.

5.4 Results

5.4.1 DA-LSTM

The prorgame will pick the most two accurate model on testing set and the prediction

result given by DA-LSTM is shown in the following figures. Model with 200 epochs

and 300 epochs gives the best result. In order to make the figure more clear, the time

span is cropped so that it starts from 2000. The black curve denotes the actual data

of stock price of Apple and the red curves denotes the predicted result on training set

while the blue one denotes the predicted result on testing set.
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Figure 7: 200 epochs with 128 batchsize - black:ground-truth, red:prediction for training
set, blue: prediction for testing set
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Figure 8: 300 epochs with 128 batchsize - black:ground-truth, red:prediction for training
set, blue: prediction for testing set

From Figure 7 and Figure 8 we can see, they both fit the training set quite well, it is

same as other models shown in Appendix A. However the difference is, they seem to

have an acceptable performance while others are overfitting. The 200-epochs model fits

the ground truth at the beginning of testing set but fails later. However it is noticed

that the trend of increasing or decreasing is also close to the actual case. The 300-

epochs model gives even higher performance since we find the curve is similar to the

ground truth.

The predicted price is significantly lower than the truth because the tech stock price

13



increasing rapidly in the recent years. It is difficult for a model to generalize this case.

However from learning how the price going up and down can be useful for financial

prediction.

Compared with simple RNN or LSTM model, DA-LSTM definitely gives better predic-

tions due to its two attention mechanism, which makes the encoder learn more useful

information from the dataset and the decoder extract the important features from the

coding vector.

One more interesting things found is that the model performance varies with the epochs

changing. It can be inferred that the model is very parameter sensitive since the results

differs much with model hidden size changing.

6 Conclusion

In order to predict the stock price behaviour based on the historic series data, LSTM and

encoder-decoder model with attention mechanism are used. DA-LSTM model provides

more accurate predicted results compared with simple LSTM because the dual attention

mechanism allows the model extract information from both a driving series(can be the

price of another stock) and the target series. It can dig out useful features as much as

possible so a surprise result is found. However the prediction is very parameter sensitive

and now it is difficult to generalize the model on different stocks. This problem can be

studied and tried in future.
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A Full Results

Figure 9: 50 epochs with 128 batchsize
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Figure 10: 100 epochs with 128 batchsize

Figure 11: 200 epochs with 128 batchsize
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Figure 12: 300 epochs with 128 batchsize

Figure 13: 400 epochs with 128 batchsize
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Figure 14: 500 epochs with 128 batchsize
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