
To Improve the Robustness of LSTM-RNN Acoustic Models Using
Higher-order Feedback From Multiple Histories

Hengguan Huang and Brian Mak

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{hhuangaj,mak}@cse.ust.hk

Abstract
This paper investigates a novel multiple-history long short-term
memory (MH-LSTM) RNN acoustic model to mitigate the ro-
bustness problem of noisy outputs in the form of mis-labeled
data and/or mis-alignments. Conceptually, after an RNN is un-
folded in time, the hidden units in each layer are re-arranged
into ordered sub-layers with a master sub-layer on top and a
set of auxiliary sub-layers below it. Only the master sub-layer
generates outputs for the next layer whereas the auxiliary sub-
layers run in parallel with the master sub-layer but with increas-
ing time lags. Each sub-layer also receives higher-order feed-
back from a fixed number of sub-layers below it. As a result,
each sub-layer maintains a different history of the input speech,
and the ensemble of all the different histories lends itself to the
model’s robustness. The higher-order connections not only pro-
vide shorter feedback paths for error signals to propagate to the
farther preceding hidden states to better model the long-term
memory, but also more feedback paths to each model parame-
ter and smooth its update during training. Phoneme recognition
results on both real TIMIT data as well as synthetic TIMIT data
with noisy labels or alignments show that the new model out-
performs the conventional LSTM RNN model.
Index Terms: long short-term memory, recurrent neural net-
work, multiple histories

1. Introduction and related works
Recurrent neural network (RNN), especially when it is cou-
pled with deep learning, can be a very powerful model for se-
quential signals. It has been successfully deployed in many
state-of-the-art systems for various applications such as auto-
matic speech recognition (ASR) [1], language modeling [2],
machine translation [3], computer vision [4], etc. RNN, when
unfolded in time, may be considered as a very deep neural net-
work (DNN). Thus, in principle, it can model long-span tempo-
ral dependency in sequential signals through simple recurrent
network connections. However, in practice, training RNNs us-
ing the back-propagation through time (BPTT) algorithm [5]
can be difficult due to the well-known vanishing or exploding
gradient problem [6]. The problem may be sometimes solved
by simple heuristic such as gradient clipping, or by carefully
designed initialization and momentum scheme [7]. A princi-
pled solution is to replace the simpler stochastic gradient de-
scent (SGD) algorithm by the second-order Hessian-free op-
timization algorithm [8]. Another approach is to bridge the
gap between an RNN hidden state and its preceding states by
the addition of direct feedback paths to the latter so that gra-
dients can reach the preceding states more readily. The earli-
est work in this approach is the higher-order NARX RNN [9];
a similar higher-order RNN (HO-RNN) [10] is recently pro-
posed for language modeling. On the other hand, in clock-

work RNN (CW-RNN) [11], hidden states are partitioned into
groups which run at different clock speeds and only groups
running at lower speeds feedback to groups running at faster
speed. CW-RNN was shown to outperform long short-term
memory (LSTM) in some tasks. A CW-RNN variant called
multi-timescale LSTM (MT-LSTM) [12], which allows both
slow-to-fast and fast-to-slow state feedback, has shown better
performance than other neural-network based models in 4 text
classification tasks. In ASR, perhaps the most adopted solution
is the LSTM RNN [13]. LSTM solves the problem by using a
set of self-learning gates to control the amount of short-term and
long-term information to forget, to retain, and to further prop-
agate. In fact, the more powerful deep bi-directional LSTM
RNN [14] is used in many state-of-the-art ASR systems.

It is also found that LSTM RNN is more robust to in-
put noises — additive noises, channel noises and reverberation
noises for ASR [15]. In this paper, we would like to investi-
gate a different robustness issue: misalignment and mislabeling
noises that frequently occur in training data. In training DNN-
based acoustic models, the training state labels are usually pro-
duced by forced aligning the training utterances with an inferior
GMM-HMM acoustic model, and their alignments are not op-
timal for the DNN. Moreover, during semi-supervised training
of acoustic models for large-vocabulary ASR, most of the train-
ing data are not manually transcribed and their (phone or word)
labels are again obtained from the recognition results of other
models, and decoding errors are inevitable. Inspired by the mul-
tiple feedback paths suggested in NARX RNN and CW-RNN,
we propose a multiple-history LSTM (MH-LSTM) in which
different LSTM units maintain different histories of what they
‘hear’ and are connected with higher-order feedback. The en-
semble of MH-LSTM units help smooth out the misalignment
and mislabeling noises in the training targets.

2. Multiple-history LSTM RNN
In the following discussion, we assume that an RNN only has
one hidden layer on which a softmax layer is stacked upon to
model the posterior probabilities of the training targets. Its ex-
tension to deep MH-LSTM RNN is straight-forward. Moreover,
when the RNN unit (simple neuron or LSTM cell) is immate-
rial for the discussion, we will use the term “multiple-history
RNN” (MH-RNN) instead of MH-LSTM which, though, is the
final model we used in the reported ASR experiments.

2.1. Overview of multiple-history RNN

Inspired by the use of multiple feedback paths in CW-RNN, we
also group the hidden units into sub-layers. The top sub-layer
will be called the master sub-layer, while the remaining ones
are called auxiliary sub-layers. Only the master sub-layer is



Figure 1: A 2nd-order multiple-history RNN.

directly connected to the output layer, and the sub-layers are ar-
ranged in order of increasing time lags that they run with. That
is, the 1st master sub-layer runs with no time delay; the 2nd

sub-layer runs with a time lag of one unit; the 3rd sub-layer
runs with a time lag of 2 units, and so on. All units in all sub-
layers are initialized differently and randomly. As a result, each
sub-layer maintains a different history of the training data, and
an MH-RNN withH sub-layers will maintainH different histo-
ries. Fig. 1 depicts a 2nd-order MH-RNN: the rightmost unit is
the master while the remaining ones are auxiliary. In the exam-
ple, each unit also gets inputs from its last recurrent state plus
the recurrent state from the following auxiliary unit (to its left).

2.2. Comparison with Simple RNN and HO-RNN

MH-RNN is similar to HO-RNN as they both use higher-order
feedback. Formally, these RNNs are described by the following
recurrence relations:

SRNN: ht = σ
(
Wxxt + Wh(1)ht−1 + bh

)
HO-RNN: ht = σ

(
Wxxt +

p∑
k=1

Wh(k)ht−k + bh

)
MH-RNN: h

(m)
t = σ

(
Wxxt +

p∑
k=1

Wh(k)h
(m+k−1)
t−k + b

(m)
h

)
yt = softmax

(
Woht + bo

)
where SRNN represents a simple RNN; p is the model order of
HO-RNN or MH-RNN; m indicates the sub-layer index which
serves also as the label for the history in MH-RNN; xt, ht and
yt are the input, hidden and output vectors at time t; h

(m)
t is

the hidden vector of the mth sub-layer at time t; Wx and Wo

are the weight matrices of the input and output layers; Wh(k)

is the recurrent weight matrix of the preceding kth hidden state;
bh and bo are the biases of the hidden and output layer; σ is the
sigmoid function.

Fig. 2 illustrates the difference between a simple RNN, an
HO-RNN, and an MH-RNN when they are unfolded in time.
In Fig. 2(c), similar to a pth-order HO-RNN, each hidden unit
in a sub-layer of a pth-order MH-RNN receives recurrent in-
puts from itself and from (p − 1) auxiliary sub-layers below
it. However, unlike the HO-RNN, the preceding states of an
MH-RNN come from hidden units from different auxiliary sub-
layers, each having a different history. In fact, if all the auxiliary

(a) An unfolded simple RNN

(b) An unfolded 3rd-order HO-RNN

(c) An unfolded 3rd-order MH-RNN

Figure 2: Various RNNs when they are unfolded in time. In
MH-RNN in (c), dotted boxes represent sub-layers which are
numbered from 1 at the top, and they run with increasing time
lags with the top master sub-layer running at zero time lag.

sub-layers actually come from the same history, an MH-RNN is
degenerated to an HO-RNN. Similarly, if there is only 1 sub-
layer, then an MH-RNN is reduced to a simple RNN. Thus,
MH-RNN is a generalization of simple RNN. It is more power-
ful and robust than simple RNN or HO-RNN as it has a larger
state space that helps extract different views of the temporal in-
formation in a training sequence. We believe that MH-RNN
have the following advantages over the other RNNs:

(a) Similar to HO-RNN and CW-RNN, an error signal from
the output layer δty propagates back in more feedback paths
to each hidden state in the unfolded RNN. For example,
δty will propagate back to the hidden states at (t − 3) as
follows. To h

(1)
t−3 via the path, P1:

h
(1)
t → h

(1)
t−1 → h

(1)
t−2 → h

(1)
t−3;

to h
(2)
t−3 via the paths, P2.1 and P2.2:

h
(1)
t → h

(1)
t−1 → h

(2)
t−3 or h

(1)
t → h

(2)
t−2 → h

(2)
t−3,

and to h
(3)
t−3 via the direct path, P3:

h
(1)
t → h

(3)
t−3.



(b) Compared with simple RNN, both HO-RNN and MH-RNN
provide some shorter path for the error signal to reach pre-
ceding states more easily and thus, may model the longer-
term temporal dependency better.

(c) For simple RNN, the error signal δty only reaches ht−3 via
path P1. In HO-RNN, all the h

(∗)
t−3 ≡ ht−3 are equivalent

as all the sub-layers actually come from the same of hidden
state, representing a single history. As a result, the error
signal δty from yt will reach ht−3 via multiple paths which
will be weighted by ht−3 and provides different contribu-
tions (partial gradients) to the update of the various weight
matrices Wh(1),Wh(2), . . . The multiple feedback paths
help smooth out the model update, and we expect that HO-
RNN can handle some noises in the training targets caused
by mislabeling and misalignment. MH-RNN further ex-
pands the hidden state space to provide multiple versions
of ht so that the multiple feedback paths will be weighted
differently. Analogous to an ensemble of classifiers, the
ensemble of hidden state of the same time-stamp but from
different histories in MH-LSTM is expected to give better
and more stable model update that may better mitigate the
problem caused by mislabeling and misalignment noises.

(d) Although both MH-RNN and HO-RNN or CW-RNN al-
lows multiple feedback paths, the latter two models only
maintain one single history while MH-RNN uses multiple
histories to enhance its modeling power, especially in its ca-
pability of handling mislabeling and misalignment noises.

2.3. Update formula

Let δth(m) be the delta (error) signal propagated back to h
(m)
t ,

the hidden state on the mth sub-layer at time t. The recurrent
weight matrix of the kth preceding state of an MH-RNN with
H histories (or sub-layers), where 1 ≤ k ≤ p, is updated as
follows:

W
(new)

h(k) = Wh(k) + γ∆Wh(k) , (1)

where γ is the learning rate, and

∆Wh(k) =

T∑
t=2

δth(1)h
′(k)
t−k+

H−k+1∑
m=2

T−H∑
t=3−m

δth(m)h
′(m+k−1)
t−k ,

(2)
where T is the BPTT stepsize and any delta term with a -ve
time index has to be copied from the last BPTT step; ′ is the
vector/matrix transpose operator.

2.4. Remarks

Although MH-RNN is described above, we actually used MH-
LSTM RNN in the experimental evaluation of the model. It is
trivial to adapt the update formulas, Eq. 1 and Eq. 2, for each
of the gate matrices and cell state matrix of the LSTM. More-
over, in the actual MH-LSTM implementation, the number of
histories H will affect its memory size and training speed.

3. TIMIT Experiments
We evaluated the proposed MH-LSTM RNN model on real and
synthetic noisy speech data based on the TIMIT corpus.

3.1. The TIMIT speech corpus

The standard NIST training set which consists of 3,696 utter-
ances from 462 speakers was used to train the various DNN
and RNN models. A separate development data set, consisting

Table 1: Summary of TIMIT phoneme recognition performance.
F = input context in number of frames; L = number of hidden
layers;N = number of nodes per hidden layer; p= model order.

Model F L N PER %

DNN 11 4 1024 21.8
LSTM 1 3 512 21.0
LSTM 5 3 512 20.6

HO-LSTM (p = 2) 5 3 512 20.3
MH-LSTM (p = 5) 5 3 256 19.8

400 utterances from 50 speakers, was used for early stopping,
and the standard core test set, consisting of 192 utterances spo-
ken by 24 speakers, was used for evaluation. We followed the
standard TIMIT protocol and collapsed the original 61 phonetic
labels in the corpus into the standard set of 39 phonemes for re-
porting the recognition performance in terms of phoneme error
rate (PER). Phoneme recognition was performed using Viterbi
decoding with a phone bigram language model estimated from
the TIMIT training transcriptions using the Kaldi toolkit [16].

3.2. Feature extraction and model training procedure

Acoustic hidden Markov models (HMM) based on Gaussian-
mixture model (GMM), deep neural network (DNN), LSTM-
RNN, HO-LSTM RNN, and MH-LSTM RNN were built.
GMM models employed fMLLR-adapted 39-dimensional
MFCC features, while all neural-network based models used 40
mel-filterbank coefficients without their derivatives. Inputs to
DNN/RNNs were normalized to have zero mean and unit vari-
ance.

The GMM-HMM was trained using the standard Kaldi
TIMIT recipe and there were 1940 tied context-dependent
states. It was then used to derive the state targets for subsequent
DNN/RNN training through forced alignment. All DNN/RNN
models were trained by our own codes developed using Theano.
Inputs of DNN consisted of the current frame together with its 5
left and 5 right contextual frames. The number of hidden layers,
the number of hidden nodes per layer, and the model order for
HO-LSTM were varied from 2–4, 128–1024, and 2–3 respec-
tively to find the best DNN/RNN architecture for the task. Both
DNN and RNNs were trained by optimizing the target cross en-
tropies, using BP and BPTT respectively and SGD.

3.3. Baseline results

Table 1 shows the TIMIT phoneme recognition performance of
the baseline DNN, LSTM RNN, and HO-LSTM RNN. It can
be seen that LSTM performs much better than DNN by 0.8%
or 1.2% absolute when inputs of 1 or 5 contextual frames are
used. Since more contexts give better LSTM performance, all
ensuing LSTM experiments employed an input context of 5
frames. The addition of higher-order recurrences in the 2nd-
order HO-LSTM, which otherwise shares the same architecture
as the baseline LSTM, help reduce the PER by 0.3% absolute.

3.4. Experiments: clean TIMIT data

Since MH-LSTM is similar to HO-LSTM, based on the best
configuration of HO-LSTM in Table 1, we tried to find the best
MH-LSTM configuration by varying the number of hidden lay-
ers between 2–3 and number of hidden nodes per layer from 128
to 512. The number of histories H and the model order p were



Table 2: Performance of MH-LSTM with different model con-
figurations. H = 11 and p = 5.

#Layers, L #Nodes/Layer, N PER%
2 128 21.6
2 256 19.9
2 512 21.2
3 128 21.3
3 256 19.8
3 512 21.2

Table 3: Effect of the number of histories and model order of
MH-LSTM RNN.

#Histories, H Order, p PER %
11 3 20.1
11 5 19.8
11 7 20.1
21 5 19.8

fixed to 11 and 5 in all experiments unless otherwise stated. Ta-
ble 2 gives the MH-LSTM performance under different network
configurations. Both in the development set and training set, an
MH-LSTM with 3 hidden layers and 256 nodes per layer gave
the best recognition results.

We further checked the importance of multiple histories H
and the effect of the model order p by varying their values. The
results are shown in Table 3. It is found that for this relatively
simple task, a model order of 5 is optimal and 11 multiple his-
tories is sufficient though increasing H would not hurt perfor-
mance.

In summary, a 5th-order MH-LSTM with a 5-frame input
context and 11 multiple histories improves the LSTM baseline
PER of 20.6% by 0.8% absolute to 19.8%.

3.5. Experiments: synthetic TIMIT data with noisy targets

Based on the best configurations found in Section 3.4, we re-
peated the recognition experiments with target noises.

3.5.1. Robustness against mis-alignments

Mis-alignments in the targets readily occur since the state tar-
gets are usually generated by an inferior acoustic model, e.g., a
GMM-HMM in our case. We further simulated mis-alignment
noises in TIMIT training data by randomly perturbing a propor-
tion of their state boundaries (produced by the baseline GMM-
HMM) by ±1–3 frames. The perturbed TIMIT data were used
to re-train the LSTM, HO-LSTM and MH-LSTM as before, and
their phoneme recognition performances are shown in Table 4.
It is found that when the amount of perturbed state boundaries
increases to 40%, the PER of the baseline LSTM also increases
steadily by 1.1% absolute from 20.6% to 21.7%. The PER of
HO-LSTM also increases by the same amount of 1.1%. On the
other hand, MH-LSTM increases only by 0.7% absolute from
19.8% to 20.5%.

3.5.2. Robustness against mislabeling

Wrong target labels are also common when no manual tran-
scriptions are available for the training data, and they have
to generated, again, by some ASR systems. Here, we simu-

Table 4: Effect of state mis-alignments on TIMIT PER %.

Model
State Mis-alignments
0% 20% 40%

LSTM 20.6 21.1 21.7
HO-LSTM (p = 2) 20.3 21.2 21.4
MH-LSTM (p = 5) 19.8 20.0 20.5

Table 5: Effect of phoneme mislabeling on TIMIT PER %.

Model
Mislabeled Phonemes

0% 5% 10% 20%

LSTM 20.6 21.6 22.8 24.9
HO-LSTM (p = 2) 20.3 21.6 22.5 23.7
MH-LSTM (p = 5, H = 11) 19.8 21.3 21.8 24.6
MH-LSTM (p = 5, H = 21) 19.8 20.7 21.3 23.4

lated mislabeling by randomly replacing a proportion of correct
TIMIT phone labels in the training data by wrong labels. The
baseline GMM-HMM was used to forced-align the TIMIT data
using the wrong phonetic transcriptions, and the various LSTM
models were re-trained using the wrong targets. Note that this
mislabeling simulation produces much worse target noises then
the last experiment since a single wrong label may result in
many frames of wrong state targets for LSTM training.

The TIMIT phoneme recognition performances of the en-
suing re-trained models are given in Table 5. When the amount
of wrong labels is less than 20%, although all models perform
worse, the performance of HO-LSTM is as bad as the base-
line LSTM’s whereas MH-LSTM’s performace degrades more
slowly. However, when the amount of wrong labels reaches
20%, the MH-LSTM suddenly performs very poorly, almost as
bad as the baseline LSTM. Nonetheless, when we re-trained the
MH-LSTM with more histories (H = 21), the new MH-LSTM
performs much better than the old MH-LSTM with only 11 his-
tories. The results prove that the multiple histories can mitigate
the adverse effect of target noise, and greater target noise can be
handled with more histories in the MH-LSTM RNN.

4. Conclusions and future work
We introduce a novel model called multiple-history LSTM (MH-
LSTM), which is a generalization of LSTM and higher-order
LSTM (HO-LSTM). Through a series of carefully designed ex-
periments using both clean and synthetic noisy TIMIT data,
we show that, compared with the conventional LSTM or HO-
LSTM, MH-LSTM can better capture the long-term temporal
dependencies between the input frames and output targets and
is more resilient to mis-alignments and wrong labels in the train-
ing data. We also believe that the proposed MH-LSTM is more
robust against input noises, and we will verify this experimen-
tally in the future work. An issue with MH-LSTM is that it has
a larger hidden state space and as a result, its training is slower.
How to speed up its training will be another future work.
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