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Abstract
Discriminative training is a major contribution to the success of
automatic speech recognition (ASR) in the last decade. How-
ever, since most ASR systems employ state tying which ties
‘similar’ states in a cluster, discriminative training may only
improve inter-cluster discrimination, but states belonging to the
same cluster obviously cannot be distinguished. Recently, the
concept of distinct acoustic modeling was investigated by a new
acoustic modeling method called eigentriphone modeling. In
the new method, states are grouped, but not tied, into separate
clusters, and the difference vectors between mean vectors of
the member states and their cluster center vector are modeled
by a basis approach using a set of eigenvectors which are also
called eigentriphones. This paper investigates whether the inter-
cluster discrimination achieved by discriminative training and
intra-cluster discrimination obtained by eigentriphone model-
ing are additive. In a simple procedure that is applied to each
state cluster, the discriminatively trained cluster center vector is
integrated with the difference vectors trained by eigentriphone
modeling to construct the final mean vectors of the distinct
states in the cluster. Experimental evaluation on the WSJ0 5K
task shows that the two techniques are indeed additive.

Index Terms— Eigentriphone, discriminative training,
adaptation, regularization

1. Introduction
In context-dependent phone-based acoustic modeling, infre-
quent triphones need to be handled properly otherwise they will
greatly affect the system performance due to the classification
nature in speech recognition. Existing solutions to robust mod-
eling of infrequent triphones can be roughly classified into three
major categories: triphone-by-composition [1], parameter ty-
ing [2] and basis approach [3].

In triphone-by-composition methods, parameters of infre-
quent triphones are estimated through a composition of mod-
els of different order of context dependency. Model inter-
polation [4] and quasi-triphones [5] are typical examples of
triphone-by-composition. Parameter tying methods mainly dif-
fer in their choice of acoustic units for tying. Example tying
units are generalized triphones [6], state tying [7], shared dis-
tributions or senones [8], and tied subspace Gaussian distribu-
tions [9]. Among the various parameter tying methods, phonetic
decision tree-based tying [10] is the most popular approach due
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to its proven effectiveness in balancing the trainability and res-
olution of the acoustic models. The key is that the infrequent
triphones (and even unseen triphones) may share the same dis-
tribution with those frequent triphones in the same state cluster
where the amount of training data is guaranteed. However, one
potential problem is that the triphone states tied to the same
cluster become identical to the recognizer, inducing quantiza-
tion error in the state distributions and causing confusion be-
tween triphones during recognition.

As an alternative to the above two methods, basis approach
tends to exploit the underlying relationship/factor between the
context-dependent states. Examples of basis approach such
as subspace Gaussian Mixture Model [11] or semi-continuous
HMM [12] can be summarized by a general framework called
the canonical state model [3]. It is assumed in CSM that every
context-dependent state in a system can be transformed from
some canonical states. These canonical states represent the un-
derlying factor between the context-dependent states. In con-
trast to standard tying schemes, the model parameters are now
‘related’ with each other. In other words, a soft tying scheme is
being used.

Recently, a new method for estimating parameters of tri-
phone models called eigentriphone modeling [13, 14, 15] is
proposed. In the most general form of eigentriphone model-
ing, models are first grouped into clusters, then an orthogonal
basis is constructed from a set of well-trained reference models
in the cluster. Each model in the cluster is now constrained to
lie on the space spanned by the constructed basis, and is mod-
eled as a linear combination of the eigenvectors of the basis.
These eigenvectors, which are called eigentriphones, capture
the most important context-dependent characteristics among the
triphones. Since the number of eigentriphones is relatively
small, even the infrequent models can be robustly trained us-
ing the new approach.

In [14, 15], the successful use of model-based eigentri-
phones and state-based eigentriphones were demonstrated. In
both cases, an eigenbasis is derived for each monophone for
modeling triphones in which no states are tied. Since the tri-
phone models are distinct from each other, they are more dis-
criminative as well. In the latest development of eigentriphone
modeling [16], triphone states are grouped into clusters, from
which eigentriphones are derived. The new method is called
cluster-based eigentriphone modeling. From another perspec-
tive, eigentriphone modeling attempts to model intra-cluster
discrimination — that is, discrimination among states belonging
to the same state cluster — by modeling the difference vector
between each (distinct) state in a cluster and its cluster center
vector using a basis approach. In eigenvoice [17], the mean of
reference speaker supervectors is chosen as the cluster center.



In cluster-based eigentriphone modeling, it is empirically found
that using the cluster mean supervector, which is estimated by
maximum likelihood (ML) training, is better.

At the same time, discriminative training [18, 19, 20] has
become the commonplace in acoustic modeling. However,
since most automatic speech recognition systems employ state
tying which ties ‘similar’ states together in a cluster, discrimina-
tive training may only improve inter-cluster discrimination, but
states belonging to the same cluster obviously cannot be distin-
guished. In this paper, we would like to investigate whether the
inter-cluster discrimination achieved by discriminative training
and intra-cluster discrimination obtained by eigentriphone mod-
eling are additive or complementary to each other. In a simple
procedure that is applied to each state cluster, the discrimina-
tively trained cluster center vector is integrated with the dif-
ference vectors trained by eigentriphone modeling to construct
the final mean vectors of the distinct states in the cluster. Ex-
perimental evaluation on the WSJ0 5K task shows that the two
techniques are indeed additive.

This paper is organized as follows. In Section 2, we first
review the cluster-based eigentriphone acoustic modeling ap-
proach, and then describe how the procedures are modified us-
ing discriminatively trained cluster centers. That is followed by
experimental evaluation in Section 3, and conclusions in Sec-
tion 4.

Figure 1: Overview of the cluster-based eigentriphone acous-
tic modeling method. (WPCA = weighted principal compo-
nent analysis; PMLED = penalized maximum-likelihood eigen-
decomposition)

2. Cluster-based Eigentriphone Modeling
Fig. 1 shows an overview of the cluster-based eigentriphone
acoustic modeling method. All triphone states are first repre-
sented by some supervectors and they are assumed to lie in a
low dimensional space spanned by a set of eigenvectors. In
other words, each triphone state supervector is a linear com-
bination of a small set of eigenvectors which are now called
eigentriphones.

2.1. Derivation of Cluster-based Eigentriphones

Cluster-based eigentriphone modeling consists of three major
steps: (a) state clustering via a phonetic decision tree, (b)

derivation of the eigenbasis, and (c) estimation of eigentriphone
coefficients. The steps are summarized in further details below.

2.1.1. Conventional Tied-state Triphone HMM Training

We follow the steps in [21] to train a conventional tied-state
triphone acoustic model. A tied-state acoustic model ΛML is
obtained through maximum-likelihood (ML) training. Each tied
state is represented by a J-component Gaussian mixture model
(GMM) with diagonal covariance. For each tied state i in ΛML,
create a state supervector mML

i by stacking up all Gaussian
mean vectors in the state as below:

mML
i = [ µ′

i1, µ′
i2, · · · , µ′

iJ ]
′ , (1)

where µij , j = 1, 2, . . . , J is the mean vector of the jth Gaus-
sian component of the ith tied state.

Now the tied states are treated as state clusters.

2.1.2. Derivation of Cluster-based Eigentriphones

The following procedure is repeated for each state cluster i us-
ing its Ni triphone states that appear in the training corpus.

STEP 1: Untie the Gaussian means of all the triphone states in
the cluster except the unseen triphone states. The means of
the cluster GMM are then cloned to initialize all the untied
triphone states. Note that the Gaussian variances and mix-
ture weights of states in the cluster are still tied together.

STEP 2: Re-estimate only the Gaussian means of all triphone
states after cloning; their Gaussian covariances and mixture
weights remain unchanged as those of their cluster GMM.

STEP 3: Create a triphone state supervector vip for each tri-
phone state p in cluster i by stacking up all its Gaussian mean
vectors from its J-component GMM as in Eqn. 1.

STEP 4: Collect the state mean supervectors vi1, vi2, . . .,
viNi as well as the ML-trained cluster center supervector
mML

i of cluster i, and derive an eigenbasis from their corre-
lation matrix using weighted principal component analysis
(WPCA). The correlation matrix is computed as follows:

1

Fi

∑
p

Fip(v̂ip −mML
i )(v̂ip −mML

i )′ , (2)

where v̂ip are the standardized version of vip after it is nor-
malized by its variances; Fip is the frame count of the tri-
phone state p in cluster i, and Fi =

∑
p Fip. Note that we

empirically find that using mML
i as the bias for correlation

computation gives a better result than the arithmetic mean of
the state supervectors {v̂ip, p = 1, . . . , Ni}.

STEP 5: Arrange the eigenvectors { eik, k = 1, 2, . . . , Ni } in
descending order of their eigenvalues λik, and pick the top
Ki (where Ki < Ni) eigenvectors to represent the eigenba-
sis of cluster i. These Ki eigenvectors are now called eigen-
triphones of cluster i. Note that, in general, different clusters
have a different number of eigentriphones.

2.1.3. Estimation of the Eigentriphone Coefficients

After the derivation of the eigentriphones, the supervector vip

of any triphone state p in cluster i is assumed to lie in the space
spanned by the Ki eigentriphones. Thus, we have

vip = mML
i︸ ︷︷ ︸

cluster center

+ Eiwip︸ ︷︷ ︸
difference vector

, (3)



where Ei = [ei1, . . . , eiKi ] is the matrix of the eigentriphones
that is used to model the intra-cluster discrimination among the
member states cluster i, and wip = [wip1, . . . , wipKi ]

′ is the
eigentriphone coefficient vector of triphone state p in the cluster.
The second term Eiwip models the difference vector between
the cluster center and each distinct state in the cluster.

The eigentriphone coefficient vector wip is estimated by
maximizing the objective function Q(wip) in the penalized
maximum-likelihood eigen-decomposition (PMLED) [14] as
follows

Q(wip) = L(wip)− β
Ki∑
k=1

w2
ipk

λik
, (4)

where L(wip) is the log-likelihood of the training data; β is
the regularization parameter; wipk is the coefficient for the kth
eigentriphone.

Figure 2: An illustration of the inter-cluster and intra-cluster
discriminations provided by discriminative training and eigent-
riphone modeling respectively. mML

a and mML
b are the centers

of clusters a and b obtained through ML training; mDT
a and

mDT
b are the centers of clusters a and b obtained through dis-

criminative training.

2.2. Investigation Issue: Cluster-based eigentriphones with
Discriminatively Trained Bias

Compared with a conventional tied-state system, the discrimi-
nation among triphone states within the same state cluster —
or the intra-cluster disrimination —- is now modeled by an ad-
dition of the difference vectors Eiwip from the cluster centers
in the acoustic space (Fig. 2). Meanwhile, the discrimination
between state clusters is given by the ML-trained cluster cen-
ters mML

i . The inter-state-cluster discrimination can be readily
enhanced by discriminative training (DT). Let us denote the cor-
responding DT-trained cluster centers by mDT

i . Thus, we have
the following two pieces of additional discrimination informa-
tion:

additional inter-cluster discrimination: mDT
i −mML

i

intra-cluster discrimination: Eiwip

This paper investigates integrating these two pieces of com-
plementary discrimination information and models the super-
vector of the distinct triphone state p of cluster i as follows

vip = mML
i +

(
mDT

i −mML
i

)
︸ ︷︷ ︸

additional inter-cluster discrimination

+ Eiwip︸ ︷︷ ︸
intra-cluster discrimination

. (5)

Table 1: Information of various WSJ data sets.

Data Set #Speakers #Utterances Vocab Size
SI-84 83 7,138 8,911
SI-284 283 37,413 13,646
dev. set 10 410 1,591
Nov’92 8 330 1,270

3. Experimental Evaluation
3.1. Speech Corpora and Experimental Setup

Two sets of experiments were conducted on the Wall Street
Journal (WSJ) continuous speech recognition: one using the
smaller SI-84 WSJ0 training set and another one using the larger
SI-284 WSJ0+1 training set. The SI-84 training set consists of
15 hours of 7,138 WSJ0 read utterances from 83 speakers. The
SI-284 training set is a superset of the SI-84 training set, con-
sisting of all the WSJ0 utterances plus an addition of 30,275
WSJ1 utterances from 200 speakers for a total of about 70 hours
of read speech. All the training data were endpointed. The stan-
dard Nov’92 5K non-verbalized test set was used for evaluation
while the 1992 WSJ 5K development data set was used for tun-
ing the system parameters. These data sets are summarized in
Table 1. The language models in the experiments were the stan-
dard 5K-vocabulary bigram and trigram that came along with
the WSJ corpus which have a perplexity of 147 and 57 respec-
tively.

There were altogether 15,061 cross-word triphones in
WSJ0 training set and 18,777 cross-word triphones in WSJ0+1
training set based on 39 base phonemes. Each triphone model
was a strictly left-to-right 3-state continuous-density hidden
Markov model (CDHMM), with a Gaussian mixture density of
at most J = 16 components per state. In addition, there were a
1-state short pause model and a 3-state silence model. The tra-
ditional 39-dimensional MFCC vectors were extracted at every
10ms over a window of 25ms. The HTK toolkit [21] was used
for maximum likelihood HMM estimation and discriminative
training as well as speech decoding.

3.2. Acoustic Modeling

The performance (in term of word accuracy) of the following
four acoustic modeling methods are compared on the WSJ 5K
recognition tasks:

• baseline1: conventional ML training of tied-state tri-
phone HMMs.

• baseline2: minimum-phone-error (MPE) discriminative
training of tied-state triphone HMMs resulted from base-
line1.

• cluster-based eigentriphone modeling of triphone
HMMs applied after baseline1 (and no states are tied).

• cluster-based eigentriphone modeling of triphone
HMMs applied after baseline1 with discriminatively
trained cluster centers extracted from the models of
baseline2 (again no states are tied).

The SI-84 tied-state baselines consist of 1,277 tied-states
and the SI-284 tied-state baselines consist of 7,374 tied-states.
For simplicity, the cluster-based eigentriphone modeling was
conducted using the clusters defined by the tied states in the
baseline systems. In general, the optimal choice of state clusters



Table 2: Recognition word accuracy (%) of various systems on the WSJ Nov’92 5K evaluation set using bigram or trigram LM.

Train Model Description Bigram Trigram

SI-84 Baseline1: ML-trained tied-state triphones 93.09 95.46

Baseline2: MPE-trained tied-state triphones 93.46 (+0.37) 95.78 (+0.32)

Cluster-based eigentriphone modeling 93.89 (+0.80) 95.74 (+0.28)

Cluster-based eigentriphone modeling with discriminatively trained cluster centers 93.98 (+0.89) 95.95 (+0.49)

SI-284 Baseline1: ML-trained tied-state triphones 94.25 96.32

Baseline2: MPE-trained tied-state triphones 94.28 (+0.03) 96.54 (+0.22)

Cluster-based eigentriphone modeling 94.30 (+0.05) 96.53 (+0.21)

Cluster-based eigentriphone modeling with discriminatively trained cluster centers 94.64 (+0.39) 96.73 (+0.41)

for eigentriphone modeling can be different from the tied states
chosen by conventional tied-state HMM even though they come
from the same state tying tree. The dimension of triphone state
supervectors is 16 (mixtures) x 39 (MFCC) = 624. For each
state cluster, all seen triphone states were used to derive the
eigentriphones, then the top 20% of eigentriphones were used
in PMLED. The regularization parameter β in PMLED was set
to 10.

Table 3: Relative amount of triphones in the Nov’92 test set that
are considered infrequent in the SI-84 or SI-284 training set for
different definition of infrequency.

Sample Count Below SI-84 SI-284
10 5.37 0.82
20 11.2 1.75
30 15.7 2.55
40 19.5 3.55
50 23.5 4.53

3.3. Results and Discussion

Word recognition results of various systems are compared in
Table 2. First of all, we can see that the previously proposed
cluster-based eigentriphone modeling performs at least as well
as the discriminatively trained tied-state triphones. With a tri-
gram LM, both of them give an absolute 0.2% – 0.3% (or, a
relative 5.4% – 6.6%) reduction in the word error rates (WERs)
when compared with conventional ML training of tied-state
triphones. This suggests that the exploitation of intra-cluster
discrimination between member states of a state cluster (ob-
tained by eigentriphone modeling) may be as important as the
additional inter-cluster discrimination obtained by discrimina-
tive training. Moreover, the performance gain by eigentriphone
modeling alone is more prominent with the smaller training set
of SI-84 than the larger training set SI-284. This shows that
eigentriphone modeling is particular effective with sparse train-
ing data.

The last row for each of the tasks shows the recognition per-
formance of the models after integrating the two approaches,
and it gives the best performance among the four modeling
methods: absolute reduction of WER by 0.89% in WSJ0 and
0.39% in WSJ0+1 when bigram LM was used, and 0.49% in

WSJ0 and 0.41% in WSJ0+1 when trigram LM was used. Thus,
it seems that eigentriphone modeling and discriminative train-
ing are complementary to each other, and the improvement
given by each of them are additive.

As the strength of the eigentriphone modeling method is its
ability to construct distinct models robustly for the infrequent
triphones, we hypothesize that the performance gain in a task
will depend on how often those triphones that are infrequent in
the training set appear in the test set. Thus, we count the relative
amount of infrequent triphones in the two training sets that ap-
pear in the test set for different definitions of infrequency, and
summarize the findings in Table 3. It can be seen that many
more triphones in the Nov’92 test set appear infrequently in
WSJ0 than in WSJ0+1. This is expected as the training set of
WSJ0+1 is about 4 times bigger than the training set of WSJ0,
and the latter is actually a subset of the former. Thus, the bene-
fit of eigentriphone modeling is more pronounced in the WSJ0
task than in the WSJ0+1 task.

4. Conclusions and Relation to Prior Work

This paper successfully shows that the cluster-based eigentri-
phone modeling [13, 14, 15, 16] can be further improved by
replacing the ML-trained cluster centers by the discriminatively
trained centers. Standard discriminative training [18, 19, 20]
of tied-state triphones aims at maximizing the inter-cluster dis-
crimination among tied states, whereas the cluster-based eigen-
triphone modeling eliminates the quantization errors in tied
states by untying the states belonging to the same tied state.
Besides untying states, eigentriphone modeling further models
each distinct member state of each state cluster (formerly a tied
state) by a difference vector from the cluster center, thus effec-
tively achieving additional discrimination among the member
states. The two approaches are integrated together in this paper
so that both inter- and intra-cluster discriminations are modeled
in the new cluster-based eigentriphone modeling algorithm that
uses discriminatively trained cluster centers.

Experimental evaluation on WSJ 5K task shows that the
new algorithm may combine the gains achieved by each of dis-
criminative training and eigentriphone modeling, and gives the
best recognition performance.
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