
UNSUPERVISED ADAPTATION OF STUDENT DNNS LEARNED FROM TEACHER RNNS
FOR IMPROVED ASR PERFORMANCE

Lahiru Samarakoon, Brian Mak

Hong Kong University of Science and Technology
lahiruts@cse.ust.hk, mak@cse.ust.hk

ABSTRACT

In automatic speech recognition (ASR), adaptation tech-
niques are used to minimize the training and testing mis-
match. Many successful techniques are proposed for deep
neural network (DNN) acoustic model (AM) adaptation. Re-
cently, recurrent neural networks (RNNs) have shown to
outperform DNNs in ASR tasks. However, the adaptation of
RNN AMs are challenging and some cases when combined
with the adaptation, DNN AMs outperform adapted RNN
AMs. In this paper, we combine the student-teacher training
and unsupervised adaptation to improve the ASR perfor-
mance. First, RNNs are used as teachers to learn student
DNNs. Then, these student DNNs are adapted in unsuper-
vised fashion. Experimental results on AMI IHM and AMI
SDM tasks show that student DNNs are adaptable with sig-
nificant performance improvements for both frame-wise and
sequentially trained systems. We also show that the com-
bination of adapted DNNs with teacher RNNs can further
improve the performance.

Index Terms— Acoustic model adaptation, Student-
teacher training, Recurrent neural networks (RNNs), Deep
neural networks (DNNs)

1. INTRODUCTION

The current state-of-the-art systems in automatic speech
recognition (ASR) use recurrent neural network (RNN) ar-
chitectures. RNNs are capable of modeling temporal depen-
dencies of speech signals and therefore outperform simple
feedforward deep neural networks (DNNs). However, all
machine learning techniques including RNNs and DNNs are
susceptible to performance degradation due to the training
and testing mismatch. Adaptation techniques are developed
to reduce this mismatch by transforming models to match
testing conditions or by transforming the runtime features to
match models.

Adaptation techniques are first developed for conven-
tional Gaussian mixture model (GMM)–hidden Markov
model (HMM) systems. The commonly used techniques
include maximum a posteriori (MAP) [1] and maximum like-
lihood linear regression (MLLR) [2, 3]. In addition, speaker

adaptive training (SAT) has been applied to GMM-HMM sys-
tems [4, 5]. Then, the adaptation techniques were developed
for deep neural network (DNN)-HMM hybrid systems. Adap-
tation of DNNs has found to be effective as these methods
improve the performance significantly [6, 7, 8, 9, 10, 11, 12].
However, unsupervised adaptation of RNN acoustic models
(AMs) has been difficult with smaller gains [13, 14, 15]. This
can be mainly because RNNs are more complex structures
than DNNs. In [15], authors conjecture that the recurrent
topology of LSTM-RNNs make it more effective to capture
and normalize long-range speaker characteristics than DNNs.
Consequently, this implicit normalization of the speaker vari-
ability reduces the adaptation gain of RNNs compared to the
gains we observe in DNN adaptation. We also investigate the
adaptability of RNN AMs in our experiments.

Recently, the student-teacher training is used to transfer
knowledge between models [16, 17]. Student-teacher train-
ing is also known as knowledge distillation [18]. There are
two steps to student-teacher training. In the first step, teacher
models are trained and then the student models are learned
to mimic the teacher. It is shown that student models per-
form better than a model of the same architecture when the
latter is trained from scratch [19]. In [20], student-teacher
training is used for domain adaptation. In that work, student-
teacher training is used to avoid overfitting when the model
is adapted with limited amount of data. The student-teacher
paradigm is also used for speech enhancement [21]. In [21],
teacher model is trained with the enhanced features while the
student model learns to perform speech enhancement implic-
itly by mimicking the teacher’s output distribution. Moreover,
student-teacher training is successfully used to build multi-
lingual systems in low-resource settings [19] and that work
shows student models can achieve comparable recognition ac-
curacy to teacher networks.

In this paper, we investigate the adaptability of student
DNN AMs learned from RNN teachers. First, we propose to
employ the student-teacher paradigm to train a student DNN
from RNN AMs as teachers. Then a well-developed DNN
adaptation technique is used to adapt student DNNs. Since
the adaptability of RNNs is low compared to that of DNNs,
it is not clear whether the student DNNs trained to mimic
RNNs are adaptable. Therefore, it is interesting to investi-



gate the adaptability of student DNNs. Moreover, this knowl-
edge transfer from RNNs to DNNs has other benefits. DNNs
are more efficient in terms of latency and computational re-
sources than RNNs that is desirable in real-time decoding ap-
plications. In addition, it is shown that DNN acoustic models
can be pruned [22, 23, 24] so as to reduce the deployment
costs and improve the latency. Moreover, it is more efficient
to perform sequence-discriminative training for DNNs than
RNNs. Finally, this study also aim to discover some insights
on whether there is potential to develop effective techniques
for RNN adaptation. We have evaluated our approach in two
benchmark ASR tasks: the Augmented Multi-party Interac-
tion (AMI) [25] individual headset microphone (IHM) and the
AMI single distant microphone (SDM) tasks, respectively.

The rest of the paper is organized as follows. Section 2
briefly describes the student-teacher training and details of its
usage in this paper. In Section 3 we give the details of our
experimental setup. The results are reported in Section 4 and
we conclude our work in Section 5.

2. STUDENT-TEACHER TRAINING

The first work of student-teacher training was proposed to in-
vestigate the effectiveness of depth in deep neural networks
[16]. In [17], this method was used to compress a large DNN
to a smaller DNN which can be deployed in devices with lim-
ited computational and storage resources. Hinton et al. [18]
coined the term ”knowledge distillation” and provided further
evidence to the effectiveness of the student-teacher training
algorithm.

In general, frame-level cross-entropy (CE) is used as the
training criterion:

FCE = −
∑
t

C∑
i=1

P ref (i|xt) log(Pmodel(i|xt)) (1)

where C is the total number of context dependent (CD)
HMM states and P ref (i|xt) is the probability of feature
frame xt belonging to class i in the reference distribution
while Pmodel(i|xt) is the probability of feature frame xt

belonging to class i according to the model being trained.
In standard training, the reference distribution is obtained

from the forced alignment of the training data. In that case,
P ref (i|xt) becomes a one-hot vector which is also known as
training with hard labels. The simplified formulation is given
below:

FCE−Hard = −
∑
t

log(Pmodel(i|xt)). (2)

In student-teacher training, instead of using the hard la-
bels, a student model is trained to mimic the distribution of
the teacher network as given below:

FCE−Soft = −
∑
t

C∑
i=1

P teacher(i|xt) log(Pmodel(i|xt)).

(3)

In general [20, 21], student network is trained to minimize
the following loss function which an interpolation between
the soft and hard CE losses:

F = (1− α)FCE−Hard + αFCE−Soft (4)

where α is the interpolation weight.
In this work, instead of combining an ensemble of teach-

ers to form one teacher distribution, we use multiple streams
of teacher distributions to train the student model. This ap-
proach essentially increases the training data by making mul-
tiple copies and each copy uses the labels from the corre-
sponding teacher distribution. We believe this may help the
student model to learn from multiple views. Furthermore, we
do not interpolate teacher labels with original hard targets.
The training criterion used in this paper to train student mod-
els is given below:

F = −
∑
j

∑
t

C∑
i=1

P j(i|xt) log(Pmodel(i|xt)) (5)

where P j(i|xt) is the probability of feature frame xt belong-
ing to class i in the teacher j’s distribution.

3. EXPERIMENT SETUP

In this paper, we use the AMI corpus which contains about
100 hours of meetings conducted in English. The speech is
recorded by multiple microphones, including one IHM and a
uniform microphone circular array. In the experiments, we
use the IHM data and the speech from the first microphone in
the array which is known as the SDM. We use the ASR split
[26] of the corpus where 78 hours of the data are used for
training while about 9 hours each are used for evaluation and
development. We use 90% of the training set for training, and
the rest is used as the validation set. The results are reported
on the evaluation set.

For both IHM and SDM datasets, we extract the Mel-
frequency cepstral coefficients (MFCCs) from the speech us-
ing a 25 ms window and a 10 ms frame shift. Then the lin-
ear discriminant analysis (LDA) features are obtained by first
splicing 7 frames of 13-dimensional MFCCs and then project-
ing downwards to 40 dimensions using LDA. A single semi-
tied covariance (STC) transformation [27] is applied on top of
the LDA features. Also, we extract speaker-normalized CM-
LLR (also known as fMLLR) features after applying speaker



specific CMLLR transforms on top of these LDA+STC fea-
tures. The GMM-HMM system for generating the alignments
for DNNs and RNNs is trained on these 40 dimensional CM-
LLR features. We train the DNN-HMM baselines on the CM-
LLR features that span a context of 11 neighboring frames.
Before being presented to the DNN, cepstral mean variance
normalization (CMVN) is performed on the features globally.
DNNs have 6 sigmoid hidden layers with 2048 units per layer,
and around 4000 senones as the outputs.

We train bidirectional long short-term memory with pro-
jection (BLSTMP) with 3 layers of 1024 memory cells (512
forward and 512 backword) with a 300 dimensional projec-
tion. We also trained bidirectional residual memory networks
(BRMN) as described in [28]. We use latency controlled bidi-
rectional training as proposed in [29]. The input feature is a
single frame for both BLSTMP and BRMN. These BLSTMP
and BRMN models are used as teachers in student-teacher
training.

We conduct experiments on models trained to optimize
the cross-entropy criterion as well as the state-level minimum
Bayes risk (sMBR) criterion. All the DNNs and RNNs are
trained using CNTK [30]. Kaldi [31] is used to build GMM-
HMM systems and for i-vector extraction. The UBM consists
of 128 full Gaussians. For decodings, we use the trigram lan-
guage model as used in Kaldi, which is an interpolation of
trigram language models trained on AMI and Fisher English
transcripts.

4. RESULTS

DNN Adaptation vs RNN Adaptation

First, we highlight the difficulty in adapting RNN acous-
tic models by comparing the effectiveness of unsupervised
adaptation on DNN vs LSTMP-RNN acoustic models (Table
1). These results are reported on LDA+STC features for the
IHM task. RNN adaptations are performed on unidirectional
LSTMP-RNN AMs. The baseline results are given in the
row where the method is “None”. The LSTMP-RNN model
outperforms the corresponding DNN baseline. As can be
clearly seen, the speaker-aware training (SaT) with speaker-
dependent (SD) bias after the second pass of the adaptation
[7], improves the performance consistently for DNNs as well
as LSTMP-RNNs. In addition the gains we observe from the
CMLLR features is considerably reduced for LSTMP-RNNs
in comparison when CMLLR is used with DNNs. For ease
of comparison, the best performances of the adaptation are
listed for both DNNs and LSTMP-RNNs. We get the best
performance of LSTMP-RNN adaptation (25.7%) which is
worse than the performance of the best DNN result (25.1%).
More details of these comparisons and adaptation techniques
are given in [13].

As can be clearly seen from Table 1, the relative gains of
the LSTMP-RNN adaptation is considerably smaller to that

Table 1. Word error rates (WER %) comparison of DNN
vs LSTMP-RNN adaptation results for models trained of
LDA+STC features for the IHM task. Relative improvement
are given in the brackets [13].

Method DNN LSTMP-RNN
None 29.0 (-) 28.1 (-)
SaT 27.0 (6.9) 26.2 (6.8)

CMLLR 26.3 (9.3) 26.3 (6.4)
Best 25.1 (13.5) 25.7 (8.5)

Table 2. WER % for various adaptation techniques applied
to the DNN baseline models trained on CMLLR features.

Model IHM SDM
DNN Baseline 26.3 53.2

+ LHUC 24.9 52.6
+ SaT 26.0 52.8
+ SVD-Bottleneck 25.2 52.1
+ FHL 24.3 50.6

of DNN adaptation. Therefore, we can claim that the adap-
tation of LSTMP-RNN is more difficult than adaptation of
DNN. One of the reasons for this is that LSTMP-RNNs are
more complex models than the feedforward DNNs. This in-
creased complexity of LSTMP-RNNs makes adaptation more
difficult. In addition, LSTMP-RNNs may already capture and
normalize the speaker characteristics. Therefore, in rest of
this paper, adaptation experiments are performed only on the
DNNs for the IHM and SDM tasks.

Table 2 presents results when different adaptation tech-
niques are applied to the DNN baselines for the IHM and
SDM tasks. We compare four state-of-the-art DNN adapta-
tion techniques: namely, learning hidden unit contributions
(LHUC) [32], SaT [10, 9, 33], singular value decomposition
(SVD) based bottleneck adaptation [34, 35, 36] and factor-
ized hidden layer (FHL) [37, 38, 39]. As can be clearly seen,
all adaptation techniques improves the performance signifi-
cantly. FHL reports the best performance with 2.0% and 2.6%
absolute improvements over the corresponding baseline for
the IHM and SDM tasks, respectively. Therefore, for the rest
of experiments, we select FHL as the adaptation technique.

Student-Teacher Training and Adaptation

Table 3 shows the results for the baseline models trained on
the IHM and SDM tasks on CMLLR features. Both BLSTMP
and BRMN models outperform DNN baselines significantly.
For the IHM task, BRMN outperforms the BLSTMP whereas
for the SDM task BLSTMP outperforms the BRMN model.
This observation suggests that BLSTMP is more effective
when used in more challenging reverberant conditions. This
is expected as superior modeling of temporal dependencies



Table 3. WER % for various baseline models trained on CM-
LLR features.

Model IHM SDM
DNN Baseline 26.3 53.2

BLSTMP 24.6 48.2
BRMN 24.4 49.0

Student DNN 25.5 51.5

Table 4. WER % for FHL adaptation of Student DNN models.

Model IHM SDM
DNN Baseline 26.3 53.2

+ FHL 24.3 50.6
Student DNN 25.5 51.5

+ FHL 23.6 50.0
BLSTMP 24.6 48.2
BRMN 24.4 49.0

by RNN models report more gains in reverberant conditions.
The last row of the Table 3 shows the result for student DNNs
trained when both BLSTMP and BRMN models are used as
teachers. As can be seen, for both IHM and SDM tasks, the
student DNN improves the performance significantly over the
baseline. However, for both tasks, teacher models outperform
the respective student DNN.

It is worth highlighting that for the IHM task, the perfor-
mance of FHL adapted DNN is similar to the performances of
BLSTMP and BRMN models. This observation may suggest
that recurrent models are implicitly adapted and able in gener-
alizing to different speakers which may explains the difficul-
ties in adapting RNN acoustic models as conjectured in [15].
However, for the SDM task, recurrent models outperform the
FHL adapted DNN. We believe this is because SDM task pro-
vides more room for improvement due to reverberation. This
is because BLSTMP and BRMN models are efficient in mod-
eling temporal dependencies. Later in this paper, we further
analyse this via system combinations.

Table 4 presents the results of student DNN adaptation.
As can be clearly seen, student DNN reports significant im-
provements after FHL adaptation. For the IHM task, FHL
adapted student DNN significantly outperforms BLSTMP
(1.0% absolute) and BRMN (0.8% absolute) models. How-
ever, for the SDM task, BLSTMP and BRMN models perform
better than the FHL adapted student DNN. As mentioned be-
fore, we believe this observation is because recurrent models
are more effective in handling reverbarant conditions. We can
conclude that student DNNs learned from RNN teachers are
adaptable with significant performance improvements.

Table 5. WER % for various system combinations.

Combination IHM SDM
FHL + BLSTMP 22.6 47.4
FHL + BRMN 22.6 47.8

Table 6. WER % for the adaptation of sequnce trained DNN
models.

Model IHM SDM
DNN Baseline (CE) 26.3 53.2

+ sMBR 24.5 50.3
Student DNN (CE) 25.5 51.5

+ sMBR 23.8 48.0
+ FHL 21.7 45.9

System Combinations

Next in Table 5 we presents the results for system combina-
tion. For the purpose of this paper, we combine systems by in-
terpolating decoding lattices. For both IHM and SDM tasks,
we interpolate FHL adapted student DNN lattices with the
BLSTMP or BRMN decoding lattices. As can be clearly seen,
lattice interpolations report significant performance improve-
ments. For the IHM task, the combination of FHL adapted
DNN with the BLSTMP model reports a 2.0% absolute im-
provement over the BLSTMP model. Similarly, FHL adapted
student DNN combination with the BRMN reports 1.8% ab-
solute improvement over the BRMN. The gains of system
combinations for the SDM task is smaller compared to IHM
mainly because there is a considerable performance gap be-
tween the FHL adapted student DNN and teacher models for
SDM. The gains of these system combinations suggests that
there is potential for the adaptation of BRMN and BLSTMP
models.

Results on Sequence-discriminative models

Finally, we report the results on sMBR sequence-trained mod-
els for both IHM and SDM tasks in Table 6. Even though
the models are trained sequentially using sMBR, we used the
cross-entropy criterion for the second pass adaptation. As can
be clearly seen, sMBR training results in absolute improve-
ments of 1.7% and 3.5% on IHM and SDM tasks respectively.
For both IHM and SDM tasks, the gains of sMBR training is
consistent among the DNN baseline and the student DNN.
The FHL adaptation reports further absolute improvements
with 1.9% and 2.1% over strong sMBR student DNNs for
IHM and SDM tasks, respectively. We have not conducted
experiments on sMBR trained BLSTMP and BRMN mod-
els due to resource limitations. Therefore, the approach pre-
sented in this paper to improve the performance by adapting
DNNs learned from recurrent teachers can be used to avoid



the sequential discriminative training of the RNNs.

5. CONCLUSIONS

In this paper, we investigated the adaptability of student deep
neural networks (DNNs) trained where recurrent neural net-
works (RNNs) are used as teachers. Since the adaptability
of RNN acoustic models (AMs) are lower compared to that
of the DNNs, this approach first allows to learn a better per-
forming DNN using student-teacher training and then later
improve the performance further by unsupervised adaptation.
We used bidirectional long short-term memory with projec-
tion (BLSTMP) and bidirectional residual memory networks
(BRMN) as teacher networks. Factorized hidden layer (FHL)
is used as the adaptation method. Experimental results on
AMI IHM and AMI SDM tasks show that student DNNs
are adaptable with significant performance improvements for
both frame-wise and sequentially trained systems. We also
show that the combination of adapted DNNs with teacher
RNNs can further improve the performance. These improve-
ments due to system combinations also suggest that there
is potential to develop adaptation techniques for RNN AMs
with significant performance gains.
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