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Abstract

A method of pruning hidden Markov models (HMMs) is presented. The main purpose is to find

a good HMM topology for a given task with improved generalization capability. As a side effect,

the resulting model will also save memory and computation costs. The first goal falls into the active

research area of model selection. From the model-theoretic research community, various measures such

as Bayesian information criterion, minimum description length, minimum message length have been

proposed and used with some success. In this paper, we are considering another approach in which

a well-performed HMM, though perhaps oversized, is optimally pruned so that the loss in the model

training cost function is minimal. The method is known as Optimal Brain Surgeon (OBS) that has

been applied to pruning neural networks in the past. In this paper, the OBS algorithm is modified to

prune HMMs. While the application of OBS to neural networks is a constrained optimization problem

with only equality constraints that can be solved by Lagrange multipliers, its application to HMMs

requires significant modifications, resulting in a quadratic programming problem with both equality

and inequality constraints.

The detailed formulation of pruning an HMM with OBS is presented. It was evaluated by two

experiments: one simulation using a discrete HMM, and another with continuous density HMMs trained

for the TIDIGITS task. It is found that our novel OBS algorithm was able to “re-discover” the true

topology of the discrete HMM in the first simulation experiment; in the second speech recognition

experiment, up to about 30% of HMM transitions were successfully pruned, and yet the reduced models

gave better generalization performance on unseen test data.

Keywords

model pruning, hidden Markov model, optimal brain surgeon, quadratic programming.

Corresponding Author: Dr. Brian Kan-Wing Mak.

Dr. Brian Mak is with the Department of Computer Science, the Hong Kong University of Science and

Technology (HKUST), Clear Water Bay, Hong Kong. E-mail: mak@cs.ust.hk.

Mr. Kin-Wah Chan finished this work when he was an MPhil student of the Department of Electrical &

Electronic Engineering, HKUST, Clear Water Bay, Hong Kong. E-mail: eeivan@cs.ust.hk.



2

I. Introduction

In recent years, hidden Markov model (HMM) has been applied successfully to statistical

modeling of sequential (temporal or spatial) data such as acoustic signal for automatic speech

recognition (ASR) [1], [2], [3], handwritings for handwritten word recognition [4], [5], [6], and

protein or DNA sequences [7] in bioinformatics. In practice, the topology of an HMM — the

number of states and their connectivity1 — for a given task is usually pre-set by experience

or heuristics, or found by trials-and-errors. As in any data modeling problem, one faces the

modeling dilemma: if a model has too many parameters, it risks over-fitting the training data

and results in poor generalization (on unseen data); but if the model has too few parameters,

it may compromise its capability to represent the underlying data distribution. In modeling

theory, this is the model selection problem. Common selection measures include the Bayesian

information criterion (BIC) [11], Akaike information criterion (AIC) [12], minimum description

length (MDL) [13], and minimum message length (MML) [14]. Recently Biem et al. [15]

proposed an HMM-oriented BIC, called HBIC, for HMM selection.

In the speech recognition community, there are not many works about searching for an

HMM of the right topology. Nevertheless, the works usually fall into one of the three major

incremental approaches:

(1) Growing approach : One starts with a small HMM and iteratively increments the number

of states and/or transitions until the desirable size is reached. For example, in each iteration

of Sagayama’s successive state splitting algorithm (SSS) [16] that derives a hidden Markov

network (HMnet), a state with the largest variance is chosen to split either by the temporal

domain information or contextual domain information . A maximum likelihood variant of SSS

is described in [17].

(2) Pruning approach : A possibly oversized model is trained and then pruned to the right

size according to an optimality criterion. For example, Vasko et al. [18] started with an ergodic

HMM and state transitions were pruned in an iterative algorithm. At each iteration, one state

transition was pruned after an exhaustive search in which all possible HMMs with one less

transition were trained, and the model that gave the highest likelihood was chosen.

1In this paper, we do not deal with the number of distribution mixtures in the HMM topology. The reason

is that an HMM state with mixture density is equivalent to multiple single-mixture-density states [8]. Without

loss of generality, we may simply assume each state has only one single mixture in our ensuing discussion. On

the other hand, quite a few works have been done to determine the optimal number of mixtures in an HMM

state. For example, the Bayesian information criterion has been used to determine the right number of Gaussian

mixtures in an HMM state in speech recognition [9], [10].
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(3) Hybrid approach : One first grows a big HMM and then reduces the model size by state

pruning or merging. For example, Casacuberta [19] used his error-correcting grammatical

inference algorithm (ECGI) to create a huge discrete HMM and then pruned away states

that have the least occupancy counts. On the other hand, Stolcke [20], [21] derived multiple-

pronunciation models by HMM induction in which again a versatile HMM was first built from

data and equivalent states were then merged using a Bayesian approach.

This paper investigates a method belonging to the second approach, called Optimal Brain

Surgeon (OBS) [22], [23] to reduce the topology of an HMM. The purpose is two-fold:

• to select a good HMM topology for a given task with improved generalization capability,

and/or

• to reduce the model complexity so as to save memory and computation costs. This is particu-

larly needed in big HMMs such as multi-stream HMMs commonly used in multi-band ASR [24],

[25], [26], [27] or audio-visual ASR [28].

OBS belongs to a class of sensitivity-based weight-pruning methods that make use of second-

order derivatives (of some cost function) to eliminate the least “important” weights in a neural

network (NN). It does not only remove weights but also re-adjusts the remaining weights opti-

mally. The method has been shown effective in refining the complex topology of an over-fitted

neural network in [29]. Although it has been shown that an HMM is a Boltzmann chain [30]

and the OBS algorithm can be applied to a Boltzmann chain as well [31], unfortunately the

result cannot be applied directly to an HMM to prune HMM transitions. The reason is that a

zero weight in a Boltzmann chain does not translate to an equivalent HMM transition of zero

probability but unity (and an HMM transition of zero probability is equivalent to a connection

weight of −∞ in a Boltzmann chain). In this paper, we would like to apply the theory of OBS

and work out its application to pruning HMM transitions or states from the first principle.

When applied to a neural network, OBS is an equality-constrained optimization problem that

can be solved analytically by the method of Lagrange multipliers. When OBS is applied to

an HMM, due to the various HMM constraints, it becomes a quadratic programming problem

with equality and inequality constraints that has to be solved by more advanced methods.

This paper is organized as follows: In the following section, we will first review the theory

of OBS and its predecessor, Optimal Brain Damage (OBD) [32] when they are applied to

neural networks. Section III presents the formulation details of how OBS may be applied to

an HMM. The major cost of the method is the computation of the Hessian which is detailed

in Section IV. Since assumptions made in OBS are often found invalid in practice in neural
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networks [33], but the method still deletes the right weights — that is, the assumptions are

good approximations — most of the time, empirical evaluation of the method is necessary. In

Section V, the application of OBS to HMMs was evaluated on two tasks: to re-discover the true

topology of a discrete HMM, and to prune an expanded topology of the strictly left-to-right

continuous-density HMMs that were trained for the TIDIGITS task. The paper ends with

discussions and conclusions in Section VI.

II. Optimal Brain Surgeon on Neural Network

In 1990, Le Cun et al. proposed the Optimal Brain Damage (OBD) [32] and started the

proliferation of a new class of weight pruning methods that make use of the second-order

derivatives of an error function of a neural network2. In these methods, a neural network with

a set of J weights w is first trained to convergence according to an error function E(w). By

the Taylor’s expansion, a change in the error function, δE induced by a change in weights δw

is given by

δE = δwT g +
1

2
δwT H δw + · · · (1)

where g = ∂E
∂w is the gradient vector and H = ∂2E

∂w2 is the Hessian matrix3. Two assumptions

are made:

1. Extremal Assumption: The first term in Eqn. (1) vanishes by the assumption that the net-

work has converged to a local, if not global, minimum of the error function and the gradient g

should be zero.

2. Quadratic Assumption: If all terms higher than the third order are negligible, then only the

second-order derivative term remains and the change in error can be approximated as

δE =
1

2
δwT H δw . (2)

A. Optimal Brain Damage (OBD)

OBD further assumes that the Hessian matrix is diagonal. That is equivalent to assume that

the total change in E when several weights are deleted is the sum of δE caused by deleting

each of the weights individually. Thus, the change in error δEj induced by the elimination of

2Note that magnitude-based pruning methods that simply delete weights of the smallest magnitude give non-

optimal solution [22], [32].
3We adopt the usual notation that bold-faced quantities are vectors or matrices. Vectors are in small cases

and matrices are capitalized.
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the jth weight, viz. δwj = −wj , is given by

δEj =
1

2
Hjjw

2
j , j = 1, 2, . . . , J. (3)

Eqn. (3) is used to represent the saliency of each network weight, and weights of the least

saliencies are eliminated to improve the neural network performance.

Experiments in [32] showed that OBD could delete over half of the weights in a neural

network, resulting in a network whose speed was improved significantly and its recognition

accuracy (generalization) increased slightly on the test data.

B. Optimal Brain Surgeon (OBS)

OBS is more general than OBD and works with the full Hessian matrix. The deletion of a

single weight, say, the jth weight wj is formulated as a constrained optimization problem with

the following constraint on Eqn. (2):

eT
j (δw + w) = 0 , (4)

where ej is a unit vector with all components except the jth one being zeros. Thus, the

objective of OBS becomes

min
1≤j≤J

{

min
δw

(

1

2
δwT ∂2E

∂w2
δw

)
∣

∣

∣

∣

∣

eT
j (δw + w) = 0

}

. (5)

The equality-constrained problem can be solved by the standard method of Lagrangian multi-

pliers. Unlike OBD, OBS does not only delete a single weight, say, wj , but it will also adjust

the remaining weights optimally to give the least increase in the error function by the following

formula

δw = −
wj

[H−1]jj
H−1 ej . (6)

One may generalize the method to delete several weights at the same time. For example, in

unit-OBS [34], one may prune a node by writing down a constraint like Eqn. (4) for each of its

(in-coming and out-going) connection weight, and solve Eqn. (2) with the multiple constraints.

C. Miscellaneous

Other weight pruning methods in neural network that use second-order derivatives differ

mainly on their objective functions [35], [36], [33], [37] or on the approximations used [38].
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III. Optimal Brain Surgeon on HMM

The Optimal Brain Surgeon algorithm described in the last section may be modified to prune

a transition in an HMM. The major difficulty is that while the application of OBS to a neural

network is an equality-constrained problem that has a simple analytical solution, its application

to an HMM has to preserve various equality and inequality constraints on HMM parameters. As

will be shown below, the modification changes a Lagrange optimization problem to a quadratic

programming problem.

A. Theory

We take the simple view that a connection weight in a neural network is analogous to a

transition arc (hereafter, we will simply call it a transition) in an HMM and a node in a neural

network is analogous to an HMM state. The log-likelihood of training data is used as the cost

function, but other cost functions pertinent to the performance or model complexity of HMM

may be used as well. These choices are summarized in Table I. Thus, the goal may be stated

as follows:

“To prune the HMM transition or state that induces the least decrease in the log-likelihood of

the training data, and at the same time to optimally re-adjust the probabilities of the remaining

transitions while preserving all HMM constraints.”

Let us denote the log-likelihood of the training data as log L, and arrange all HMM transition

probabilities in a vector w. From Eqn. (2), the application of OBS to an HMM may be

formalized as an optimization problem that minimizes

−δ log L = −δwT ∂2 log L

∂w2
δw (7)

subject to the following three constraints:

I. Selection Constraint : To prune the jth transition, that is, δwj = −wj, we have

ej
T (w + δw) = 0 . (8)

II. Sum-to-one Constraint : The sum of probabilities of all out-going transitions from a state

must be one. We will use an indicator matrix M to specify the outgoing transitions of all

HMM states. If an HMM has J transitions and N states, then it will have an J ×N indicator

matrix M . The indicator matrix consists of only 1’s or 0’s; if the entry Mij = 1, then transition

i is an out-going arc from state j. For example, all states except the last one of the strictly
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left-to-right HMM in Fig. 1 has 3 out-going transitions (self transition, next-state transition,

and 1-state-skip transition) as shown, then its indicator matrix M can be written as

M =









































1 0 0 · · ·

1 0 0 · · ·

1 0 0 · · ·

0 1 0 · · ·

0 1 0 · · ·

0 1 0 · · ·
...

...
...

. . .









































J×N

. (9)

The sum-to-one constraint can be expressed as

MT (w + δw) = 1N ,

where 1N is an N -dimensional vector of 1’s. Or, equivalently, we have

MT δw = 0N , (10)

where 0N is an N -dimensional vector of 0’s.

III. Non-negativity Constraint : All transition probabilities must be non-negative. That is,

w + δw ≥ 0J . (11)

One may think that we need another constraint to make sure all transitions are less than

one. However, the non-negativity constraint together with the sum-to-one constraint already

implicitly require all transitions to be less than one.

It is the last inequality constraint that turns the optimization to a quadratic programming

problem.

B. Algorithm

The whole OBS algorithm for pruning HMM transitions is shown in Algorithm 1. It is an

iterative procedure that removes one transition — the least salient transition — at a time.

The saliency of a transition is defined as the decrease in the log-likelihood of the training data,

−δ log L, if the transition is pruned. Due to the assumption that the original HMM must have

been trained to convergence (in the maximum likelihood sense), any small perturbation of its

transition probabilities will decrease the likelihood. Thus, the quantity −δ log L should be non-

negative, and we would like it to be as small as possible. The OBS algorithm is terminated

when
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• the least saliency is greater than a threshold θs, or

• the number of deletions exceeds a threshold θd.

The first stopping criterion prevents a dramatic drop in the performance of the pruned model

while the second criterion guarantees a minimum model size. These thresholds were determined

empirically in the experimental evaluations described in Section V.

Algorithm 1: Optimal Brain Surgeon algorithm on HMM

STEP 1. Train a sufficiently large HMM until it converges.

STEP 2. Compute its full Hessian H using the training data.

STEP 3. Solve the quadratic programming problem of Eqn. (7) for the deletion of each possible

transition, and record the corresponding saliency −δ log L and δw.

STEP 4. Sort the saliencies. If the least saliency is greater than the threshold θs, then stop.

STEP 5. Delete the transition that has the least saliency and update other transition proba-

bilities by the δw found in STEP 3.

STEP 6. Repeat STEP 2 – 5 until the number of deletions exceeds θd.

C. Unit-OBS

The foregoing discussion only deletes one transition in each iteration of the OBS algorithm.

To achieve faster and greater pruning effect, one may try to delete several transitions at a time.

In particular, one may prune an HMM state at each iteration in a fashion similar to the use of

unit-OBS in pruning a node in a neural network [34] by removing all transitions going into or

coming out of the pruned state.

The extension to unit-OBS requires two simple modifications to the selection constraint and

sum-to-one constraint as follows:

I. Selection Constraint : Pruning an HMM state requires the deletion of all its in-coming and

out-going transitions. For example, Fig. 2 illustrates the deletion of 4 arcs in order to prune

state S2 of the HMM in Fig. 1. Mathematically, we may replace the selection vector ej of

Eqn. (8) by a selection matrix S that indicates all the relevant transitions to be pruned. For

instance, if a state has totally K in-coming and out-going transitions that are represented by

ej1 ,ej2 , . . . ,ejK
, then the selection matrix S can be written as

S = [ej1 ,ej2 , . . . ,ejK
] (12)

and the selection constraint for deleting that state is given by

ST (w + δw) = 0K . (13)
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II. Sum-to-one Constraint : The constraint is similar to the one given by Eqn. (10) except that

since a state is deleted its corresponding column vector in the indicator matrix M should also

be deleted. Continuing with the example shown in Fig. 2, if state S2 is pruned, the indicator

matrix to use will be modified as

M =





























































1 0 0 · · ·

1 0 0 · · ·

1 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·

0 1 0 · · ·

0 1 0 · · ·

0 1 0 · · ·
...

...
... · · ·





























































J×(N−1)

. (14)

Notice that the 2nd column of M in Eqn. (9) corresponding to state S2 is removed to give the

M matrix in Eqn. (14) whose number of columns is also reduced by 1.

The OBS algorithm given in Algorithm 1 is then modified to find the saliency of each state

and the state that gives the least saliency is pruned.

D. Active-Set Method

The application of OBS to pruning HMM transitions or states is a quadratic programming

problem. In all experiments presented in this paper, the Matlab optimization toolbox was used

to solve the problem; it basically implements the active-set method. Details of the method

is beyond the scope of this paper and the readers are referred to [39]. In brief, it is an it-

erative method which maintains a working set of active constraints in each iteration. All

inequality constraints in an active set are converted into equality constraints, and the subse-

quent equality-constrained problem is solved by standard Lagrange multiplier method. If the

Lagrange multiplier corresponding to a currently active inequality constraint is negative, the

inequality constraint will be removed (or become inactive) from the working set. On the other

hand, some direction search method is used to determine a new constraint to be added to the

active set. The procedure iterates until a feasible solution is found and the Lagrange multipliers

for all inequality constraints in the active set are non-negative.
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IV. Hessian Calculation

The computation of the Hessian H = ∂2 log L
∂w2 plays an important role in the OBS algorithm.

The Hessian matrix is derived from the first principle by differentiating the log-likelihood of

the training data with respect to each state transition probability. This is done efficiently

and iteratively by making use of the forward probability in the Baum-Welch forward-backward

training algorithm [40].

Given an observation sequence O = {o1,o2, . . . ,oT } and an HMM with N states and model

parameters λ, let’s denote the likelihood of the observation sequence P (O | λ) by L, and its

log-likelihood by log L. The likelihood may be computed efficiently by the iterative Forward

Procedure as summarized in the following formulas:

αs(1) = πsbs(o1) , s = 1, . . . ,N (15)

αs(t) =

[

N
∑

r=1

αr(t − 1) ars

]

bs(ot) , t = 2, . . . , T, and r, s = 1, . . . ,N (16)

L = P (O|λ) =
N
∑

r=1

αr(T ) (17)

where αr(t) is the probability of observing the sub-sequence {o1,o2, . . . ,ot} by the model,

ending up in state r at time t; πs is the initial probability of state s; bs(ot) is the probability of

observing ot in state s; and ars is the probability of making a transition from state r to state

s.

A. Hessian of the Log-Likelihood

A general term in the Hessian of the log-likelihood is given by

∂2 log L

∂aim∂ajn

=
1

L
·

∂2L

∂aim∂ajn

−
1

L2
·

∂L

∂aim

·
∂L

∂ajn

, i, j,m, n = 1, . . . ,N . (18)

The calculation of the Hessian of log-likelihood requires the calculation of the first- and

second-order derivatives of the likelihood in linear domain. Differentiating the forward proba-

bilities given by Eqn. (16), we have, for t = 2, . . . , T :

∂αs(t)

∂ aim
=

N
∑

r=1

[

∂αr(t − 1)

∂aim
ars + αr(t − 1) δ(r, i) δ(s,m)

]

bs(ot) (19)

and

∂2αs(t)

∂aim∂ajn
=

N
∑

r=1

[

∂2αr(t − 1)

∂aim∂ajn
ars +

∂αr(t − 1)

∂aim
δ(r, j) δ(s, n)

+
∂αr(t − 1)

∂ajn
δ(r, i) δ(s,m)

]

bs(ot) , (20)
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where we have made use of the fact that

∂ars

∂aim

= δ(r, i) δ(s,m) =











1 if r = i and s = m

0 otherwise
, (21)

and any second-order derivatives of a transition probability ∂2ars

∂aim∂ajn
are zeros.

Finally, using Eqn. (17), elements of the Hessian matrix in Eqn. (18) are given by

∂L

∂aim
=

N
∑

r=1

∂αr(T )

∂aim
(22)

and

∂2L

∂aim∂ajn
=

N
∑

r=1

∂2αr(T )

∂aim∂ajn
. (23)

Notice that, in practice, the computation of the Hessian is not as expensive as it may seem:

Many of the Kronecker delta values in Eqn. (19) and Eqn. (20) are zeros, and the first-order

derivatives at t = 1 and the second-order derivatives at t = 1 or t = 2 are all zeros. That is,

∂αs(1)

∂aim

=
∂(πsbs(o1))

∂aim

= 0 ,

∂2αs(1)

∂aim∂ajn
=

∂2(πsbs(o1))

∂aim∂ajn
= 0 ,

and
∂2αs(2)

∂aim∂ajn

=
N
∑

r=1

[

∂2αr(1)

∂aim∂ajn

ars +
∂αr(1)

∂aim

∂ars

∂ajn

+
∂αr(1)

∂ ajn

∂ars

∂aim

]

bs(o2) = 0 .

If the computational complexity of the Forward Procedure is denoted as O(fwd proc) then the

computational complexity of the Hessian is about J2×O(fwd proc) (where J , once again, is the

number of transitions). Although the computation of Hessian is expensive, it can be mitigated

by the following two observations:

• the Hessian is symmetric so that only about half of its elements are computed.

• in practice, most computation is actually due to the calculation of the observation probabil-

ities bs(ot). In our experiments, we pre-computed the probabilities of all observations for all

states which were then used by all iterations of OBS.

V. Experimental Evaluation

The OBS algorithm has two major assumptions: the “extremal” assumption that the starting

model has been trained to convergence, and the “quadratic” assumption that the third and

higher-order terms in the Taylor expansion of the cost function are negligible. As the OBS

algorithm iterates, these assumptions will become weaker and weaker. In practice, researchers

in the neural network community find that OBS works reasonably well on neural networks even
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when these assumptions are violated. In this section, we designed two experiments to study

the behaviour of OBS on pruning HMM transitions empirically.

Before we describe the two evaluation experiments, one procedural modification to the OBS

algorithm is worth mentioning. Depending on the particular topology of the HMM in a problem,

certain transition deletions will render some states in the reduced HMM useless — unreachable

or non-propagating. This is particularly problematic if the unreachable state is the final (null)

state of the HMM. Hence in all our experiments, the OBS algorithm of Algorithm 1 was

amended with the following steps to deal with the possible appearance of useless states:

• if a deletion will render a state unreachable — an HMM state with no in-coming transitions,

and/or non-propagating — an HMM state with no out-going transitions, then the deletion is

undone and unit-OBS is carried out on the state instead.

• deletions that will render an HMM infeasible — that is, an HMM with an unreachable final

null state — are not allowed. As a matter of fact, those deletions will not be selected unless

there are no other choices; in such case, the algorithm will stop.

Moreover, we always made sure that the OBS algorithm started with a feasible HMM.

A. Evaluation I: Application of OBS to Pruning Transitions of a Discrete HMM

This experiment is similar to the one described in [18]. In the paper, an HMM was pruned

iteratively, one transition at a time. During each iteration, all possible HMMs having one

transition less than the current HMM were trained and the one with the highest likelihood

was selected. In our current case, we replaced the HMM training of all possible smaller HMMs

by finding the saliencies of all transitions (as defined in Eqn. (7)), and pruned the one with

the least saliency. The objective is to check if the OBS algorithm is effective in pruning a

“wrongly” overgrown model to the true model.

Specifically, 1,000 discrete observation sequences of lengths ranging from 3 to 103 were gener-

ated from the 3-state strictly-left-to-right discrete HMM of Fig. 3 for a total of 26,829 training

observations. The state observation probabilities of the true generating discrete HMM are given

in Table II. Then a 4-state ergodic discrete HMM of Fig. 4(a), which is larger than the true

model, was trained using the 1,000 observation sequences. The ergodic HMM always starts

from S1 and ends in S44. The ergodic HMM was trained using the HTK software [41] with

flat-start initialization until the model converged. The OBS algorithm was then performed

iteratively, pruning one transition at a time, and adjusting the remaining transitions optimally.

4There is a minor difference between our 4-state ergodic HMM and the one described in [18]. Ours always

starts from S1 while the latter may start in any of the four states.
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Fig. 4 shows the evolution of the topology as well as the transition probabilities of the

pruned HMM during the first seven iterations of the OBS algorithm. In the figure, only non-

zero transitions are drawn; the number next to an arrow represents the transition probability

between the two states that the arrow connects in the direction of the arrow. For example,

Fig. 4(a) indicates that the HMM originally had a transition from S1 to S2 with a probability

of 0.257 and a transition from S2 to S1 with a probability of 0.234. However, after one iteration

of the OBS algorithm, the transition probability from S1 to S2 was reduced to 0.103, and the

transition from S2 to S1 was deleted. The deletion of transitions at each OBS iteration and

the corresponding least saliency are summarized in Table III.

We have the following observations from Fig. 4 and Table III:

• Although the OBS algorithm starts with the aim of deleting one transition at each iteration,

it is possible that more than one transition is actually deleted. The requirement of a single

transition deletion is only a constraint, and the subsequent modification of all the remaining

transitions may suggest more deletions. This is the reason for the additional transition deletions

at the first iteration.

• The saliencies should always be positive because of the extremal assumption. The very small

negative saliency in the first iteration is due to round-off errors in the computation of the

Hessian.

• In this particular example with one excessive HMM state, the extraneous state was modeled

by the HMM training as a repeated state: S2 and S3 are basically identical with the same

relationship with S1 and S4 throughout the first four iterations.

• One of the two repeated states (S2 and S3), S2, was finally pruned at the 5th iteration —

all its in-coming and out-going transitions were pruned. The details of the deletion of S2 are

described as follows: at the 5th iteration, the OBS algorithm originally suggests to prune the

transition S1 → S2. However, the suggested deletion renders S2 unreachable. As a result, the

deletion is undone and unit-OBS is invoked to delete S2 instead; thus, the three transitions,

S1 → S2, S2 → S2, and S2 → S4 are pruned.

• There is a big increase in the saliency — the least induced drop in the log-likelihood of the

training data — of the pruned transition at the 6-th iteration: from 58.1 in the 5th iteration

to 20,800 in the 6th iteration. The big change may be used as an indication to stop HMM

pruning.

Thus, we see that the OBS algorithm effectively “finds” the true HMM of the training data in

this experiment after 5 iterations.
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B. Evaluation II: Application of OBS to Pruning Transitions of Continuous Density HMMs

In this experiment, the OBS algorithm was evaluated on a real speech recognition task.

We investigate if the most commonly used HMM topology — strictly left-to-right HMM with

no skip-transitions as shown in Fig. 5 — in the ASR community is a good choice for the

TIDIGITS recognition task. To do that, we added single-state skip-transitions to each state

as shown in Fig. 1; thus, each digit HMM has about 47 transitions5. The hypothesis is that if

skip transitions are not needed, they will be the first to be pruned by the OBS algorithm.

The adult data set of TIDIGITS was used for evaluation. It consists of 8,623 training

utterances and 8,700 testing utterances. Whole digit HMMs were trained. Each digit HMM

had 16 states with 16 Gaussian components per state. The HMM transitions are numbered as

follows (as shown in Fig. 1):

• self transitions are numbered as 1, 4, 7, . . ., 46.

• next-state transitions are numbered as 2, 5, 8, . . ., 47.

• single-state skip-transitions are numbered as 3, 6, 9, . . ., 48.

That is, if the transition number is n, then n mod 3 = 0, 1, 2 for single-state skip-transitions,

self transitions, and next-state transitions respectively. In addition, there were a 3-state “sil”

model to capture silence speech and a 1-state “sp” model to capture short pauses between

digits.

Feature extraction was performed over a window of 25ms at a frame rate of 10ms over all

training and testing data. The acoustic vector was the conventional 39-dimensional cepstral

vector containing 12 mel-frequency cepstral coefficients (MFCCs) and normalized energy plus

their first- and second-order derivatives. All the eleven digit models, the noise model, and the

short pause model were trained by the EM algorithm until convergence. The training data

were first force-aligned, and then the OBS procedure of Algorithm 1 was used to compute the

saliency of each transition for each digit HMM separately and the transition with the minimum

saliency was deleted from each HMM.

To gauge our results, we also tried to delete transitions manually from each HMM. In this

manual pruning (MP) method, the saliency of a transition is the decrease in log-likelihood if

it is deleted and the transition probabilities of the affected state is simply re-normalized; the

transition with the minimum saliency is pruned. The major difference between OBS and MP

5Although the topology of each digit HMM was initialized with the structure in Fig. 1, subsequent HMM

training might decide to remove those transitions that had very small probabilities. That indeed happened in

our case. As a result, some of the digit HMM did not have exactly 47 transitions.
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is that the latter will only update the remaining transition probabilities of the single affected

state by simple re-normalization, while the former will update the probabilities of all remaining

transitions of any states optimally. Thus, the choice of transition deletion made by MP is

not expected as good as the one found by OBS. Looking from another perspective, the MP

method replaces the two assumptions (extremal and quadratic assumptions) made by the OBS

algorithm by the approximation that the remaining transitions of the pruned state may be done

by simple re-normalization and all other transitions remain unaffected. Using the notations of

Section IV, since each possible transition deletion requires running the Forward Procedure once

to determine its saliency, the complexity of the MP method is about J × O(fwd proc), where

J is the number of transitions and O(fwd proc) is the complexity of the Forward Procedure.

Thus, it seems that MP is about J times faster than OBS. However, in practice, OBS may

compute the whole Hessian in one pass of the training data and determine which transition to

prune, while MP will have to go through J passes of the data. Since the data, in general, have

to be read from files, MP requires J times more file I/O than OBS. In practice, we found that

the OBS method was slightly faster than the MP method in this experiment.

B.1 Recognition Evaluation

The generalization performance of the reduced models after each iteration of the OBS algo-

rithm and manual pruning method is plotted in Fig. 6. Notice that since it is possible to delete

more than one transition at one iteration should a useless state appear and the OBS algorithm

will then invoke the unit-OBS procedure to prune a whole state instead of a single transition,

the average number of deletions (instead of the number of iterations) in each HMM is used in

the abscissa in Fig. 6. We have the following observations:

• OBS not only reduces the topology of the digit HMMs but also improves their generalization

performance on unseen test data during the first 13 OBS iterations, in which about 15 or 31%

transitions are deleted from each of the 11 digit HMMs.

• During the first 9 iterations, the generalization performance only improves slowly. On closer

examination of the deleted transitions, we find that they all have small magnitudes.

• The best performance occurs when about 11 transitions are deleted from each HMM, giving

a recognition accuracy of 99.4%. Compared with the baseline accuracy of 99.2%, there is a

word error rate reduction of 25%; the result is statistically better than the original model at

the 0.05 confidence level.

• The OBS performance drops significantly after 13 iterations (or about 15 transition deletions

per model). Again closer scrutiny reveals that useless states started to appear after 13 iterations
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in the models of “oh”, “1”, “3” and “5”, and some OBS iterations were replaced by unit-OBS

iterations on those models. It seems that unit-OBS may have induced drastic changes in the

models, resulting in greater deviation from the OBS assumptions.

• In general, the performance of OBS is only slightly better than that of the simpler MP

method. This seems to confirm the finding in the automatic speech recognition (ASR) commu-

nity that the transition probabilities are not very helpful in ASR because their dynamic range

is much smaller than that of the observation probabilities. Nevertheless, the performance of

OBS is consistently better than that of MP, probably due to the optimal update of the re-

maining transitions after each transition deletion. The result suggests that it is always better

(even if by a small margin) to estimate the transition probabilities in a manner consistent with

the HMM modeling theory. On the other hand, the performance of both algorithms starts to

degrade at roughly the same time, but OBS degrades faster. Again it may be caused by the

unit-OBS iterations after the 13th iteration.

B.2 Analysis of the Deleted Transitions

We also examine the three types of transitions that were deleted during the first 11 iterations

of the OBS algorithm over the 11 digit HMMs. The result is summarized in Table IV. As

mentioned in the beginning of this Section, the numbers of self-transitions, next-transitions,

and skip-transitions are not 176, 176, and 165 respectively as one may have deduced from the

initial HMM topology shown in Fig. 1. The reason is that after HMM training, some transitions

were too small and were removed.

During the first 11 iterations, most of the deleted transitions are the single-state skip-

transitions as one would expect, except for the digit “oh” which has 9 next-state transitions

deleted. This suggests that fewer states are needed to model “oh”. When we check the pruning

results of model “oh” in the subsequent OBS iterations up to the 15th iteration, we find that

unit-OBS was invoked eight times due to the appearance of many useless states. At the end,

only eight states of the “oh” HMM remained in a strictly left-to-right HMM topology as shown

in Fig. 7. On the other hand, among the remaining ten digits, only six states were deleted in

the subsequent four iterations. This is reasonable as “oh” consists of only one single phoneme

which probably does not require as many states as other digits. Altogether, the OBS prun-

ing results confirms that the strictly left-to-right HMM topology with no skips, which is most

commonly used in current ASR, is sufficient.
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B.3 Savings in Computation

A side effect of HMM pruning is savings in computation time and memory. Fig. 8 shows the

relationship between the number of deleted transitions or states and the decrease in decoding

CPU time on the test set using the pruned HMMs obtained after 11–16 OBS iterations. In

general, if N is the number of states and T is the duration of the decoding speech, the complexity

of the Viterbi decoding algorithm is O(N2T ). However, in our current case with a left-to-right

HMM plus 1-state skip-transitions, the complexity is actually O(3NT ) which is linearly related

to the number of states. This explains why the decoding time decreases linearly with the

number of state deletions. Thus, after 13 OBS iterations, we have a smaller set of HMMs with

no degradation in accuracy but 5.3% savings in computation time; after 16 OBS iterations, the

set of pruned HMMs reduces decoding time by about 10% at the expense of 0.25% (absolute)

drop in accuracy.

VI. Conclusions

In this paper, we adopt the theory of optimal brain surgery (OBS) to prune state transitions

in an HMM. Although the theory of OBS had been well studied in the neural network com-

munity, its application to an HMM requires significant modification, resulting in a quadratic

programming problem. We designed two experiments to study its empirical behaviour. In the

first experiment, the OBS algorithm was able to “re-discover” the true topology of an over-

grown discrete HMM. In the second experiment, on the TIDIGITS task, the OBS algorithm

successfully pruned the digit models so that the resulting models generalize better than their

initial models on unseen test data: the word error rate is reduced by 25% after 11 OBS itera-

tions when 25% of the HMM transitions are pruned. It also suggests that the common strictly

left-to-right HMM topology is reasonably good, except that the model “oh” may perhaps use

fewer states than the other digits.

This paper represents our first study of applying OBS to pruning an HMM. The algorithm can

be further improved in several directions. Firstly, as more and more transitions are pruned,

the OBS assumptions will become less valid. This may be mitigated by model re-training.

Another reason for re-training is that the OBS algorithm does not modify the state observation

probabilities. As the model is pruned, the initial observation probabilities will no longer be

optimal. Since model re-training is computationally expensive, it should be done only when it is

necessary. For example, when a transition deletion will render a state useless, it is now replaced

by an unit-OBS step; one may as well replace it by deleting the affected state and then re-



18

training the model. Secondly, right now all the models in a problem are pruned synchronously

in the sense that each model goes through one iteration of OBS at the same time. The OBS

algorithm may also be run asynchronously, so that some models are allowed to be pruned more

aggressively than the others. Thirdly, it will be interesting to apply the OBS or unit-OBS

algorithm to more complex HMMs, such as product HMMs commonly used in multi-band

ASR and audio-visual ASR.
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TABLE I

A comparison of the application of OBS to a neural network and to an HMM.

Item NN HMM

Pruning Unit connection weight transition arc

NN node HMM state

Cost Function training error log-likelihood of training data

Problem Type Lagrange optimization quadratic programming

TABLE II

Discrete observation probabilities of the HMM in Fig. 3.

k-th Symbol State 1 State 2 State 3

1 0.375 0.125 0.125

2 0.375 0.375 0.125

3 0.125 0.375 0.375

4 0.125 0.125 0.375
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TABLE III

Pruned transitions and states during each OBS iteration in Evaluation 1.

Iteration Pruned Transition (Additional Deletions; Reason) OBS Saliency

1 S2 → S3 (S2 → S1, S3 → S1, S4 → S2, S4 → S3; -5.96e-13

after probabilities re-adjustment)

2 S3 → S2 4.38e-16

3 S1 → S4 8.62e+00

4 S4 → S1 1.32e+00

5 S1 → S2 (S2 → S2, S2 → S4; unit-OBS on S2) 5.81e+01

6 S1 → S1 2.08e+04

7 S3 → S3 6.36e+04

TABLE IV

Types of HMM transitions deleted by OBS during the first 11 iterations in

Evaluation II.

Types Self-transition Next-transition Skip-transition

Original no. 174 176 148

#Deletions 13 15 93

Deletion% 13

174
= 7.47% 15

176
= 8.52% 931

148
= 62.8%
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S4S1 S2 S3

(1) (4) (7) (10)

(3) (6) (9) (12)

(2) (5) (8) (11)

Fig. 1. A left-to-right HMM with single-state skips. Only 4 states are shown and the transitions are

numbered.

S1 S2 S3 S4

Fig. 2. Deletion of multiple transitions in unit-OBS.
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Fig. 3. A strictly left-to-right 3-state discrete HMM
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(f) 5th iteration
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Fig. 4. Evolution of the OBS algorithm on pruning the discrete HMM in Evaluation I.
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S1 S2 S3 S4

Fig. 5. A left-to-right HMM with no skips. Only 4 states are shown.
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Fig. 6. Recognition performance on TIDIGITS after pruning HMM transitions by OBS.
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Fig. 7. The topology of HMM “oh” after 15 iterations of OBS.
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