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Abstract
Recently, multi-band automatic speech recognition (MBASR)
is proposed to combat environmental noises. In this paper, we
describe the two major efforts in the development of our asyn-
chronous MBASR system for continuous speech recognition.
Firstly, we successfully introduce asynchrony among sub-bands
under the HMM composition framework. An asynchrony limit
of one state is found adequate — relaxing the limit further does
not improve performance. Secondly, the sub-band log likeli-
hoods are combined linearly at the frame level with weightings
estimated by minimizing the string classification error (MCE)
among the N-best hypotheses using simulated noisy speech.
When our asynchronous MBASR system is evaluated on con-
nected TI digits with 0db additive low-pass white noise, com-
pared with a full-band system, (1) our synchronous sub-band
system reduces the absolute string error rate (SER) and word
error rate (WER) by 19.8% and 14.1% respectively; (2) the
introduction of asynchrony further reduces the absolute SER
(WER) by 5.2%(2.5%); (3) an estimation of sub-band weight-
ings using N-best string MCE training gives an additional re-
duction of absolute SER (WER) by 19.7% (5.1%). Thus, in
that test, our asynchronous MBASR system has outperformed
a full-band system with a 44.7% (21.7%) reduction in absolute
SER (WER). In summary, N-best MCE training can effectively
emphasize the more reliable sub-band, and asynchronous re-
combination of sub-bands is preferred.

1. Introduction
Multi-band speech recognition has been shown to improve ro-
bustness under noisy environment recently [1, 2]. Two ma-
jor issues are often encountered in designing an MBASR sys-
tem: namely, asynchrony among the sub-bands, and their like-
lihood recombination. The asynchrony issue is motivated by
the observation that transitions of sub-band are asynchronous
and suspected that it may be advantageous to combine sub-
band decisions in this way. Traditionally, this issue is han-
dled by two-level dynamic programming algorithm or the level-
building algorithm [3]; recently, a hybrid approach of the two
methods were proposed in [4]. However, it is not easy to ex-
tend the method to continuous speech recognition in practice.
More recently, new approaches such as asynchronous transi-
tion HMM [5], factorial HMMs [6], Bayesian network [7],
and HMM composition [8, 9] are proposed. In our previous
work [9], we showed how sub-band HMMs can successfully be
combined by HMM composition. Since the output of HMM
composition is just another HMM, it allows us to stay in the
HMM framework and continue to enjoy the benefits provided

by all HMM-based techniques which contribute to the success
of ASR in the last decade. Yet, HMM composition still allows
sub-band decoding to be done asynchronously at sub-word or
word levels as desired.

Based on the HMM composition framework, the second is-
sue becomes how to recombine sub-band log-likelihoods at the
frame level. One approach is to recombine them linearly with
sub-band weights “optimally” 1 derived by minimum classifi-
cation error (MCE) training as shown in [10] and in our previ-
ous work [11]. However, both works only dealt with isolated
speech recognition using word-level MCE training. In this pa-
per, we extend our work to training sub-band weights in con-
tinuous speech recognition. String-level MCE is used as the
optimization criterion, competitors are derived from N-best hy-
potheses, and simulated noisy speech are used for the estima-
tion. In practice, we expect these weights to be estimated off-
line for each noise type at various signal-to-noise ratios (SNR).
During recognition, an MBASR system will first estimate the
type of environmental noise and its SNR so that the correspond-
ing sub-band weights can readily be plugged into the system.

We first elaborate our approach of asynchronous HMM
composition in Section 2, and derive the string-level MCE es-
timation formulae for estimating sub-band weights in Section
3. This is followed by recognition experiments in Section 4,
discussion in Section 5, and conclusions in Section 6.

2. HMM Composition Algorithm
HMM composition algorithm originates from Parallel Model
Combination (PMC) which is applied to noise compensation
where clean speech models are combined with a noise model
to simulate “noisy” models. Mirghafori et al. applied the algo-
rithm to MBASR [8] in which sub-band HMMs are combined
similarly to form a composite HMM, and asynchrony is cap-
tured by the creation of asynchronous composite states.

To illustrate the idea, HMM composition is applied to a
2-band system consisting of two 3-state left-to-right sub-band
HMMs as shown in Figure 1. State � of the first sub-band HMM
and state � of the second sub-band HMM are recombined at the
“composite state”, (i,j), �����	�
���� . Here, synchronous states
have the form of ( �	�	� ) and asynchronous states are represented
by ( ����� ), ���� � . Notice that the sub-bands are automatically
synchronized at model boundaries but asynchronous paths in-
side the composite model are allowed during decoding.

It is obvious that when the number of sub-bands and the
degree of asynchrony increases, the number of states and tran-

1“Optimality” applies only to linear re-combination of sub-band
likelihoods. In fact, they can be re-combined non-linearly using MLP.



sitions increases drastically. To alleviate the problem, one may
impose a maximum asynchrony limit to prune away those “out-
of-sync” nodes as illustrated in Figure 1.
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Figure 1: Synchronous and asynchronous HMM composition
of two 3-state left-to-right sub-band HMMs with a maximum
asynchrony limit of one state.

3. String Minimum Classification Error
Estimation of Linear Sub-band Weights

For simplicity, we will only show estimation formulae 2 in
which sub-band weights depend only on the sub-band and not
on the model nor the state; the latter can easily be derived in a
similar fashion.

Suppose we have a � -sub-band recognition system and �
competing strings generated by an N-best algorithm. We define
the observation sequence ����� �����	� �!��"#"�"��	�%$ & and ' as a set
of acoustic models. The discriminant function for the class (*)
is chosen to be+ )-, �/.	'102� 354!617 , �*� 8 ):9 ( ) 0 (1)

where 8 ) �<; 8 �) � 8 �) ��"="#"�� 8?>)�@ denotes the most likely compos-
ite state sequence of ( ) and 8?A) denotes the corresponding state
sequence in sub-band k. Sub-band log-likelihoods are recom-
bined at the frame level as follows:3B4?6DC 8 )FEBGIH , � G 0J� >K A�L �NM A 3B4?6DC A8FA)%EBGIH , � AG 0 (2)OQPSRUT�RWVYX M A X[ZD\!]_^ >K A#L � M A � Z (3)

2For a two-band system, one may find the weight efficient using
linear search. But here, we are presenting a general solution for a K-
band system.

assuming sub-band independence. Let + )N, �/.`'a0 be + ) , and the
misclassification measure b , �c0 is then given byb , �c0d�3B4!6Ye Z� K fSgL )ih �?j , +

f 0?kml + )n" (4)

The misclassification measure is smoothed using the sigmoid
function, o , bp0c� Z=q ; ZsrtR#upv , law%b ryx 0 @ , to obtain the to-
tal loss function over all utterances, zn{D|~}�� ������ o , b , �c0	0
where U denotes the total number of training utterances. To
satisfy Eqn.(3) throughout the optimization process, parameter
transformation is performed: M A �o�� + , M A 0�" Taking derivative
with respect to the � -th sub-band weight, M A , we have� z�{D|`}� M A � Z� K � � o� b � b , �c0� M A � OQPSR#T�R (5)� o� b � w o , b , �c0	0#� Z l/o , b , �c0	0�&S� (6)� b , �c0� M A � ���f_gL ) h �?j , + f 0 ,
� + f A l � + ) A 0� �f_gL ) h �Fj , + f 0 (7)

and, � + f A � h �Fj , M A 0 � $G L � 3B4?6�C A8 Af EBG�H , � AG 0 .
The iterative gradient-descent method is employed to get a

better estimate of the sub-band weights for the ,
� r�Z 0 -th itera-
tion from their estimates from the � -th iteration as follows:M A EB�	� � H � M A EB�	H l/� ��� � z {D|`}� M A�� (8)

where � � is the learning rate at the � -th iteration. Finally, M Ais transformed back to M A after the gradient-descent procedure
completes.

4. Recognition Experiments and Results
Speaker-independent connected TIDIGITS was chosen for eval-
uating our asynchronous MBASR system. The adult training set
contains 8623 digit strings while the test set contains 8700 digit
strings. Only clean speech were used to train our system and
noisy data for testing were created from the corresponding clean
speech by adding the noise at a prescribed SNR at the time do-
main after the end-points had been detected. Noisy speech were
also created from one-tenth of the whole training set (randomly
picked) for the MCE training of sub-band weights in a similar
manner. Corrective training was employed, and only one-best
competitor was used. Accurate end-points were used for the
recognition experiments.

Two sub-bands were adopted by partitioning the frequency
ranges, 0 Hz — 4000 Hz, equally in the critical band scale as
follows:� Band-1: 0 – 1080 Hz� Band-2: 1000 – 4000 Hz .

Speech data were low-passed at 4000Hz and MFCCs were
extracted from a window of 20ms at a frame rate of 100Hz. The
full-band acoustic vector consists of 12 MFCCs and the normal-
ized pass-band energy + � + ��� while a sub-band acoustic
vector consists of 6 MFCCs and the normalized pass-band en-
ergy + � + �Y� . Cepstral mean subtraction was performed as
well.

All (full-band or sub-band) HMMs are strictly left-to-right,
whole-word models with 6 states and 4 Gaussians mixture per
state. They were all trained with clean speech.



Table 1: The effect of asynchrony limit (word error
rate). (FB=full-band, B1=subband-1, B2=subband-2, SYNC-
1:1=synchronous MB with equal weights, ASYNC-1:1= asyn-
chronous MB with equal weights, SYNC-MCE=synchronous
MB with MCE-derived weights, ASYNC-MCE=asynchronous
MB with MCE-derived weights)

System Clean TIDIGITS
FB 1.20%

SYNC-1:1 1.22%
ASYNC-1-1:1 0.98%
ASYNC-2-1:1 0.99%
ASYNC-3-1:1 0.98%
ASYNC-4-1:1 0.99%
ASYNC-5-1:1 1.00%

Table 2: Changes in the sub-band weightings of Band-1 as SNR
decreases on low-pass white noise.

Weights -10dB 0dB 10dB 20dB clean
SYNC 0.209 0.190 0.372 0.500 0.500

ASYNC 0.217 0.203 0.389 0.499 0.500

4.1. Experiment I: Asynchrony Limit
We first tested the effect of asynchrony. Table 1 shows the
recognition performance on clean speech3 by several systems:
full-band system, synchronous multi-band system, and asyn-
chronous multi-band systems with various limits of asynchrony.
To obtain these results, we found that it is crucial to train the
transition probabilities of sub-band models by the Baum-Welch
algorithm before HMM composition. The transition probabil-
ities of the composite HMMs may simply be computed from
their sub-band counterparts; further re-training of these transi-
tion probabilities does not make much difference [9]. From Ta-
ble 1, an asynchrony limit of one state seems adequate, reduc-
ing the relative WER of an synchronous composition system by
16.7%. In addition, allowing asynchrony of more than one state
does not show further improvement. After taking the time and
space requirements into consideration, an asynchrony limit of
one state seems to be a good choice and that is what we adopted
for all the following experiments.

4.2. Experiment II: MCE Training of Sub-band Weights
4.2.1. Case 1: Additive Low-pass white noise

We first investigated how well a multi-band system can do un-
der ideal band-limited noise when only Band-1 was corrupted
by a low-pass white noise. Results are shown in Figure 2 and
Figure 3.

Since only Band-1 is corrupted, Band-2 maintains good
performance under all SNRs. Among all configurations,
the asynchronous multi-band recognizer with MCE-derived
weights performs better than the others. Compared with the
full-band recognizer, the asynchronous multi-band recognizer

3Notice that our recognition accuracies on clean connected TIDIG-
ITS are lower than other reported results by about 1%. However, dur-
ing our signal analysis, speeches are bandpassed to a bandwidth of 0–
4000Hz while most reported results employ the full 10kHz bandwidth
of TIDIGITS. Our system performance should better be compared with
those based on Aurora since the setup is very similar except for the
downsampling and filtering processes. Aurora’s benchmark word accu-
racy on clean speech is 99.02% [12].
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Figure 2: Recognition results with a low-pass white noise
(string error rate).
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Figure 3: Recognition results with a low-pass white noise (word
error rate).
reduces relative string (word) error rates by 55.6% (70.8%) at
an SNR of 0db. Table 2 summarizes the change of the first sub-
band’s weight as the SNR decreases. The table shows that the
first sub-band is correctly de-emphasized as the SNR decreases.
The phenomenon matches with the recognition result that the
first sub-band performs much worse than the second sub-band
as SNR decreases.
4.2.2. Case 2: Additive White noise
In reality, noises often spread over a wider spectrum. So we
further investigated the effectiveness of the MCE training algo-
rithm of sub-band weights using white noise.

Recognition results are shown in Figure 4 and Figure 5.
Once again, the asynchronous multi-band recognizer with
MCE-derived weights outperforms the others. Compared
with synchronous multi-band recognizer with equal weighting
scheme, relative string (word) error rates are reduced by 12.8%
(31.9%) at an SNR of 0db. Compared with the full-band rec-
ognizer, relative string (word) error rates are reduced by 6.9%
(33.1%) at the same SNR.

5. Discussion
From the results of Experiments I and II, we further have the
following observations:� When the performance of the two sub-band recognizers
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Figure 4: Recognition results with a white noise (string error
rate).
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Figure 5: Recognition results with a white noise (word error
rate).

diverges, MCE-derived weights effectively shift to em-
phasize the more reliable band; and the result is at least
as good as that of the best sub-band recognizer.� One may wonder why there is a huge difference between
the two sub-band recognizers under white noise which
has a uniform spectrum. It is probably due to the spectral
tilt in speech and speech energy is decreasing at about
6dB per octave after about 1kHz — the dividing fre-
quency between our two sub-bands. Consequently, the
spectrally uniform white noise actually hurts the second
sub-band more than the first sub-band, and thus perfor-
mance of the second sub-band recognizer degrades more
as well.� With the sub-band asynchrony and MCE-derived sub-
band weights, our multi-band system attain the best per-
formance.

6. Conclusion
We have developed an asynchronous multi-band system using
the HMM composition framework for continuous speech recog-
nition. Linear sub-band weights are optimized by string MCE
training using N-best hypotheses. Figure 6 summarizes the con-
tribution of the asynchrony effect and the sub-band weighting in
our system under low-pass white noise of 0db. The asynchrony
effect and MCE-derived sub-band weights help improve perfor-
mance of our multi-band system.
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Figure 6: System improvement on low-pass white noise of 0db
(absolute string error rate).
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