
 

 

 

 

 

 

 

 

 

 

 

CSIT691  

Independent Project  
Spring 2010 

Real Time Multiplayer Online Facebook Game 
 

 

 

 

 

 

Supervisor: Professor David Rossiter 

Student: Yip Siu Hung, Penny (09964376) 

  



2 

1. Introduction 

There are tremendous number of Facebook games available. Most of them are single 

player whilst some of multiplayer games like Restaurant City, Farm Villa offers a 

platform for different players to play together. However, there is no way for the 

players to interact with the others in real time. This trend motivated the project – 

Building a simple real time multiplayer Facebook game and to investigate the 

difficulties that drove the game developers away from developing real time 

multiplayer game and its possible solution. The game was built using Adobe Flex 3[1] 

together with an Open Source streaming server called Red5[2]. This report will first 

introduce the game play, followed by the technology used in the backend, difficulties 

faced and the resolutions. 

2. Game Play 

The game I developed is a Pictionary-liked game[3]. The system will send the one of 

the player a random picture, and this player has to draw the picture he saw on the 

painting area. The drew picture will be reflected on the other player’s screen and he 

has to make the guess. If the guesser guesses it correctly, the system will generate 

another image for another guess. If the players made 5 correct guesses, the game 

ends and will record the time spent in the game. The top score will be shown on the 

score board. 

The game has three main components: 

1. Game Lobby 

2. Game Room 

3. Score Board 

Game lobby is the entrance point of the game. When the player launches the 

application, he will see the lobby with different tables and seats. If the player clicks 



3 

the empty seat, it means he has joined that table. The lobby is synchronized which 

means the other players started the game knows which seats are occupied in real 

time. 

  

Figure1: Player 1 Joined the seat Figure 2: Player 2 sees the seat is occupied 

When the table has 2 players joined, either of them can start the game by clicking 

the start button. The 2 players will be sent to a role selection page. In this page, the 

player can choose to be a drawer or a guesser. Of course, only one of them can be a 

drawer or guesser.  

  



4 

  

Figure 3: Player 1 as Drawer Figure 4: Player 2 can only choose as Guesser 

 

After both of the players chose their role, they can start the game by pressing the 

“Start” button. The game will then prompt a timer from 3 to 0 letting the players to 

get ready. When the timer runs out, they will be sent to the game room. In the game 

room, the drawer can see a random picture generated by the server, and he can draw 

he saw on the drawing area and it will shows on the guesser’s panel in real time. For 

the guesser, he will see a question mark and is not allowed to draw on the panel. 

What he can do is look at what the drawer drew and guess what he saw. The guesser 

can type what he guess in the text box, if it’s correct, it will be counted and will go to 

another picture automatically.  



5 

  

Figure 5: Scene of Drawer Figure 6: Scene of Guesser 

The game goes on with 5 pictures for the players to guess and after the game is done, 

the game will ends and the time spent will be recorded on the database. Players can 

view the top 20 highest score by clicking the “Score Board” button. 

 

Figure 7: The Score Board 

This is all about the game play, very simple but demonstrated we can develop a real 

time multiplayer game on Facebook. It can even synchronize the drawing in real time 

with no issue. In the following technical part, I will talk about how it was done and 

the difficulties faced and the resolutions.   



6 

3. Technical Details 

Before discussing the technical details in depth, let’s have a look from a high level 

perspective. 

 

Figure 8: High Level Architecture of the Game 

Figure 8 shows the high level architecture of the project. As you can see, all the flash 

instances are connected to the Red5 server and Facebook so they can synchronize 

with each other and retrieve Facebook’s information via their API. Besides, in order 

to keep track of the game records and the status of the game, Red5 is connected with 

the database. The database connection remains on Red5 does not mean we cannot 

do that on the flash instance, it is actually a security measure and more will be 

discussed in the following part. 

3.1 Communicating Flash with Red5 

From the high level diagram, the Red5 and Flash connection is the most important 

component in the project as it provides the ability for the flash instances to 



7 

synchronize. The Red5 and Flash connections are made using RTMP[4] which was 

designed for real time message transmission based on TCP[5]. With the design of the 

protocol, it makes the synchronization much faster than using other protocols as it 

has a very small overhead in the TCP packet. 

The way we used Flash to communicate with Red5 is very simple as Red5 is an Open 

Source clone of Adobe’s Flash Media Server[6]. That is to say it has most of the native 

interfaces for Flash to make connections with the Red5 server and broadcast to other 

flash instances. It makes the development much simpler and easier.  

One thing that worth mentioning is all flash instances are synchronized, which means 

all of them will see the same screen. In the project, I used multiple connections and 

the concept of scope to handle the problem.  

For each flash instance connecting to the lobby, it uses one main connection which 

can be used to update the lobby’s status and view the score board. Whenever the 

players start a game, it will make another private connection with a private scope. 

With the private connection, their game play will not affect the others whilst the rest 

shall not be able to distract them. Whenever the game ends, the private connection 

will be closed and released and the players will be redirected back to the lobby. 

On the other hand, from the high level architecture of the project, you can see the 

database connection is connected to the Red5 server. As we mentioned before, it is 

not connected directly through the flash instances due to security issues. We know 

flash can be decompiled very easily. With the decompiled files, crackers can read the 

ActionScript very easily. Thus, if we put any secret strings like database hostname 

and password in the ActionScript, it equals to give the crackers the secrets. The 



8 

structure we now have is much more secure. Flash itself only handles a minimum 

number of operations; all the business logics and connections to other places are 

handles by the Red5 server and thus, Java. As Java is considered to be safe and 

secure, it makes the game much more secure. 

3.2 Connection with Facebook 

Connecting flash instances with Facebook is another important step in the project as 

it can share the power of the social network. For instance, retrieving friend list, user’s 

profile picture, sending notifications, etc. However, in order to make flash 

communicate with Facebook is not as easy as it should be. 

According to Adobe, there are two different ways to embed Flash into Facebook and 

retrieve the information from Facebook, they are iFrame and FBML[7]. For greater 

flexibility, I have used the iFrame for the project. 

In order to make flash communicate with Facebook with iFrame, we can use the 

following steps (Graphical illustration in figure 9): 

1.1 Player start the Facebook application using browser 

1.2 Facebook Server response with the HTML page 

2.1 Client browser request for the iFrame page specified in the HTML page 

received in step 1.2 

2.2 Game server response with the iFrame page which includes the HTML, 

JavaScript with SWFObject 

3.1 Client browser loads the JavaScripts in the iFrame 

3.2 JavaScript in iFrame will send the Facebook session ID to the game server and 

request for the flash instance 

3.3 Game server response with the flash instance which was initialized using the 

Facebook session ID 



9 

4.1 Client side’s flash instance use ActionScript to call Facebook’s API using the 

session ID 

4.2 Facebook returns the query result in JSON format 

 

Figure 9: Mechanism for Calling Facebook API using Flash with SWFObject 

The above approach requires the following components: 

1. The Facebook API for Flash 

2. An HTML page with JavaScript to communicate with SWFObject 

3. SWFObject 

When the client launches the application on Facebook, it will launch the iFrame 

hosted on our server. The iFrame has some JavaScripts to communicate with the 

SWFObject, that will pass the session key of the client on Facebook to the SWFObject. 

Afterwards, we can retrieve the session key from the flash instance. After getting the 



10 

session key of the client, we can then use the Facebook API to initialize the Facebook 

object and then retrieve the information from Facebook using AMF or XML and we 

finally has to extract the AMF and finally get the information and bind it to proper 

controls. 

It sounds quite straight forward if you know the idea but it can be difficult if this is 

the first time deploying flash application on Facebook. 

4. Difficulties and Resolutions 

4.1 Red5 Responding Slowly 

At the beginning of the implementation, when I was implementing the drawing panel, 

I found the latency was severe and it was not acceptable. At the time, I noticed the 

Red5 server has a 100% CPU usage and that caused the delay. At that time, I suspect 

there were too many connections fired at the same time. It is because when the 

player move the mouse for one pixel, it will fire a connection. Therefore, I tried to 

limit the number of connections to the server. However, it makes the drawing 

becomes very bad as most of them becomes straight lines and the guessers are not 

going to be able to recognize the drawings. 

Intricately, I think the server should be able to handle the connections as the server 

can handle video streaming and should be capable for the drawing mechanism. 

Therefore, I dig into the source code of the Red5 server and found several solutions 

for the problem. 

First, I figured how to make the server more efficient by making it a worker process [9] 

and by changing some Java codes. Besides, I managed to make the Red5 server 



11 

accepts concurrent connections. That makes the server can handle connects more 

efficiently by eliminating the waiting overhead when one connection is waiting for 

the other to be processed. 

Second, I changed some of the Java code on Red5 such that it can use simple data 

structures to handle the received packets. By default, Red5 uses Map<String, Object> 

to handle the received connection. We know the Map container has a very big 

overhead and require several serializations and deserializations on the Object in the 

Map. I overrided the method and make it also accepts other data types such as 

Concurrent Hash Map, String, int, etc. With the modification, it saved a lot of 

processing power and can handle more connections at the same time. This method 

ultimately solved the problem. The server’s CPU usage is around 5% if one player 

drawing continuously on a P4 machine with 1GB memory. 

4.2 Stateless 

Another challenge I had was Red5 is a streaming server, and it is not difficult to 

imagine it is stateless. It makes the lobby management very difficult as we do not 

know which room has been occupied or released.  

In order to solve the problem, I have created a simple database modeling different 

rooms’ status. Every time the room has updated, the database entry will be updated 

and then broadcast the latest status of the rooms to all the connected players. It is an 

easy and efficient way to handle the room status. 

4.3 Insufficient EventHandlers 

There is a problem with the existing design of ActionScript 3. There are two 

components in ActionScript to communicate with Red5, the NetConnection and 



12 

SharedObject, there is event handler for the program to know the connection has 

been made successfully, and then we can bind the SharedObject with the connection. 

However, if we wanted fire a message to the server asking for the room status right 

after the SharedObject is binded to the connection, there is no way with the existing 

design.  

In order to make the player can retrieve the room information right after connection, 

I have to create the event handler on my own by extending the EventDispatcher and 

tell the event listeners the SharedObject has been binded to the connection.  

4.4 Insufficient Documentation 

Another difficulty I faced when developing the game was due to the insufficient Red5 

documentation. Red5 is an Open Source project actively developed in year 2008, 

however, after 2 years time, most of the link on the official web site is not working. 

Even the JIRA issue tracker is broken as the project moved to the Google Code 

Project. Without sufficient documentation, it makes the development very difficult at 

the beginning. Fortunately, the project is Open Source and I can look into the code 

and see what it actually does and can therefore figure what approach is the best for 

the game.  

4.5 Different Data Formats  

Last but not least, the difficult goes to the communication of ActionScript and Java. 

Since we have all the business logic implemented on the Red5 server, what we need 

extract the information sent from the flash client and manipulate the data and send 

it back to the client. This is a difficult step if you do not know what data type matches 

to the others on the two platforms. For example, Object in ActionScript means 

Map<String, Object> in Java and ByteArray in ActionScript means byte[] in Java.  



13 

Besides trying the data structures one by one, I found a subtle yet very useful page [8] 

from Adobe’s documentation. It specifies all the possible mapping with ActionScript 

and FMS. With the information, I managed to map any possible data structure with 

the others and make the development becomes much easier. 

5. Possible Further Development 

The basic structure of the game is done and there are many possibilities for further 

development. For instance, we can make fully utilities the power of the game with 

the enormous power offered by Facebook - Getting the players’ mutual friends’ 

picture and use them as the picture for guessing. Also, the drew images can be 

stored on the server temporarily and show the players what can they have drawn 

compare with the original image.  

6. Conclusion 

The successful deployment of the game marks the goal of the project has been 

accomplished. With the aid of the open source project Red5, I managed to develop a 

real time multiple player Facebook game. The hurdles I faced during development 

reflected the fact that not a lot of developers are going to develop a real time game 

on Facebook. However, with the successful deployment of the game, it means we 

have already set up a platform and with sufficient knowledge to build any kind of real 

time multiplayer Facebook game using the Red5 server. 

  



14 

7. Reference 

[1] Open source framework, web application software development | Flex – Adobe. 

http://www.adobe.com/products/flex/. Retrieved on 28 May 2010. 

[2] Red5. http://red5.org/. Retrieved on 28 May 2010. 

[3] HASBRO – PICTIONARY. 

http://www.hasbro.com/shop/details.cfm?guid=96C13CEE-19B9-F369-D9E8-73D9C5

517F50&product_id=25575&src=endeca. Retrieved on 28 May 2010. 

[4] Real-Time Messaging Protocol (RTMP) specification. 

http://www.adobe.com/devnet/rtmp/. Retrieved on 28 May 2010. 

[5] TCP, Transmission Control Protocol. 

http://www.networksorcery.com/enp/protocol/tcp.htm. Retrieved on 28 May 2010. 

[6] Media server for streaming video | Adobe Flash Media Server family. 

http://www.adobe.com/products/flashmediaserver/. Retrieved on 28 May 2010. 

[7] Comparing Flash iFrame and FBML Facebook applications. 

http://www.adobe.com/devnet/facebook/articles/iframe_fbml_flash_platform_com

parison.html. Retrieved on 28 May 2010. 

[8] Flex 3 - Using RemoteObject components. 

http://livedocs.adobe.com/flex/3/html/help.html?content=data_access_4.html. 

Retrieved on 29 May 2010. 

[9] worker - Apache HTTP Server. 

http://httpd.apache.org/docs/2.2/mod/worker.html. Retrieved on 29 May 2010. 

http://www.adobe.com/products/flex/
http://red5.org/
http://www.hasbro.com/shop/details.cfm?guid=96C13CEE-19B9-F369-D9E8-73D9C5517F50&product_id=25575&src=endeca
http://www.hasbro.com/shop/details.cfm?guid=96C13CEE-19B9-F369-D9E8-73D9C5517F50&product_id=25575&src=endeca
http://www.adobe.com/devnet/rtmp/
http://www.networksorcery.com/enp/protocol/tcp.htm
http://www.adobe.com/products/flashmediaserver/
http://www.adobe.com/devnet/facebook/articles/iframe_fbml_flash_platform_comparison.html
http://www.adobe.com/devnet/facebook/articles/iframe_fbml_flash_platform_comparison.html
http://livedocs.adobe.com/flex/3/html/help.html?content=data_access_4.html
http://httpd.apache.org/docs/2.2/mod/worker.html

