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ABSTRACT
In collaborative filtering (CF), interaction function (IFC) play the

important role of capturing interactions among items and users. The

most popular IFC is the inner product, which has been successfully

used in low-rank matrix factorization. However, interactions in real-

world applications can be highly complex. Thus, other operations

(such as plus and concatenation), which may potentially offer

better performance, have been proposed. Nevertheless, it is still

hard for existing IFCs to have consistently good performance

across different application scenarios. Motivated by the recent

success of automated machine learning (AutoML), we propose

in this paper the search for simple neural interaction functions

(SIF) in CF. By examining and generalizing existing CF approaches,

an expressive SIF search space is designed and represented as a

structured multi-layer perceptron. We propose an one-shot search

algorithm that simultaneously updates both the architecture and

learning parameters. Experimental results demonstrate that the

proposed method can be much more efficient than popular AutoML

approaches, can obtain much better prediction performance than

state-of-the-art CF approaches, and can discover distinct IFCs for

different data sets and tasks.
1
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1 INTRODUCTION
Collaborative filtering (CF) [18, 37] is an important topic in machine

learning and data mining. By capturing interactions among the

rows and columns in a data matrix, CF predicts the missing entries

based on the observed elements. The most famous CF application

is the recommender system [27]. The ratings in such systems can

be arranged as a data matrix, in whch the rows correspond to

users, the columns are items, and the entries are collected ratings.

Since users usually only interact with a few items, there are lots of

missing entries in the rating matrix. The task is to estimate users’

ratings on items that they have not yet explored. Due to the good

empirical performance, CF also have been used in various other

applications. Examples include image inpainting in computer vision

[21], link prediction in social networks [25] and topic modeling

for text analysis [39]. More recently, CF is also extended to tensor

data (i.e., higher-order matrices) [26] for the incorporation of side

information (such as extra features [23] and time [28]).

In the last decade, low-rank matrix factorization [27, 31] has

been the most popular approach to CF. It can be formulated as the

following optimization problem:

min

U ,V

∑
(i, j)∈Ω

ℓ
(
u⊤i vj ,Oi j

)
+
λ

2

∥U ∥2

F +
λ

2

∥V ∥2

F , (1)

where ℓ is a loss function. The observed elements are indicated

by Ω with values given by the corresponding positions in matrix

O ∈ Rm×n
, λ ≥ 0 is a hyper-parameter, and ui ,vj ∈ Rk are

embedding vectors for user i and item j, respectively. Note that

(1) captures interactions between user ui and itemvj by the inner
product. This achieves good empirical performance, enjoys sound

statistical guarantees [8, 34] (e.g., the data matrix can be exactly

recovered whenO satisfies certain incoherence conditions and the

missing entires follow some distributions), and fast training [14, 31]

(e.g., can be trained end-to-end by stochastic optimization).

While the inner product has many benefits, it may not yield the

best performance for various CF tasks due to the complex nature
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Table 1: Popular human-designed interaction functions (IFC) for CF, where H is a parameter to be trained. SIF searches a
proper IFC from the validation set (i.e., by AutoML), while others are all designed by experts.

IFC operation space predict time recent examples〈
ui ,vj

〉
inner product O((m + n)k) O(k) MF [27], FM [35]

ui −vj plus (minus) O((m + n)k) O(k) CML [19]

max

(
ui ,vj

)
max, min O((m + n)k) O(k) ConvMF [24]

human-designed σ
(
[ui ;vj ]

)
concat O((m + n)k) O(k) Deep&Wide [9]

σ
(
ui ⊙ vj +H

[
ui ;vj

] )
multi, concat O((m + n)k) O(k2) NCF [17]

ui ∗vj conv O((m + n)k) O(k log(k)) ConvMF [24]

ui ⊗ vj outer product O((m + n)k) O(k2) ConvNCF [16]

AutoML SIF (proposed) searched O((m + n)k) O(k) ——

of user-item interactions. For example, if ith and jth users like

the kth item very much, their embeddings should be close to each

other (i.e., ∥ui −uj ∥2 is small). This motivates the usage of the plus
operation [17, 19], as the triangle inequality ensures ∥ui −uj ∥2 ≤

∥ui−vk ∥2+∥uj−vk ∥2. Other operations (such as concatenation and

convolution) have also outperformed the inner product on many

CF tasks [16, 24, 35]. Due to the success of deep networks [15], the

multi-layer perceptron (MLP) is recently used as the interaction

function (IFC) in CF [9, 17, 42], and achieves good performance.

However, choosing and designing an IFC is not easy, as it should

depend on the data set and task. Using one simple operation may

not be expressive enough to ensure good performance. On the other

hand, directly using aMLP leads to the difficult and time-consuming

task of architecture selection [2, 47, 48]. Thus, it is hard to have a

good IFC across different tasks and data sets [11].

In this paper, motivated by the success of automated machine

learning (AutoML) [20, 44], we consider formulating the search

for interaction functions (SIF) as an AutoML problem. Inspired by

observations on existing IFCs, we first generalize the CF objective

and define the SIF problem. These observations also help to identify

a domain-specific and expressive search space, which not only

includes many human-designed IFCs, but also covers new ones not

yet explored in the literature. We further represent the SIF problem,

armed with the designed search space, as a structured MLP. This

enables us to derive an efficient search algorithm based on one-shot

neural architecture search [30, 41, 45]. The algorithm can jointly

train the embedding vectors and search IFCs in a stochastic end-to-

end manner. We further extend the proposed SIF, including both

the search space and one-shot search algorithm, to handle tensor

data. Finally, we perform experiments on CF tasks with both matrix

data (i.e., MovieLens data) and tensor data (i.e., Youtube data). The

contributions of this paper are highlighted as follows:

• The design of interaction functions is a key issue in CF, and is

also a very hard problem due to varieties in the data sets and

tasks (Table 1). We generalize the objective of CF, and formulate

the design of IFCs as an AutoML problem. This is also the first

work which introduces AutoML techniques to CF.

• By analyzing the formulations of existing IFCs, we design an

expressive but compact search space for the AutoML problem.

This covers previous IFCs given by experts as special cases, and

also allows generating novel IFCs that are new to the literature.

Besides, such a search space can be easily extended to handle CF

problems on tensor data.

• We propose an one-shot search algorithm to efficiently optimize

the AutoML problem. This algorithm can jointly update the

architecture of IFCs (searched on the validation set) and the

embedding vectors (optimized on the training set).

• Empirical results demonstrate that, the proposed algorithm

can find better IFCs than existing AutoML approaches, and is

also much more efficient. Compared with the human-designed

CF methods, the proposed algorithm can achieve much better

performance, while the computation cost is slightly higher than

that from fine-tuning by experts. To shed light on the design of

IFCs, we also perform a case study to show why better IFCs can

be found by the proposed method.

Notations. Vectors are denoted by lowercase boldface, and

matrices by uppercase boldface. For two vectors x and y, ⟨x ,y⟩ is
the inner product, x ⊙ y is the element-wise product, x ⊗ y is the

outer product, [x ;y] concatenates (denoted “concat”) two vectors

to a longer one, and x ∗y is the convolution (denoted “conv”). Tr(X )

is the trace of a square matrix X , and ∥X ∥F is the Frobenius norm.

∥x ∥2 is the ℓ2-norm of a vector x , and ∥x ∥0 counts its number of

nonzero elements. The proximal step [32] associated with a function

д is defined as proxд(z) = arg minx
1

2
∥z − x ∥2

2
+ д(x). Let S be a

constraint and I(·) be the indicator function, i.e., if x ∈ S then

I(S) = 0 and ∞ otherwise, then proxI(S)(z) = arg minx
1

2
∥z − x ∥2

2

s.t. x ∈ S is also the projection operator, which maps z on S.

2 RELATEDWORKS
2.1 Interaction Functions (IFCs)
As discussed in Section 1, the IFC is key to CF. Recently, many

CF models with different ICFs have been proposed. Examples

include the factorization machine (FM) [35], collaborative metric

learning (CML) [19], convolutional matrix factorization (ConvMF)

[24], Deep & Wide [9], neural collaborative filtering (NCF) [17],

and convolutional neural collaborative filtering (ConvNCF) [16]. As

can be seen from Table 1, many operations other than the simple

inner product have been used. Moreover, they have the same space

complexity (linear inm, n and k), but different time complexities.

The design of IFCs depends highly on the given data and task. As

shown in a recent benchmark paper [11], no single IFC consistently

outperforms the others across all CF tasks [1, 37]. Thus, it is
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important to either select a proper IFC from a set of customized

IFC’s designed by humans, or to design a new IFC which has not

been visited in the literature.

2.2 Automated Machine Learning (AutoML)
To ease the use and design of better machine learning models,

automated machine learning (AutoML) [20, 44] has become a recent

hot topic. AutoML can be seen as a bi-level optimization problem,

as we need to search for hyper-parameters and design of the

underlying machine learning model.

2.2.1 General Principles. In general, the success of AutoML hinges

on two important questions:

• What to search: In AutoML, the choice of the search space is

extremely important. On the one hand, the space needs to be

general enough, meaning that it should include human wisdom

as special cases. On the other hand, the space cannot be too

general, otherwise the cost of searching in such a space can

be too expensive [30, 49]. For example, early works on neural

architecture search (NAS) use reinforcement learning (RL) to

search among all possible designs of a convolution neural

network (CNN) [2, 48]. This takes more than one thousand GPU

days to obtain an architecture with performance comparable to

the human-designed ones. Later, the search space is partitioned

into blocks [49], which helps reduce the cost of RL to several

weeks.

• How to search efficiently: Once the search space is determined,

the search algorithm then matters. Unlike convex optimization,

there is no universal and efficient optimization for AutoML [20].

We need to invent efficient algorithms to find good designs in the

space. Recently, gradient descent based algorithms are adapted

for NAS [30, 41, 45], allowing joint update of the architecture

weights and learning parameters. This further reduces the search

cost to one GPU day.

2.2.2 One-Shot Architecture Search Algorithms. Recently, one-shot
architecture search [3] methods such as DARTS [30] and SNAS [41],

have become the most popular NAS methods for the efficient

search of good architectures. These methods construct a supernet,

which contains all possible architectures spanned by the selected

operations, and then jointly optimize the network weights and

architectures’ parameters by stochastic gradient descent. The state-

of-the-art is NASP [45] (Algorithm 1). Let α = [ak ] ∈ R
d
, with ak

encoding the weight of the kth operation, and X be the parameter.

In NSAP, the selected operation
¯O(X ) is represented as

¯O(X ) =
∑d

k=1

akOk (X ), where α ∈ C1 ∩ C2, (2)

Ok (·) is the kth operation in O,

C1 = {α | ∥α ∥0 = 1} and C2 = {α | 0 ≤ αk ≤ 1} . (3)

The discrete constraint in (2) forces only one operation to be

selected. The search problem is then formulated as

min

α
¯L
(
w∗(α ),α

)
, s.t.

{
w∗(α ) = arg minw L (w,α )

α ∈ C1 ∩ C2

, (4)

where
¯L (resp. L) is the loss on validation (resp. training) data.

As NASP targets at selecting and updating only one operation, it

maintains two architecture representations: a continuous α to be

updated by gradient descent (step 4 in Algorithm 1) and a discrete

ᾱ (steps 3 and 5). Finally, the network weight w is optimized on

the training data in step 6. The following Proposition shows closed-

form solutions to the proximal step in Algorithm 1.

Algorithm 1 Neural architecture search by proximal iterations

(NASP) algorithm [45].

1: require: A mixture of operations
¯O parametrized by (2),

parameterw and stepsize η;
2: while not converged do
3: Obtain discrete architecture representation ᾱ = proxC1

(α );

4: Update continuous architecture representation

α = proxC2

(α − ∇ᾱ ¯L(w̄, ᾱ )),

where w̄ =w−η∇wL(w, ᾱ ) (is an approximation tow∗(ᾱ ));

5: Obtain new discrete architecture ᾱ = proxC1

(α );

6: Updatew using ∇wL(w, ᾱ ) with ᾱ ;

7: end while
8: return Searched architecture ᾱ .

Proposition 2.1 ([32, 45]). Let z ∈ Rd . (i) proxC1

(z) = ziei ,
where i = arg maxi=1, · · · ,d |zi |, and ei is a one-hot vector with only
the ith element being 1. (ii) proxC2

(z) = z̃, where z̃i = zi if zi ∈ [0, 1],
z̃i = 0 if zi < 0, and z̃i = 1 otherwise.

3 PROPOSED METHOD
In Section 2, we have discussed the importance of IFCs, and

the difficulty of choosing or designing one for the given task

and data. Similar observations have also been made in designing

neural networks, which motivates NAS methods for deep networks

[2, 3, 30, 41, 45, 48, 49]. Moreover, NAS has been developed as

a replacement of humans, which can discover data- and task-

dependent architectures with better performance. Besides, there

is no absolute winner for IFCs [11], just like the deep network

architecture also depends on data sets and tasks. These inspire us

to search for proper IFCs in CF by AutoML approaches.

3.1 Problem Definition
First, we define the AutoML problem here and identify an expressive

search space for IFCs, which includes the various operations in

Table 1. Inspired by generalized matrix factorization [17, 42] and

objective (1), we propose the following generalized CF objective:

min F (U ,V ,w) ≡
∑

(i, j)∈Ω
ℓ(w⊤ f

(
ui ,vj

)
,Oi j ) (5)

+
λ

2

∥U ∥2

F +
λ

2

∥V ∥2

F , s.t. ∥w ∥2 ≤ 1,

where f is the IFC (which takes the user embedding vector ui and
item embedding vector vj as input, and outputs a vector), and w
is a learning parameter. Obviously, all the IFCs in Table 1 can be

represented by using different f ’s. The following Proposition shows
that the constraint ∥w ∥2 ≤ 1 is necessary to ensure existence of a

solution.
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Proposition 3.1. If f is an operation shown in Table 1 and the
ℓ2-constraint onw is removed, then F in (5) has no nonzero optimal
solution when λ > 0 (proof is in Appendix A.3).

Based on above objective, we now define the AutoML problem,

i.e., searching interaction functions (SIF) for CF, here.

Definition 3.1 (AutoML problem). Let M be a performance
measure (the lower the better) defined on the validation set Ω̄ (disjoint
from Ω), and F be a family of vector-valued functions with two vector
inputs. The problem of searching for an interaction function (SIF) is
formulated as

f ∗ = arg min

f ∈F

∑
(i, j)∈Ω̄

M(f (u∗i ,v
∗
j )
⊤w∗,Oi j ) (6)

s.t.
[
U ∗,V ∗,w∗

]
= arg min

U ,V ,w
F (U ,V ,w),

where u∗i (resp.v
∗
j ) is the ith column ofU ∗ (resp. jth column of V ∗).

Similar to other AutoML problems (such as auto-sklearn [13],

NAS [2, 48] and AutoML in knowledge graph [47]), SIF is a bi-level

optimization problem [10]. On the top level, a good architecture f
is searched based on the validation set. On the lower level, we find

the model parameters using F on the training set. Due to the nature

of bi-level optimization, AutoML problems are difficult to solve in

general. In the following, we show how to design an expressive

search space (Section 3.2), propose an efficient one-shot search

algorithm (Section 3.3), and extend the proposed method to tensor

data (Section 3.4).

3.2 Designing a Search Space
Because of the powerful approximation capability of deep networks

[33], NCF [17] andDeep&Wide [9] use aMLP as f . SIF then becomes

searching a suitable MLP from the family F based on the validation

set (details are in Appendix A.1), where both the MLP architecture

and weights are searched. However, a direct search of this MLP

can be expensive and difficult, since determining its architecture is

already an extremely time-consuming problem as observed in the

NAS literature [30, 49]. Thus, as in Section 2.2, it is preferable to use

a simple but expressive search space that exploits domain-specific

knowledge from experts.

Notice that Table 1 contains operations that are

• Micro (element-wise): a possibly nonlinear function operating on

individual elements, and

• Marco (vector-wise): operators that operate on the whole input

vector (e.g., minus and multiplication).

Inspired by previous attempts that divide the NAS search space

into micro and macro levels [30, 49], we propose to first search for a

nonlinear transform on each single element, and then combine these

element-wise operations at the vector-level. Specifically, let O be an

operator selected frommulti, plus,min,max, concat, д(β ;x) ∈ R be

a simple nonlinear function with input β ∈ R and hyper-parameter

x . We construct a search space F for (6), in which each f is

f (ui ,vj ) = O( Ûui , Ûvj ), (7)

with [ Ûui ]l = д
(
[ui ]l ;p

)
and [ Ûvj ]l = д([vj ]l ;q) where [ui ]l (resp.

[vj ]l ) is the lth element of ui (resp. [vj ]l ), and p (resp. q) is the
hyper-parameter ofд transforming the user (resp. item) embeddings.

Note that we omit the convolution and outer product (vector-

wise operations) from O in (7), as they need significantly more

computational time and have inferior performance than the rest

(see Section 4.4). Besides, we parameterize д with a very small MLP

with fixed architecture (single input, single output and five sigmoid

hidden units) for the element-wise level in (7), and the ℓ2-norms of

the weights, i.e., p and q in (7), are constrained to be smaller than

or equal to 1.

This search space F meets the requirements for AutoML in

Section 2.2. First, as it involves an extra nonlinear transformation,

it contains operations that are more general than those designed by

experts in Table 1. This expressiveness leads to better performance

than the human-designed models in the experiments (Section 4.2).

Second, the search space is much more constrained than that of

a general MLP mentioned above, as we only need to select an

operation for O and determine the weights for a small fixed MLP

(see Section 4.3).

3.3 Efficient One-Shot Search Algorithm
Usually, AutoML problems require full model training and are

expensive to search. In this section, we propose an efficient

algorithm, which only approximately trains the models, and to

search the space in an end-to-end stochastic manner. Our algorithm

is motivated by the recent success of one-shot architecture search.

3.3.1 Continuous Representation of the Space. Note that the search
space in (7) contains both discrete (i.e., choice of operations) and

continuous variables (i.e., hyper-parameter p and q for nonlinear

transformation). This kind of search is inefficient in general.

Motivated by differentiable search in NAS [30, 41], we propose

to relax the choices among operations as a sparse vector in a

continuous space. Specifically, we transform f in (7) as

hα (ui ,vj ) ≡
∑ |O |

m=1

αm
(
w⊤
mOm ( Ûui , Ûvj )

)
s.t. α ∈ C, (8)

where α = [αm ] and C (in (3)) enforces that only one operation is

selected. Since operations may lead to different output sizes, we

associate each operationm with its ownwm .

Let T = {U ,V , {wm }} be the parameters to be determined by

the training data, and S = {α ,p,q} be the hyper-parameters to

be determined by the validation set. Combining hα with (6), we

propose the following objective:

minS H (S,T ) ≡
∑

(i, j)∈Ω̄
M(hα (u

∗
i ,v

∗
j )
⊤w∗

α ,Oi j ) (9)

s.t. α ∈ C and T ∗ ≡ {U ∗,V ∗, {w∗
m }} = arg min

T
Fα (T ; S),

where Fα is the training objective:

Fα (T ; S) ≡
∑

(i, j)∈Ω
ℓ(hα (ui ,vj ),Oi j ) +

λ

2

∥U ∥2

F +
λ

2

∥V ∥2

F ,

s.t. ∥wm ∥2 ≤ 1 form = 1, . . . , |O|.

Moreover, the objective (9) can be expressed as a structured

MLP (Figure 1). Compared with the general MLP mentioned in

Section 3.2, the architecture of this structured MLP is fixed and its

total number of parameters is very small. After solving (9), we keep

p and q for element-wise non-linear transformation, and pick the

operation which is indicated by the only nonzero position in the

vector α for vector-wise interaction. The model is then re-trained
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to obtain the final user and item embedding vectors (U and V ) and

the correspondingw in (5).

Figure 1: Representing the search space as a structured MLP.
Vector-wise: standard linear algebra operations; element-
wise: simple non-linear transformation.

3.3.2 Optimization by One-Shot Architecture Search. We present a

stochastic algorithm (Algorithm 2) to optimize the structured MLP

in Figure 1. The algorithm is inspired by NASP (Algorithm 1), in

which the relaxation of operations is defined in (8). Again, we need

to keep a discrete representation of the architecture, i.e., ᾱ at steps 3

and 8, but optimize a continuous architecture, i.e., α at step 5. The

difference is that we have extra continuous hyper-parameters p
and q for element-wise nonlinear transformation here. They can

still be updated by proximal steps (step 6), in which the closed-form

solution is given by proxI( ∥ · ∥2≤1)(z) = z/∥z∥2 [32].

Algorithm 2 Searching Interaction Function (SIF) algorithm.

1: Search space F represented by a structured MLP (Figure 1);

2: while epoch t = 1, · · · ,T do
3: Select one operation ᾱ = proxC1

(α );

4: sample a mini-batch from the validation data set;
5: Update continuous α for vector-wise operations

α = proxC2

(α − η∇ᾱH (T , S));

6: Update element-wise transformation

p = proxI( ∥ · ∥2≤1)(p − η∇pH (T , S)),

q = proxI( ∥ · ∥2≤1)(q − η∇qH (T , S));

7: sample a mini-batch from the training data set;
8: Obtain selected operation ᾱ = proxC1

(α );

9: Update training parametersT with gradients on Fα ;
10: end while
11: return Searched interaction function (parameterized by α , p

and q, see (7) and (8)).

3.4 Extension to Tensor Data
As mentioned in Section 1, CF methods have also been used on

tensor data. For example, low-rank matrix factorization is extended

to tensor factorization, in which two decomposition formats, CP

and Tucker [26], have been popularly used. These two methods are

also based on the inner product. Besides, the factorization machine

[35] is also recently extended to data cubes [7]. These motivate us

to extend the proposed SIF algorithm to tensor data. In the sequel,

we focus on the third-order tensor. Higher-order tensors can be

handled in a similar way.

For tensors, we need to maintain three embedded vectors, ui ,vj
and sl . First, we modify f to take three vectors as input and output

another vector. Subsequently, each candidate in search space (7)

becomes f = O( Ûui , Ûvj , Ûsl ), where Ûui ’s are obtained from element-

wise MLP from ui (and similarly for Ûvj and Ûsl ). However, O is

no longer a single operation, as three vectors are involved. O

enumerates all possible combinations from basic operations in the

matrix case. For example, if only max and ⊙ are allowed, then O

contains max(ui ,vj ) ⊙ sl , max(max(ui ,vj ), sl ), ui ⊙ max(vj , sl )
and ui ⊙ vj ⊙ sl . With the above modifications, it is easy to see

that the space can still be represented by a structured MLP similar

to that in Figure 1. Moreover, the proposed Algorithm 2 can still

be applied (see Appendix A.2). Note that the search space is much

larger for tensor than matrix.

4 EMPIRICAL STUDY
4.1 Experimental Setup
Two standard benchmark data sets (Table 2), MovieLens (matrix

data) and Youtube (tensor data), are used in the experiments [14, 28,

31]. Following [40, 43], we uniformly and randomly select 50% of

the ratings for training, 25% for validation and the rest for testing.

Note that since the size of the original Youtube dataset [28] is very

large (approximate 27 times the size of MovieLens-1M), we sample

a subset of it to test the performance (approximately the size of

MovieLens-1M). We sample rows with interactions larger than 20.

Table 2: Data sets used in the experiments.
data set (matrix) #users #items #ratings

MovieLens

100K 943 1,682 100,000

1M 6,040 3,706 1,000,209

data set (tensor) #rows #columns #depths #nonzeros

Youtube 600 14,340 5 1,076,946

The task is to predict missing ratings given the training data.

We use the square loss for both M and ℓ. For performance

evaluation, we use (i) the testing RMSE as in [14, 31]: RMSE =

[ 1

|Ω̃ |

∑
(i, j)∈Ω̃(w

⊤ f (ui ,vj ) − Oi j )
2]

1/2, where f is the operation

chosen by the algorithm, and w , ui ’s and vj ’s are parameters

learned from the training data; and (ii) clock time (in seconds) as in

[2, 30]. Except for IFCs, other hyper-parameters are all tuned with

grid search on the validation set. Specifically, for all CF approaches,

since the network architecture is already pre-defined, we tune

the learning rate lr and regularization coefficient λ to obtain the

best RMSE. We use the Adagrad [12] optimizer for gradient-based

updates. In our experiments, lr is not sensitive, and we simply fix

it to a small value. Furthermore, we utilize grid search to obtain

λ from

[
0, 10

−6, 5 × 10
−6, 10

−5, 5 × 10
−5, 10

−4
]
. For the AutoML

approaches, we use the same lr to search for the architecture,

and tune λ using the same grid after the searched architecture

is obtained.
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(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 2: Testing RMSEs of SIF and other CF approaches with different embedding dimensions.

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 3: Convergence of SIF (with searched IFC) and other CF methods with an embedded dimensionality of 8. Algorithms
FM and HOFM are not shown as their codes do not support a callback to record testing performance.

4.2 Comparison with State-of-the-Art CF
Approaches

In this section, we compare SIF with state-of-the-art CF approaches.

On the matrix data sets, the following methods are compared:

(i) Alternating gradient descent (“AltGrad”) [27]: This is the

most popular CF method, which is based on matrix factorization

(i.e., inner product operation). Gradient descent is used for

optimization; (ii) Factorization machine (“FM”) [35]: This extends

linear regression with matrix factorization to capture second-order

interactions among features; (iii) Deep&Wide [9]: This is a recent
CF method. It first embeds discrete features and then concatenates

them for prediction; (iv) Neural collaborative filtering (“NCF”) [17]:
This is another recent CF method which models the IFC by neural

networks.

For tensor data, Deep&Wide and NCF can be easily extended to

tensor data. Two types of popularly used low-rank factorization of

tensor are used, i.e., “CP” and “Tucker” [26], and gradient descent is
used for optimization; “HOFM” [7]: a fast variant of FM, which can

capture high-order interactions among features. Besides, we also

compare with a variant of SIF (Algorithm 2), denoted SIF(no-auto), in
which both the embedding parameterT and architecture parameter

S are optimized using training data. Details on the implementation

of each CF method and discussion of the other CF approaches are

in Appendix A.4. All codes are implemented in PyTorch, and run

on a GPU cluster with a Titan-XP GPU.

4.2.1 Effectiveness. Figure 2 shows the testing RMSEs. As the

embedding dimension gets larger, all methods gradually overfit and

the testing RMSEs get higher. SIF(no-auto) is slightly better than

the other CF approaches, which demonstrates the expressiveness

of the designed search space. However, it is worse than SIF. This
shows that using the validation set can lead to better architectures.

Moreover, with the searched IFCs, SIF consistently obtains lower

testing RMSEs than the other CF approaches.

4.2.2 Convergence. If an IFC can better capture the interactions

among user and item embeddings, it can also converge faster in

terms of testing performance. Thus, we show the training efficiency

of the searched interactions and human-designed CF methods in

Figure 3. As can be seen, the searched IFC can be more efficient,

which again shows superiority of searching IFCs from data.

4.2.3 More Performance Metrics. As in [16, 17, 24], we report the

metrics of “Hit at top" and “Normalized Discounted Cumulative

Gain (NDCG) at top" on the MovieLens-100K data. Recall that the

ratings are in the range {1, 2, 3, 4, 5}. We treat ratings that are equal

to five as positive, and the others as negative. Results are shown in

Table 3. The comparison between SIF and SIF(no-auto) shows that

using the validation set can lead to better architectures. Besides,

SIF is much better than the other methods in terms of both Hit@K

and NDCG@K, and the relative improvements are larger than that

on RMSE.
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(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4: Testing RMSEs of SIF and the other AutoML approaches, with different embedding dimensions. Gen-approx is not
run on Youtube, as it is slow and the performance is inferior.

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 5: Search efficiency of SIF and the other AutoML approaches (embedding dimension is 8).

Table 3: Hit-at-top (H@K) and NDCG-at-top (N@K) on
MovieLens-100K.

RMSE H@5 H@10 N@5 N@10

Altgrad 0.867 0.267 0.377 0.156 0.220

FM 0.845 0.286 0.391 0.176 0.249

Deep&Wide 0.861 0.273 0.378 0.163 0.227

NCF 0.851 0.279 0.386 0.172 0.236

SIF(no-auto) 0.846 0.284 0.390 0.175 0.250

SIF 0.839 0.295 0.405 0.190 0.259

4.3 Comparison with State-of-the-Art AutoML
Search Algorithms

In this section, we compare with the following popular AutoML

approaches: (i) “Random”: Random search [5] is used. Both

operations andweights (for the small and fixedMLP) in the designed

search space (in Section 3.2) are uniformly and randomly set;

(ii) “RL”: Following [48], we use reinforcement learning [38] to

search the designed space; (iii) “Bayes”: The designed search space

is optimized by HyperOpt [6], a popular Bayesian optimization

approach for hyperparameter tuning; and (iv) “SIF”: The proposed
Algorithm 2; and (v) “SIF(no-auto)”: A variant of SIF in which

parameter S for the IFCs are also optimized with training data.

More details on the implementations and discussion of the other

AutoML approaches are in Appendix A.5.

4.3.1 Effectiveness. Figure 4 shows the testing RMSEs of the

various AutoML approaches. Experiments on MovieLens-10M

are not performed as the other baseline methods are very slow

(Figure 5). SIF(no-auto) is worse than SIF as the IFCs are searched

purely based on the training set. Among all the methods tested, the

proposed SIF is the best. It can find good IFCs, leading to lower

testing RMSEs than the other methods for the various embedding

dimensions.

4.3.2 Search Efficiency. In this section, we take the k architectures

with top validation performance, re-train, and then report their

average RMSE on the testing set in Figure 5. As can be seen, all

algorithms run slower on Youtube, as the search space for tensor

data is larger than that for matrix data. Besides, SIF is much faster

than all the other methods and has lower testing RMSEs. The gap

is larger on the Youtube data set. Finally, Table 4 reports the time

spent on the search and fine-tuning. As can be seen, the time taken

by SIF is less than five times of those of the other non-autoML-based

methods.

4.4 Interaction Functions (IFCs) Obtained
To understand why a lower RMSE can be achieved by the proposed

method, we show the IFCs obtained by the various AutoMLmethods

on MovieLens-100K. Figure 6(a) shows the vector-wise operations

obtained. As can be seen, Random, RL, Bayes and SIF select different

operations in general. Figure 6(b) shows the searched nonlinear

transformation for each element. We can see that SIF can find more

complex transformations than the others.

To further demonstrate the need of AutoML and effectiveness of

SIF, we show the performance of each single operation in Figure 6(c).
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(a) Operations (vector-wise). (b) Nonlinear transformation (element-wise). (c) Performance of each single operation.

Figure 6: (a) operations identified by various search algorithms on MovienLens-100K; (b) Searched IFCs on MovienLens-100K
when embedding dimension is 8; (c) Performance for SIF and each single operation on MovieLens-100K.

(a) embedding dimension = 4. (b) embedding dimension = 8. (c) embedding dimension = 16.

Figure 7: Convergence of various single operations on MovieLens-100K, with different embedding dimensions.

Table 4: Clock time (in seconds) taken by SIF and the other CF approaches (embedding dimension is 8).
AltGrad FM Deep&Wide NCF SIF SIF(no-auto)

MovieLens-100K 25.4 43.1 37.9 34.3 159.8 73.4

MovieLens-1M 313.7 324.3 357.0 374.9 745.3 348.7

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 8: Comparison on different search space designs (embedding dimension is 8).

It can be seen that while some operations can be better than others

(e.g., plus is better than conv), there is no clear winner among

all operations. The best operation may depend on the embedding

dimension as well. These verify the need for AutoML. Figure 7

shows the testing RMSEs of all single operations.We can see that SIF

consistently achieves lower testing RMSEs than all single operations

and converges faster. Note that SIF in Figure 6(a) may not select the

best single operation in Figure 6(c), due to the learned nonlinear

transformation (Figure 6(b)).

4.5 Ablation Study
In this section, we perform ablation study on different parts of the

proposed AutoML method.

4.5.1 Different Search Spaces. First, we show the superiority

of search space used in SIF by comparing with the following

approaches:

• Using a MLP as a general approximator (“Gen-approx”), as
described in Section 3.2, to approximate the search space is

1667



Efficient Neural Interaction Function Search
for Collaborative Filtering WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 5: Results on MovieLens-100K with k selected operations in SIF.
embedding dimension = 4 embedding dimension = 8

k RMSE operator RMSE operator

1 0.8448 concat 0.8450 max
2 0.8435 concat, max 0.8440 max, plus
3 0.8442 concat, max, multiply 0.8432 max, plus, concat
4 0.8433 concat, max, multiply, plus 0.8437 max, plus, concat, min
5 0.8432 concat, max, multiply, plus, min 0.8431 max, plus, concat, min, multiply

Table 6: Testing RMSE on MovieLens-100K with different activation functions and number of hidden units in the MLP for
element-wise transformation.

embedding activation number of hidden units

dimension function 1 5 10 15 20

relu 0.8437 0.8388 0.8385 0.8389 0.8396

4 sigmoid 0.8440 0.8391 0.8390 0.8395 0.8399

tanh 0.8439 0.8991 0.8389 0.8393 0.8401

relu 0.8385 0.8372 0.8370 0.8371 0.8374

8 sigmoid 0.8382 0.8375 0.8377 0.8376 0.8378

tanh 0.8386 0.8376 0.8373 0.8375 0.8377

also compared. The MLP is updated with stochastic gradient

descent [4] using the validation set. Since searching network

architectures is expensive [48, 49], the MLP structure is fixed for

Gen-approx (see Appendix A.1).

• Standard NAS approach, using MLP to approximate the IFC f .
The MLP is optimized with the training data, while its architec-

ture is searched with the validation set. Two search algorithms

are considered: (i) random search (denoted ‘‘NAS(random)”) [5];
(ii) reinforcement learning (denoted “NAS(reinforce)”) [48].

The above are general search spaces, and are much larger than the

one designed for SIF.

Figure 8 shows the convergence of testing RMSE for the various

methods. As can be seen, these general approximation methods are

hard to be searched and thus much slower than SIF. The proposed

search space in Section 3.2 is not only compact, but also allows

efficient one-shot search as discussed in Section 3.3.

4.5.2 Allowing More Operations. In Algorithm 2, we only allow

one operation to be selected. Here, we allow more operations by

changing C1 to Ck = {α | ∥α ∥0 = k}, where k ∈ {1, 2, . . . , 5}.

Results are shown in Table 5. As can be seen, the testing RMSE gets

slightly smaller. However, the model complexity and prediction

time grow linearly with k , and so can become significantly larger.

4.5.3 Element-wise Transformation. Recall that in Section 3.2,

we use a small MLP to approximate an arbitrary element-wise

transformation. In this experiment, we vary the number of hidden

units and type of activation function in this MLP. Results on

the testing RMSE are shown in Table 6. As can be seen, once

the number of hidden units is large enough (i.e., ≥ 5 here), the

performance is stable with different number of activation functions.

This demonstrates the robustness of our design in the search space.

4.5.4 Changing Predictor to MLP. In (5), we used a linear predictor.

Here, we study whether using a more complicated predictor can

further boost learning performance. A standard three-layer MLP

with 10 hidden units is used. Results are shown in Table 7. As can

be seen, using a more complex predictor can lead to lower testing

RMSE when the embedding dimension is 4, 8, and 16. However, the

lowest testing RMSE is still achieved by the linear predictor with

an embedding dimension of 2. This demonstrates that the proposed

SIF can achieve the desired performance, and designing a proper

predictor is not an easy task.

Table 7: Testing RMSE on MovieLens-100K with MLP and
linear predictor in (5).

MLP linear

embedding dim RMSE operator RMSE operator

2 0.8437 concat 0.8389 min
4 0.8424 concat 0.8429 min
8 0.8407 plus 0.8468 inner
16 0.8413 multiply 0.8467 plus

5 CONCLUSION
In this paper, we propose an AutoML approach to search for

interaction functions in CF. The keys for its success are (i) an

expressive search space, (ii) a continuous representation of the

space, and (iii) an efficient algorithm which can jointly search

interaction functions and update embedding vectors in a stochastic

manner. Experimental results demonstrate that the proposed

method is much more efficient than popular AutoML approaches,

and also obtains much better learning performance than human-

designed CF approaches.

A APPENDIX
A.1 General Search Space
As in Figure 1 and (7), we can take a three-layer MLP as F , which is

guaranteed to approximate any given function with enough hidden

units [33]. We concatenateui andvj as input to MLP. To ensure the

approximation ability of MLP, we set the number of hidden units

to be double that of the input size, and use the sigmoid function
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as the activation function. The final output is a vector of the same

dimension as ui .

A.2 Tensor Data
Following Section 3.4, the proposed Algorithm 2 can be extended

to tensor data. If only the times and max operations are allowed,

the search space can be represented as in Figure 9, which is similar

to Figure 1. Note that two possible operations are chosen, so the

search space for tensor data is much larger than that for matrix

data (O(K) vs O(K2), where K is the number of operations).

Figure 9: Representation of the search space for tensor data.

A.3 Proofs of Proposition 3.1
Proof. Taking f as the inner product function as an example.

Let A = {U ,V ,w} , 0 be an optimal point of F , then F (A) =∑
(i, j)∈Ω ℓ(w

⊤ f (ui ,vj ),Oi j )
2 + λ/2∥U ∥2

F +
λ/2∥V ∥2

F . We construct

another A′ = {βU , βV , 1/β 2w} with β ∈ (0, 1), then F (A′) =∑
(i, j)∈Ω ℓ(w

⊤ f (ui ,vj ),Oi j )
2 + λβ 2/2∥U ∥2

F +
λβ 2/2∥V ∥2

F < F (A),
which violates the assumption that A , 0 is an optimal solution.

The same holds for f being other operations in Table1. □

A.4 Implementation: CF Approaches
AltGrad: It is the traditional way to perform collaborative filtering.

We first apply an element-wise product of the user and item

embedding and then feed the outputs into a linear predictor. In other

word, AltGrad is equivalent to using the single inner operation in

our searching space.

FactorizationMachine: For thematrix case, we directly utilize the

implementation from pyFM
2
, noting that pyFM is difficult to run

on GPU so it is not comparable to other methods when it comes to

training time. For tensor case (HOFM), we use the implementation

from tffm
3
, which can be easily accelerated by GPU since tffm is

implemented with tensorflow.

Deep & Wide: We implement Deep & Wide by employing a

two layer MLP with ReLU as the non-linear function on the

concatenation of all potential embeddings.

NCF: Neural collaborative filtering is flexible to stack many layers

and become very deep as well as learn separate embeddings for

GMF and MLP. But this paper focuses on the interaction function,

and also to ensure similar computational complexity, we implement

NCF by combining generalized matrix factorization (GMF) with a

one-layer multi-layer perceptron (MLP). Noting that our method

2
https://github.com/coreylynch/pyFM

3
https://github.com/geffy/tffm

also supports deep models by changing the last linear predictor to

a deep MLP.

CP: Similar to AltGrad, CP first combines three embeddings by an

element-wise product, then the prediction is carried out through a

linear predictor.

Tucker: Tucker has high computation complexity since it has a

3-D weight to perform Tucker decomposition. We implement this

method by sequentially applying tensor product along all three

dimensions and then feed the result into a linear predictor.

Others: Note that, CML [19, 46], ConvMF [24] and ConvNCF [16]

are not included, since their CF tasks are different and codes are not

available. Instead, interaction functions they introduced (Table 1)

are studied in Section 4.4.

A.5 Implementation: AutoML Approaches
GeneralApproximator: As in AutoML literature, the search space

needs to be carefully designed, it cannot be too large (hard to be

searched) nor too small (poor performance). In the experiments,

we use MLP structure in Appendix A.1. The standard approach to

optimize MLP is gradient descent on hyper-parameters (please see

[5]). However, it is very slow — in order to perform one gradient

descent on MLP, we need to finish the training of CF model, which

is one full model training on the training dataset. MLP needs many

iterations to converge, and thus to train a good MLP, we need many

times of full model training. This makes Gen-Approx very slow.

Random: In this baseline, architecture is randomly generated

including the weightsp,q for element-wiseMLP and the interaction

function f in every epoch. Every weights ofp,q is restricted within

[−3.0, 3.0]. We then report the best RMSE achieved after a fixed

number of architectures are sampled.

Bayes: We directly use the source code from hyperopt [6] to

perform Bayesian optimization. Every single weight of p, q is

designed as a uniform space ranging from -3.0 to 3.0. This

continuous space along with the discrete space of interaction

function is then jointly optimized, we report the best RMSE until a

fixed number of evaluations are achieved.

Reinforcement Learning: Following [48], we utilize a controller

to generate the architecture including p, q and the interaction

function f to combine all potential embeddings. The difference lies

in that the searching space in our setting is a combined continuous

(p, q) and discrete (interaction function) space, so deterministic

policy gradient is utilized [29, 36] to train the controller. We employ

a recurrent neural network to act as the controller in order to be

flexible to both matrix and tensor. The controller is then trained

via policy gradient where the reward is 1/RMSE of the generated

architecture on the validation set. At convergence, a neural network

is built following the output of the controller and the RMSE on test

set is recorded.

Others: SMAC [13] is not compared as it cannot be run on our GPU

cluster and HyperOpt has comparable performance [22]. Genetic

algorithms [20] are also not compared as they need special designs

to fit into our search space, and is inferior to RL and random search

[30, 48].
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