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Abstract

Maximum margin clustering (MMC) has recently attracted

considerable interests in both the data mining and machine

learning communities. It first projects data samples to a

kernel-induced feature space and then performs clustering

by finding the maximum margin hyperplane over all possi-

ble cluster labelings. As in other kernel methods, choosing a

suitable kernel function is imperative to the success of maxi-

mum margin clustering. In this paper, we propose a multiple

kernel clustering (MKC) algorithm that simultaneously finds

the maximum margin hyperplane, the best cluster labeling,

and the optimal kernel. Moreover, we provide detailed anal-

ysis on the time complexity of the MKC algorithm and also

extend multiple kernel clustering to the multi-class scenario.

Experimental results on both toy and real-world data sets

demonstrate the effectiveness and efficiency of the MKC al-

gorithm.

1 Introduction

Over the decades, many clustering methods have been
proposed in the literature, with popular examples in-
cluding the k-means clustering [9], mixture models [9]
and spectral clustering [4, 8, 21]. Recently, maximum
margin clustering (MMC) has also attracted consid-
erable interests in both the data mining and machine
learning communities [26, 27, 28, 30, 31, 32]. The key
idea of MMC is to extend the maximum margin prin-
ciple of support vector machines (SVM) to the unsu-
pervised learning scenario. Given a set of data sam-
ples, MMC performs clustering by labeling the sam-
ples such that the SVM margin obtained is maximized
over all possible cluster labelings [27]. Recent studies
have demonstrated its superior performance over con-
ventional clustering methods.

However, while supervised large margin methods
are usually formulated as convex optimization problems,
MMC leads to a non-convex integer optimization prob-
lem which is much more difficult to solve. Recently,
different optimization techniques have been used to al-
leviate this problem. Examples include semi-definite
programming (SDP) [26, 27, 28], alternating optimiza-
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tion [30] and the cutting-plane method [31, 32].
Moreover, like other kernel methods, MMC also re-

lies on a kernel function to project the data samples to a
high-dimensional kernel-induced feature space. A good
choice of the kernel function is therefore imperative to
the success of MMC. However, one of the central prob-
lems with kernel methods in general is that it is often
unclear which kernel is the most suitable for a particular
task [2, 5, 14, 17]. So, instead of using a single fixed ker-
nel, recent developments in the SVM and other kernel
methods have shown encouraging results in construct-
ing the kernel from a number of homogeneous or even
heterogeneous kernels [1, 10, 13, 14, 18, 33, 23, 24, 29].
This provides extra flexibility and also allows domain
knowledge from possibly different information sources
to be incorporated to the base kernels. However, pre-
vious works in this so-called multiple kernel learning
approach have all been focused on the supervised and
semi-supervised learning settings. Therefore, how to ef-
ficiently learn the kernel in unsupervised learning, or
maximum margin clustering in particular, is still an in-
teresting yet unexplored research topic.

In this paper, we propose a multiple kernel clus-
tering (MKC) algorithm that finds the maximum mar-
gin hyperplane over all possible cluster labelings, to-
gether with the optimal kernel-induced feature map,
automatically from the data. Specifically, we consider
a non-negative combination of a given set of M fea-
ture maps Φ1, . . . ,ΦM (corresponding toM base kernels
K1, . . . ,KM ):

(1.1) Φ(x) =

M
∑

k=1

βkΦk(x),

with βk ≥ 0 and
∑

k β
p
k ≤ 1 for some integer p.

By simultaneously optimizing the objective function in
MMC with respect to both the hyperplane parameters
(weight w and bias b) and the combination parameters
βk’s, we can obtain the optimal feature mapping for
MMC.

Computationally, the optimization problem in mul-
tiple kernel clustering can be solved by the cutting plane
method [12]. As will be shown later in the sequel, one
can construct a nested sequence of successively tighter
relaxations of the original MKC problem, and each op-
timization problem in this sequence can be efficiently
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solved as a second order cone program (SOCP) [3] by
using the constrained concave-convex procedure (CCCP)
[22]. Experimental evaluations on toy and real-world
data sets demonstrate both the effectiveness and effi-
ciency of multiple kernel clustering.

The rest of this paper is organized as follows. In
Section 2, we first present the principles of multiple ker-
nel clustering on the simpler setting of two-class cluster-
ing. We will show that the original integer programming
problem can be transformed to a sequence of convex
programs which are then efficiently solved by a cutting
plane algorithm. In Section 3, we provide theoretical
analysis on the time complexity of the MKC algorithm.
Section 4 extends multiple kernel clustering from the
two-class to the multi-class setting. Experimental re-
sults on both toy and real-world data sets are provided
in Section 5, followed by some concluding remarks in
Section 6.

2 Multiple Kernel Clustering

In this section, we first present the multiple kernel
clustering algorithm for two-class clustering. Extension
to the multi-class case will be discussed in Section 4.

2.1 Maximum Margin Clustering As briefly in-
troduced in Section 1, the key idea of maximum mar-
gin clustering (MMC) is to extend the maximum mar-
gin principle from supervised learning to unsupervised
learning. In the two-cluster case, given a set of exam-
ples X = {x1, · · · ,xn}, MMC aims at finding the best
label combination y = {y1, . . . , yn} ∈ {−1,+1}

n such
that an SVM trained on this {(xi, yi), . . . , (xn, yn)} will
yield the largest margin. Computationally, it solves the
following optimization problem:

min
y∈{±1}n

min
w,b,ξi

1

2
wTw+

C

n

n
∑

i=1

ξi(2.2)

s.t. ∀i ∈ {1, . . . , n} :

yi(w
TΦ(xi)+b) ≥ 1−ξi, ξi ≥ 0,

−l ≤

n
∑

i=1

yi ≤ l.

Here, the data samples X are mapped to a high-
dimensional feature space using a possibly nonlinear fea-
ture mapping Φ. In the support vector machine, training
is usually performed in the dual and this Φ is utilized
implicitly by using the kernel trick. In cases where pri-
mal optimization with a nonlinear kernel is preferred,
we can still obtain a finite-dimensional representation
for each sample in the kernel-induced feature space by
using kernel principal component analysis [20]. Alterna-
tively, following [6], one can also compute the Cholesky

decomposition of the kernel matrix K = X̂X̂T , and set
Φ(xi) = (X̂i,1, . . . , X̂i,n)

T .
Moreover, the last constraint in (2.2) is the class

balance constraint, which is introduced to avoid the
trivially “optimal” solution that assigns all patterns
to the same class and thus achieves “infinite” margin.
This class balance constraint also avoids the unwanted
solution of separating a single outlier or a very small
group of samples from the rest of the data. Here, l > 0
is a constant controlling the class imbalance.

According to Eq.(2.2), maximum margin clustering
maximizes the margin with respect to both the labeling
vector y and the separating hyperplane parameters
(w, b). The unknown binary vector y renders Eq.(2.2)
an integer program, which is much more difficult to solve
than the quadratic program (QP) in SVM. However,
as shown in [31], we can equivalently formulate the
maximum margin clustering problem as

min
w,b,ξi

1

2
wTw +

C

n

n
∑

i=1

ξi(2.3)

s.t. ∀i ∈ {1, . . . , n} :

|wTΦ(xi) + b| ≥ 1− ξi, ξi ≥ 0,

−l ≤
n
∑

i=1

[

wTΦ(xi) + b
]

≤ l.

Here, the labeling vector y is computed as yi =
sgn(wTφ(xi) + b) and a slightly relaxed class balance
constraint is used [21]. This is much easier to handle
than the original one in Eq.(2.2).

2.2 Multiple Kernel Maximum Margin Clus-

tering Traditionally, maximum margin clustering
projects the data samples to the feature space by a
fixed feature mapping Φ (which is induced by a kernel
K). Choosing a suitable kernel is therefore imperative
to the success of maximum margin clustering. How-
ever, it is often unclear which kernel is the most suit-
able for the task at hand. In this paper, inspired by the
works of multiple kernel learning in supervised learn-
ing [1, 10, 13, 14, 18, 33, 23, 24, 29], we propose to
use a non-negative combination of several base kernels
for computing the feature map in this maximum margin
clustering setting.

Specifically, each data sample xi in the input space
is translated via M mappings Φk : x 7→ Φk(x) ∈
R
Dk , k = 1, . . . ,M , to M feature representations
Φ1(xi), . . . ,ΦM (xi). Here, Dk denotes the dimensional-
ity of the kth feature space. For each feature mapping,
there is a separate weight vector wk. Then one solves
the following optimization problem, which is equivalent
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to the MMC formulation in Eq.(2.3) when M = 1:

min
β,w,b,ξ

1

2

M
∑

k=1

βk||wk||
2 +

C

n

n
∑

i=1

ξi(2.4)

s.t. ∀i ∈ {1, . . . , n} :
∣

∣

∣

∣

∣

M
∑

k=1

βkw
T
k Φk(xi) + b

∣

∣

∣

∣

∣

≥ 1− ξi, ξi ≥ 0,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

βpk ≤ 1,

−l ≤

n
∑

i=1

[

M
∑

k=1

βkw
T
k Φk(xi) + b

]

≤ l.

Here, we regularize the M output functions according
to their weights βk’s. The non-negativity constraints on
the weights guarantee that the combined regularizer is
convex, and the resulting kernel is positive semi-definite.
Moreover, p here is a positive integer. In this paper, we
choose p = 2 or, in other words, the `2 regularizer is
used on β = (β1, . . . , βM )

T .
While Eq.(2.4) is quite intuitive, it has the disad-

vantage that both the objective function and the first
and last constraints are non-convex due to the coupling
of βk and wk in the output function. Therefore, we
apply the following change of variables [33]

(2.5) ∀k ∈ {1, . . . ,M} : vk = βkwk.

After the above change of variables, multiple kernel
MMC is equivalently formulated as follows.

min
β,v,b,ξ

1

2

M
∑

k=1

||vk||
2

βk
+
C

n

n
∑

i=1

ξi(2.6)

s.t. ∀i ∈ {1, . . . , n} :
∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi) + b

∣

∣

∣

∣

∣

≥ 1− ξi, ξi ≥ 0,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1,

−l ≤

n
∑

i=1

[

M
∑

k=1

vTk Φk(xi) + b

]

≤ l,

where v = (v1, . . . ,vM )
T . Note that the objective

function and all constraints except the first one are now
convex.

2.3 Cutting Plane Algorithm Themultiple kernel
MMC formulation in Eq.(2.6) has n slack variables

ξi’s, one for each data sample. In the following, we
first reformulate Eq.(2.6) to reduce the number of slack
variables.

Theorem 2.1. Multiple kernel MMC can be equiva-
lently formulated as:

min
β,v,b,ξ

1

2

M
∑

k=1

||vk||
2

βk
+ Cξ(2.7)

s.t. ∀c ∈ {0, 1}n :

1

n

n
∑

i=1

ci

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi)+b

∣

∣

∣

∣

∣

≥
1

n

n
∑

i=1

ci−ξ,(2.8)

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1, ξ ≥ 0,

−l ≤

n
∑

i=1

[

M
∑

k=1

vTk Φk(xi) + b

]

≤ l.

Proof. For simplicity, we denote the optimization prob-
lem shown in Eq.(2.6) as OP1 and the problem in
Eq.(2.7) as OP2. To prove the theorem, we will show
that OP1 and OP2 have the same optimal objective
value and an equivalent set of constraints. Specifi-
cally, we will prove that for every (v, b,β), the opti-
mal ξ∗ and {ξ∗1 , . . . , ξ

∗
n} are related by ξ

∗ = 1
n

∑n
i=1 ξ

∗
i .

This means that, with (v, b,β) fixed, (v, b,β, ξ∗) and
(v, b,β, ξ∗1 , . . . , ξ

∗
n) are optimal solutions to OP1 and

OP2, respectively, and they result in the same objec-
tive value.

First, note that for any given (v, b,β), each slack
variable ξi in OP1 can be optimized individually as

(2.9) ξ∗i = max

{

0, 1−

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi) + b

∣

∣

∣

∣

∣

}

.

For OP2, the optimal slack variable ξ is
(2.10)

ξ∗= max
c∈{0,1}n

{

1

n

n
∑

i=1

ci−
1

n

n
∑

i=1

ci

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi)+b

∣

∣

∣

∣

∣

}

.

Since the ci’s are independent of each other in Eq.(2.10),
they can also be optimized individually and so

ξ∗=

n
∑

i=1

max
ci∈{0,1}

{

1

n
ci−

1

n
ci

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi)+b

∣

∣

∣

∣

∣

}

(2.11)

=
1

n

n
∑

i=1

max

{

0, 1−

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi) + b

∣

∣

∣

∣

∣

}

=
1

n

n
∑

i=1

ξ∗i .
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Hence, the objectives of OP1 and OP2 have the
same value for any (v, b,β) given the optimal ξ∗ and
{ξ∗1 , . . . , ξ

∗
n}. Therefore, the optima of these two opti-

mization problems are the same. That is to say, we can
solve the optimization problem in Eq.(2.7) to get the
multiple kernel MMC solution. 2

In the optimization problem shown in Eq.(2.7), the
number of slack variables is reduced by n−1 and a single
slack variable ξ is now shared across all the non-convex
constraints. This greatly reduces the complexity of
the non-convex optimization problem formultiple kernel
MMC. On the other hand, the number of constraints in
Eq.(2.8) is increased from n to 2n. This exponential
increase of constraints may seem intimidating at first
sight. However, we will show that we can always find
a small subset of constraints from the whole constraint
set in (2.8) while still ensuring a sufficiently accurate
solution. Specifically, we employ an adaptation of the
cutting plane algorithm [12] to solve the multiple kernel
MMC problem. It starts with an empty constraint
subset Ω, and computes the optimal solution to problem
(2.7) subject to the constraints in Ω. The algorithm
then finds the most violated constraint in (2.8) and adds
it to the subset Ω. In this way, we construct a series of
successively tightening approximations to the original
multiple kernel MMC problem. The algorithm stops
when no constraint in (2.8) is violated by more than ε.
The whole cutting plane algorithm for multiple kernel
MMC is presented in Algorithm 1.

Algorithm 1 Cutting plane algorithm for multiple
kernel maximum margin clustering.

Input: M feature mappings Φ1, . . . ,ΦM , parameters
C, l and ε, constraint subset Ω = φ.
repeat

Solve problem (2.7) for (v, b,β) under the current
working constraint set Ω.
Select the most violated constraint c and set Ω =
Ω ∪ {c}.

until the newly selected constraint c is violated by
no more than ε.

We will prove in Section 3 that one can always
find a polynomially-sized subset of constraints such
that the solution of the corresponding relaxed problem
satisfies all the constraints in (2.8) up to a precision of
ε. That is to say, the remaining exponential number of
constraints are guaranteed to be violated by no more
than ε, and thus do not need to be explicitly added to
the optimization problem [11].

There are two remaining issues in our cutting plane
algorithm for multiple kernel MMC. First, how to solve

problem (2.7) under a given constraint subset Ω? Sec-
ond, how to find of the most violated constraint in (2.8)?
These will be addressed in the following two subsections.

2.3.1 Optimization via the CCCP In each iter-
ation of the cutting plane algorithm, we need to solve a
non-convex optimization problem to obtain the optimal
separating hyperplane under the current working con-
straint set Ω. Although the objective function in (2.7)
is convex, the constraints are not. This makes prob-
lem (2.7) difficult to solve. Fortunately, the constrained
concave-convex procedure (CCCP) is designed to solve
these optimization problems with a concave-convex ob-
jective function and concave-convex constraints [22].
Specifically, the objective function in (2.7) is quadratic
and all the constraints except the first one are linear.
Moreover, note that although the constraint in Eq.(2.8)
is non-convex, it is a difference of two convex functions
which can be written as:

∀c ∈ Ω :(2.12)
(

1

n

n
∑

i=1

ci−ξ

)

−
1

n

n
∑

i=1

ci

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi)+b

∣

∣

∣

∣

∣

≤ 0.

Hence, we can solve problem (2.7) with the CCCP as
follows. Given an initial estimate (v(0), b(0)), the CCCP
computes (v(t+1), b(t+1)) from (v(t), b(t)) by replacing
1
n

∑n
i=1 ci

∣

∣

∣

∑M
k=1 v

T
k Φk(xi) + b

∣

∣

∣
in the constraint (2.12)

with its first-order Taylor expansion at (v(t), b(t)). Prob-
lem (2.7) then becomes:

min
β,v,b,ξ

1

2

M
∑

k=1

||vk||
2

βk
+ Cξ(2.13)

s.t. ∀c ∈ Ω :

1

n

n
∑

i=1

ci≤ξ+
1

n

n
∑

i=1

ciz
(t)
i

[

M
∑

k=1

vTk Φk(xi)+b

]

,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1, ξ ≥ 0,

−l ≤

n
∑

i=1

[

M
∑

k=1

vTk Φk(xi) + b

]

≤ l,

where z
(t)
i = sgn

(

∑M
k=1 v

(t)T
k Φk(xi) + b(t)

)

. Introduc-

ing additional variable tk defined as the upper bound of
||vk||

2

βk
(i.e., adding additional constraints ||vk||

2

βk
≤ tk),

we can formulate the above as the following second order
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cone programming (SOCP) [3] problem:

min
β,v,b,ξ,t

1

2

M
∑

k=1

tk + Cξ(2.14)

s.t. ∀c ∈ Ω :

1

n

n
∑

i=1

ci≤ξ+
1

n

n
∑

i=1

ciz
(t)
i

[

M
∑

k=1

vTk Φk(xi)+b

]

,

∀k ∈ {1, . . . ,M} :
∣

∣

∣

∣

∣

∣

∣

∣

[

2vk
tk − βk

]
∣

∣

∣

∣

∣

∣

∣

∣

≤ tk + βk, βk ≥ 0,

M
∑

k=1

β2k ≤ 1, ξ ≥ 0

−l ≤

n
∑

i=1

[

M
∑

k=1

vTk Φk(xi) + b

]

≤ l.

Here, we have used the fact that hyperbolic constraints
of the form sT s ≤ xy, where x, y ∈ R+ and s ∈ R

n, can
be equivalently transformed to the second order cone
constraint [16, 25]

(2.15)

∣

∣

∣

∣

∣

∣

∣

∣

[

2s
x− y

]∣

∣

∣

∣

∣

∣

∣

∣

≤ x+ y.

The above SOCP problem can be solved in polynomial
time [15]. Following the CCCP, the obtained solution
(v, b,β, ξ, t) from this SOCP problem is then used as
(v(t+1), b(t+1),β, ξ, t), and the iteration continues until
convergence. The algorithm for solving problem (2.7)
subject to the constraint subset Ω is summarized in
Algorithm 2. As for its termination criterion, we check
if the difference in objective values from two successive
iterations is less than α% (which is set to 0.01 in the
experiments).

Algorithm 2 Solve problem (2.7) subject to constraint
subset Ω via the constrained concave-convex procedure.

Initialize (v(0), b(0)).
repeat

Obtain (v(t+1), b(t+1),β, ξ, t) as the solution of the
second order cone programming problem (2.14).
Set v = v(t+1), b = b(t+1) and t = t+ 1.

until the stopping criterion is satisfied.

2.3.2 The Most Violated Constraint The most
violated constraint in (2.8) can be easily identified.
Recall that the feasibility of a constraint in (2.8) is
measured by the corresponding value of ξ. Therefore,
the most violated constraint is the one that results in the
largest ξ. Since each constraint in (2.8) is represented
by a vector c, we have the following theorem:

Theorem 2.2. The most violated constraint c in (2.8)
can be computed as:

(2.16) ci =

{

1 if
∣

∣

∣

∑M
k=1v

T
k Φk(xi)+b

∣

∣

∣
< 1,

0 otherwise.

Proof. The most violated constraint is the one that
results in the largest ξ. In order to fulfill all the
constraints in problem (2.7), the optimal ξ can be
computed as:

ξ∗=

n
∑

i=1

max
ci∈{0,1}

{

1

n
ci−

1

n
ci

∣

∣

∣

∣

∣

M
∑

k=1

vTkΦk(xi)+b

∣

∣

∣

∣

∣

}

(2.17)

=
1

n

n
∑

i=1

max
ci∈{0,1}

{

ci

[

1−

∣

∣

∣

∣

∣

M
∑

k=1

vTkΦk(xi)+b

∣

∣

∣

∣

∣

]}

.

Therefore, the most violated constraint c corresponding
to ξ∗ can be obtained as in Eq.(2.16). 2

The cutting plane algorithm iteratively selects the most
violated constraint under the current hyperplane pa-
rameter and then adds it to the working constraint set
Ω, until no constraint is violated by more than ε. More-
over, there is a direct correspondence between ξ and the
feasibility of the set of constraints in problem (2.7). If
a point (v, b,β, ξ) fulfills all the constraints up to pre-
cision ε, i.e.,

∀ c ∈ {0, 1}n :(2.18)

1

n

n
∑

i=1

ci

∣

∣

∣

∣

∣

M
∑

k=1

vTk Φk(xi) + b

∣

∣

∣

∣

∣

≥
1

n

n
∑

i=1

ci−(ξ + ε),

then the point (v, b,β, ξ + ε) is feasible. Furthermore,
note that in the objective function of problem (2.7),
there is a single slack variable ξ measuring the clustering
loss. Hence, we can simply select the stopping criterion
in Algorithm 1 as being all the samples satisfying
inequality (2.18). Then, the approximation accuracy
ε of this approximate solution is directly related to the
clustering loss.

2.4 Accuracy of the Cutting Plane Algorithm

The following theorem characterizes the accuracy of the
solution computed by the cutting plane algorithm.

Theorem 2.3. For any ε > 0, the cutting plane
algorithm for multiple kernel MMC returns a point
(v, b,β, ξ) for which (v, b,β, ξ + ε) is feasible in prob-
lem (2.7).

Proof. In the cutting plane algorithm, the most vio-
lated constraint c in (2.8), which leads to the largest
value of ξ, is selected using Eq.(2.16). The cutting
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plane algorithm terminates only when the newly se-
lected constraint c is violated by no more than ε, i.e.,
1
n

∑n
i=1 ci −

1
n

∑n
i=1 ci

∣

∣

∣

∑M
k=1 vkΦk(xi) + b

∣

∣

∣
≤ ξ + ε.

Since the newly selected constraint c is the most vi-
olated one, all the other constraints will satisfy the
above inequality. Therefore, if (v, b,β, ξ) is the so-
lution returned by our cutting plane algorithm, then
(v, b,β, ξ+ε) will be a feasible solution to problem (2.7).
2

Based on this theorem, ε indicates how close one
wants to be to the error rate of the best separating
hyperplane. This justifies its use as the stopping
criterion in Algorithm 1.

3 Time Complexity Analysis

In this section, we provide theoretical analysis on the
time complexity of the cutting plane algorithm for
multiple kernel MMC.

Theorem 3.1. The cutting plane algorithm for multi-

ple kernel MMC takes O(D
3.5+nD
ε2 + D2.5

ε4 ) time, where

D =
∑M

k=1Dk and Dk is the dimensionality of the kth
feature space.

To prove the above theorem, we will first obtain the
time involved in each iteration of the algorithm. Next,
we will prove that the total number of constraints
added into the working set Ω, i.e., the total number
of iterations involved in the cutting plane algorithm, is
upper bounded. Specifically, we have the following two
lemmas.

Lemma 3.1. Each iteration of the cutting plane algo-
rithm for multiple kernel MMC takes O(D3.5 + nD +
D2.5|Ω|) time for a working constraint set size |Ω|.

Proof. In each iteration of the cutting plane algorithm,
two steps are involved: solving problem (2.7) under
the current working constraint set Ω via CCCP and
selecting the most violated constraint. To solve problem
(2.7) under the working constraint set Ω, we will need
to solve a sequence of SOCP problems. Specifically, for
an SOCP problem of the form

min
x
fTx(3.19)

s.t. ∀k∈{1, . . . ,M} : ||Akx+bk||≤c
T
kx+dk,

where x ∈ R
N , f ∈ R

N , Ak ∈ R
(Nk−1)×N , bk ∈ R

Nk−1,
ck ∈ R

N and dk ∈ R, then its time complexity for each
iteration is O(N2

∑

kNk) [15, 25]. According to the

SOCP formulation in (2.14), we have N =
∑M

k=1Dk +

2M + 2 = O(D) and
∑

kNk =
∑M

k=1(Dk + 2) + 2M +

|Ω| + 3 = O(D + |Ω|). Thus, the time complexity
per iteration is O(D3 +D2|Ω|). Using the primal-dual
method for solving this SOCP, the accuracy of a given
solution can be improved by an absolute constant factor
in O(D0.5) iterations [16]. Hence, each iteration in
the CCCP takes O(D3.5 + D2.5|Ω|) time. Moreover,
as will be seen from the numerical experiments in
Section 5, each round of the cutting plane algorithm
requires fewer than 10 iterations for solving problem
(2.7) subject to Ω via CCCP. This is the case even
on large data sets. Therefore, the time complexity
for solving problem (2.7) under the working constraint
set Ω via CCCP is O(D3.5 + D2.5|Ω|). Finally, to
select the most violated constraint using Eq.(2.16), we
need to compute n inner products between (v1, . . . ,vM )
and (Φ1(xi), . . . ,ΦM (xi)). Each inner product takes
O(D) time and so a total of n inner products can be
computed in O(nD) time. Thus, the time complexity
for each iteration of the cutting plane algorithm is
O(D3.5 + nD +D2.5|Ω|). 2

Lemma 3.2. The cutting plane algorithm terminates
after adding at most CR

ε2 constraints, where R is a
constant independent of n and D.

Proof. Note that v = 0, b = 0, ξ = 1 with arbitrary
β ≥ 0 satisfying

∑M
k=1 β

2
k ≤ 1 is a feasible solution to

problem (2.7). Therefore, the optimal objective of (2.7)
is upper bounded by C. In the following, we will prove
that in each iteration of the cutting plane algorithm, the
objective value will be increased by at least a constant
after adding the most violated constraint. Due to
the fact that the objective value is non-negative and
has upper bound C, the total number of iterations
will be upper bounded. For simplicity, we omit the
class balance constraint in problem (2.7) and set the
bias term b = 0. The proof for the problem with
class balance constraint and non-zero bias term can be
obtained similarly.

To compute the increase brought about by adding
one constraint to the working constraint set Ω, we will
first need to present the dual problem of (2.7). The
difficulty involved in obtaining this dual problem comes
from the |

∑M
k=1v

T
k Φk(xi)+b| term in the constraints.

Thus, we will first replace the constraints in (2.8) with

∀c ∈ Ω :
1

n

n
∑

i=1

citi ≥
1

n

n
∑

i=1

ci − ξ,

∀i ∈ {1, . . . , n} : t2i ≤ v
TΨiv,

∀i ∈ {1, . . . , n} : ti ≥ 0,
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where the D ×D matrix Ψi is defined as

(3.20) Ψi=







Φ1(xi)Φ
T
1 (xi) . . . Φ1(xi)Φ

T
M (xi)

...
. . .

...
ΦM (xi)Φ

T
1 (xi) . . . ΦM (xi)Φ

T
M (xi)






.

Let λ,γ, µ, δ,α, ρ be the dual variables corresponding
to the various constraints, the Lagrangian dual function
for problem (2.7) can be obtained as

L(λ,γ, µ, δ,α, ρ)(3.21)

= inf
v,β,ξ,t







1

2

M
∑

k=1

||vk||
2

βk
+Cξ+

|Ω|
∑

p=1

λp

[

1

n

n
∑

i=1

cpi(1−ti)−ξ

]

+
n
∑

i=1

γi(t
2
i−v

TΨiv)−µξ−
n
∑

i=1

δiti−
M
∑

k=1

αkβk

+ρ

(

M
∑

k=1

βk−1

)}

= inf
v,β,ξ,t







1

2

M
∑

k=1

||vk||
2

βk
−vT

n
∑

i=1

γiΨiv+Cξ−

|Ω|
∑

p=1

λpξ−µξ

+

n
∑

i=1

γit
2
i−

|Ω|
∑

p=1

λp
1

n

n
∑

i=1

cpiti−

n
∑

i=1

δiti+

|Ω|
∑

p=1

λp
1

n

n
∑

i=1

cpi

−
M
∑

k=1

αkβk+ρ

(

M
∑

k=1

βk−1

)}

=

n
∑

i=1







−
(
∑|Ω|

p=1λpcpi + nδi)
2

4n2γi
+
1

n

|Ω|
∑

p=1

λpcpi







−ρ

satisfying the following constraints

(3.22)



































Eβ − 2
∑n

i=1 γiΨi º 0,

αk − ρ = 0,

C −
∑|Ω|

p=1 λp − µ = 0,

ti =
1

2nγi

∑|Ω|
k=1 λkcki +

δi

2γi
,

λ,γ, µ, δ,α ≥ 0,

where Eβ = diag
(

ID1×D1

β1
, . . . ,

IDM×DM

βM

)

and IDk×Dk

is the Dk ×Dk identity matrix.
The cutting plane algorithm selects the most vi-

olated constraint c′ and continues if the following in-
equality holds

(3.23)
1

n

n
∑

i=1

c′i(1− t∗i ) ≥ ξ + ε.

Since ξ ≥ 0, the newly added constraint satisfies

(3.24)
1

n

n
∑

i=1

c′i(1− t∗i ) ≥ ε.

Let L
(t+1)
∗ be the optimal value of the Lagrangian dual

function subject to Ω(t+1) = Ω(t) ∪ {c′}, and γ
(t)
i be

the value of γi which results in the largest L
(t)
∗ . The

addition of a new constraint to the primal problem is
equivalent to adding a new variable λt+1 to the dual
problem, and so

L
(t+1)
∗(3.25)

= max
λ,γ,µ,δ,α,ρ

n
∑

i=1

{

−
(
∑

pλpcpi+λt+1c
′
i+nδi)

2

4n2γi

+
1

n

[

t
∑

p=1

λpcpi + λt+1c
′
i

]}

−ρ

≥L
(t)
∗ +max

λt+1≥0

n
∑

i=1

{

−
λt+1c

′
i

∑t
p=1λ

(t)
p cpi

2γ
(t)
i n2

−
λt+1c

′
iδ
(t)
i

2γ
(t)
i n

−
(λt+1c

′
i)
2

4γ
(t)
i n2

+
1

n
λt+1c

′
i

}

.

According to inequality (3.24) and the constraint λt+1 ≥
0, we have

n
∑

i=1

[

λt+1c
′
i

∑t
p=1λ

(t)
p cpi

2γ
(t)
i n2

+
λt+1c

′
iδ
(t)
i

2γ
(t)
i n

]

≤
1

n

n
∑

i=1

λt+1c
′
i−ελt+1.

Substituting the above inequality into (3.25), we get the

following lower bound of L
(t+1)
∗ :

L
(t+1)
∗ ≥L

(t)
∗ +max

λt+1≥0

{

−
1

n

n
∑

i=1

λt+1c
′
i+ελt+1(3.26)

−

n
∑

i=1

(λt+1c
′
i)
2

4γ
(t)
i n2

+

n
∑

i=1

1

n
λt+1c

′
i

}

=L
(t)
∗ +max

λt+1≥0

{

ελt+1−

n
∑

i=1

(λt+1c
′
i)
2

4γ
(t)
i n2

}

=L
(t)
∗ +

ε2
∑n

i=1(c
′2
i /γ

(t)
i n2)

.

By maximizing the Lagrangian dual function shown in
Eq.(3.21), γ(t) can be obtained as:

(λ(t),γ(t), µ(t), δ(t),α(t), ρ(t))

= argmax
λ,γ,µ,δ,α,ρ

n
∑

i=1

{

−
(
∑t

p=1λpcpi+nδi)
2

4n2γi
+
1

n

t
∑

p=1

λpcpi

}

−ρ

= argmax
λ,γ,µ,δ,α,ρ

n
∑

i=1

(γi − δi)

subject to the following equation

(3.27) 2nγi =
t
∑

p=1

λpcpi + nδi.
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The only constraint on δi is δi ≥ 0. Therefore, to
maximize

∑n
i=1(γi − δi), the optimal value for δi is 0.

Hence, the following equation holds

(3.28) 2nγ
(t)
i =

t
∑

p=1

λ(t)p cpi.

Thus, nγ
(t)
i is a constant independent of n. Moreover,

∑n
i=1

(c′i)
2

n measures the fraction of non-zero elements
in the constraint vector c′, and therefore is a constant
related only to the newly added constraint, also inde-

pendent of n. Hence,
∑n

i=1
(c′i)

2

γ
(t)
i

n2
is a constant inde-

pendent of n and D, and we denote it with Q(t). More-
over, define R = maxt{Q

(t)} as the maximum of Q(t)

throughout the whole cutting plane process. Therefore,
the increase of the objective function of the Lagrangian
dual problem after adding the most violated constraint

c′ is at least ε2

R . Furthermore, denote with G(t) the
value of the objective function in problem (2.7) subject
to Ω(t) after adding t constraints. Due to weak duality

[3], at the optimal solution L
(t)
∗ ≤ G

(t)
∗ ≤ C. Since the

Lagrangian dual function is upper bounded by C, the
cutting plane algorithm terminates after adding at most
CR
ε2 constraints. 2

Recall that Lemma 3.2 bounds the number of
iterations in our cutting plane algorithm by a constant
CR
ε2 , which is independent of n and D. Moreover,
each iteration of the algorithm takes O(D3.5 + nD +
D2.5|Ω|) time. Therefore, the cutting plane algorithm
for multiple kernel MMC has a time complexity of
∑CR/ε2

|Ω|=1 O(D3.5 + nD +D2.5|Ω|) = O(D
3.5+nD
ε2 + D2.5

ε4 ).

Hence, we have proved theorem 3.1.

4 Multi-Class Multiple Kernel Clustering

In this section, we extend the multiple kernel MMC
algorithm to multi-class clustering.

4.1 Multi-Class Formulation For the multi-class
scenario, we will start with an introduction to the multi-
class support vector machine formulation proposed in
[7]. Given a point set X={x1, · · · ,xn} and their labels
y=(y1, . . . , yn)∈{1, . . . ,m}

n, the SVM defines a weight
vector wp for each class p ∈ {1, . . . ,m} and classifies
sample x by p∗ = argmaxp∈{1,...,k}w

pTx. The weight
vectors are obtained as follows:

min
w,ξ

1

2

m
∑

p=1

||wp||2+
C

n

n
∑

i=1

ξi(4.29)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m} :

wyiTΦ(xi)+δyi,r−w
rTΦ(xi)≥1−ξi,

∀i ∈ {1, . . . , n} : ξi ≥ 0.

Instead of a single feature mapping Φ, we consider the
non-negative combination of M feature mappings as
shown in Eq.(1.1). The multiple kernel multi-class SVM
can therefore be formulated as:

min
β,w,ξ

1

2

M
∑

k=1

βk

m
∑

p=1

||wp
k||
2+

C

n

n
∑

i=1

ξi(4.30)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m} :
M
∑

k=1

βk(w
yi

k −w
r
k)

TΦk(xi)+δyi,r≥1−ξi,

∀i ∈ {1, . . . , n} : ξi ≥ 0,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1,

where the superscript p in wp
k denotes the pth class

and the subscript k denotes the kth feature mapping.
Instead of finding a large margin classifier given labels
on the data as in SVM, MMC targets to find a labeling
that will result in a large margin classifier. The
multiple kernel multi-class maximum margin clustering
can therefore be formulated as:

min
y,β,v,ξ

1

2

M
∑

k=1

m
∑

p=1

||vpk||
2

βk
+
C

n

n
∑

i=1

ξi(4.31)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m} :
M
∑

k=1

(vyi

k −v
r
k)

TΦk(xi)+δyi,r≥1−ξi,

∀i ∈ {1, . . . , n} : ξi ≥ 0,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1,

∀p, q∈{1, . . . ,m} :

−l≤
n
∑

i=1

M
∑

k=1

(vpk−v
q
k)

TΦk(xi)≤ l,

where we have applied the following change of variables

(4.32) ∀i∈{1, . . . , n}, k∈{1, . . . ,M} : vpk = βkw
p
k

to ensure that the objective function and the last
constraint are convex. Similar to two-class clustering,
we have also added class balance constraints (where
l > 0) in the formulation to control class imbalance.
Again, the above formulation is an integer program, and
is much more complex than the QP problem in multi-
class SVM. Fortunately, similar to the two-class case,
we have the following theorem.
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Theorem 4.1. Problem (4.31) is equivalent to

min
β,v,ξ

1

2

M
∑

k=1

m
∑

p=1

||vpk||
2

βk
+
C

n

n
∑

i=1

ξi(4.33)

s.t. ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m} :

M
∑

k=1

(

m
∑

p=1

zipv
p
k−v

r
k

)T

Φk(xi)+zir≥1−ξi,

∀i ∈ {1, . . . , n} : ξi ≥ 0,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1,

∀p, q∈{1, . . . ,m} :

−l≤
n
∑

i=1

M
∑

k=1

(vpk−v
q
k)

TΦk(xi)≤ l,

where zip is defined as ∀i ∈ {1, . . . , n}, p ∈ {1, . . . ,m} :

zip =

m
∏

q=1,q 6=p

I[
∑

M
k=1v

r
k

TΦk(xi)>
∑

M
k=1v

q

k
TΦk(xi)]

,

with I(·) being the indicator function and
the label for sample xi is determined as

yi=argmaxp
∑M

k=1 v
p
k
T
Φk(xi)=

∑m
p=1 pzip.

The multiple kernel clustering formulation shown in
Eq.(4.33) has n slack variables {ξ1, . . . , ξn} in the non-
convex constraints. We propose the following theorem
to reduce the number of slack variables in Eq.(4.33).

Theorem 4.2. Problem (4.33) can be equivalently for-
mulated as problem (4.34), with ξ∗ = 1

n

∑n
i=1 ξ

∗
i .

min
β,v,ξ

1

2

M
∑

k=1

m
∑

p=1

||vpk||
2

βk
+Cξ(4.34)

s.t. ∀ci∈{e0, e1, . . . , ek}, i∈{1, . . . , n} :

1

n

n
∑

i=1

M
∑

k=1

m
∑

p=1

(cTi ezip−cip)v
p
k
T
Φk(xi)

+
1

n

n
∑

i=1

m
∑

p=1

cipzip≥
1

n

n
∑

i=1

cTi e−ξ,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1, ξ ≥ 0,

∀p, q∈{1, . . . ,m} :

−l≤
n
∑

i=1

M
∑

k=1

(vpk−v
q
k)

TΦk(xi)≤ l.

where we define ep as the k× 1 vector with only the pth
element being 1 and others 0, e0 as the k×1 zero vector
and e as the vector of ones.

After the above reformulation, a single slack variable
ξ is shared across all the non-convex constraints. We
propose the use of the cutting plane algorithm to handle
the exponential number of constraints in problem (4.34).

Algorithm 3 Cutting plane algorithm for multiple
kernel multi-class maximum margin clustering.

Input: M feature mappings Φ1, . . . ,ΦM , parameters
C, l and ε, constraint subset Ω = φ.
repeat

Solve problem (4.34) for (vpk,β), k = 1, . . . ,M and
p = 1, . . . ,m, under the current working constraint
set Ω.
Select the most violated constraint c and set Ω =
Ω ∪ {c}.

until the newly selected constraint c is violated by
no more than ε.

4.2 Optimization via the CCCP Given an ini-
tial point v(0), the CCCP computes v(t+1) from

v(t) by replacing 1
n

∑n
i=1

∑M
k=1

∑m
p=1c

T
i ezipv

p
k
T
Φk(xi)+

1
n

∑n
i=1

∑m
p=1 cipzip in the constraint with its first-order

Taylor expansion at v(t).

min
β,v,ξ

1

2

M
∑

k=1

m
∑

p=1

||vpk||
2

βk
+Cξ(4.35)

s.t. ∀[c1, . . . , cn]∈Ω, i∈{1, . . . , n} :

1

n

n
∑

i=1

M
∑

k=1

m
∑

p=1

(cTi ez
(t)
ip −cip)v

p
k
T
Φk(xi)

+
1

n

n
∑

i=1

m
∑

p=1

cipz
(t)
ip ≥

1

n

n
∑

i=1

cTi e−ξ,

∀k ∈ {1, . . . ,M} : βk ≥ 0,
M
∑

k=1

β2k ≤ 1, ξ ≥ 0,

∀p, q∈{1, . . . ,m} :

−l≤
n
∑

i=1

M
∑

k=1

(vpk−v
q
k)

TΦk(xi)≤ l.

Similar to two-class clustering, the above problem can
be formulated as an SOCP and solved efficiently. Ac-
cording to the procedure of CCCP, we solve problem
(4.34) under the constraint set Ω with Algorithm 4.
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Algorithm 4 Solve problem (4.34) subject to con-
straint subset Ω via the CCCP.

Initialize v(0).
repeat

Obtain (v(t+1),β, ξ) as the solution to the second
order cone programming problem (4.35).
Set v = v(t+1) and t = t+ 1.

until the stopping criterion is satisfied.

4.3 The Most Violated Constraint The most
violated constraint is the one that results in the largest
ξ, and can be obtained by the following theorem.

Theorem 4.3. The most violated constraint can be
obtained as

ci=

{

er∗ if
[

∑M
k=1v

p∗
k

T
Φk(xi)−

∑M
k=1v

r∗
k

TΦk(xi)
]

<1,

0 otherwise,

where p∗ = argmaxp
∑M

k=1 v
p
k
T
Φk(xi) and r∗ =

argmaxr 6=p∗
∑M

k=1 v
r
k
TΦk(xi).

5 Experiments

In this section, we demonstrate the accuracy and effi-
ciency of the multiple kernel clustering algorithms on
several toy and real-world data sets. All the experi-
ments are performed with MATLAB 7.0 on a 1.66GHZ
Intel CoreTM2 Duo PC running Windows XP and with
1.5GB memory. In the following, we will simply refer to
the proposed algorithms as MKC.

5.1 Data Sets We use seven data sets which are in-
tended to cover a wide range of properties: ionosphere,
digits, letter and satellite (from the UCI repository),
svmguide1-a (from the LIBSVM data1), ringnorm2

andmnist3. The two-class data sets are created follow-
ing the same setting as in [30]. We also create several
multi-class data sets from the digits, letter andmnist
data. We summarize all of these in Table 1.

Table 1: Descriptions of the data sets.
Data Size Dimension Class

digits1v7 361 64 2
digits2v7 356 64 2
ionosphere 354 64 2
svmguide1-a 1000 4 2
ringnorm 1000 20 2
letterAvB 1555 16 2
satellite 2236 36 2
digits0689 713 64 4
digits1279 718 64 4
letterABCD 3096 16 4
mnist01234 28911 196 5

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/data sets/
2http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
3http://yann.lecun.com/exdb/mnist/

5.2 Comparison of Clustering Accuracy We
will first study the clustering accuracy of the MKC
algorithm. Specifically, we use a kernel matrix K =
∑3

k=1 βkKk, where the Kk’s are initial “guesses” of
the kernel matrix. We use a linear kernel function
k1(x1,x2) = x

T
1 x2 for K1, a polynomial kernel function

k2(xi,xj) = (1 + x
T
1 x2)

d for K2 and a Gaussian kernel
function k3(x1,x2) = exp(−(x1 − x2)

T (x1 − x2)/2σ)
for K3. For comparison, we use k-means clustering
(KM) and normalized cut (NC) as baselines. We
also compare with IterSVR [30] which performs MMC
on two-class data. For KM, the cluster centers are
initialized randomly, and the performance reported are
summarized over 50 independent runs. For NC, the
width of the Gaussian kernel is set by an exhaustive
search from the grid {0.1σ0, 0.2σ0, . . . , σ0}, where σ0 is
the range of distance between any two data points in
the data set. Finally, for IterSVR, the initialization is
based on k-means with randomly selected initial cluster
centers. The Gaussian kernel is used and its width is
set in the same way as in NC.

In all the clustering algorithms, we set the number
of clusters to the true number of classes (m). To assess
the clustering accuracy, we follow the strategy used in
[27]: We first take a set of labeled data, remove all the
labels and run the clustering algorithms; then we label
each of the resulting clusters with the majority class
according to the original labels, and finally measure
the number of correct classifications. Moreover, we also
calculate the Rand Index 4 [19] for each clustering result.

Results on the various data sets are summarized in
Table 2. As can be seen, the clustering accuracy and
Rand Index of MKC are comparable to those attained
by the best base kernel. In most cases, it is even better
than the other competing clustering algorithms.

5.3 Speed A potential concern about multiple ker-
nel clustering is that it might be much slower than max-
imum margin clustering. Figure 1 compares the CPU-
time5 of MKC with the total CPU-time of MMC with
K1, K2 and K3. As can be seen, the speed of MKC
is comparable to MMC. Indeed, MKC even converges
faster than MMC on several data sets. However, unlike
MMC which requires a carefully defined kernel matrix,
MKC has the strong advantage that it can automati-
cally choose a good combination of base kernels.

4The Rand index has a value between 0 and 1, with 0 indicating

that the data clustering does not agree on any pair of points with

the true clustering, and 1 indicating that the two clustering results
are exactly the same.

5The CPU-time consists of the computational time of kernel

PCA (to obtain the feature representations corresponding to

nonlinear kernels) and that of MKC or MMC.
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Table 2: Clustering accuracies (%) and Rand Indices on the various data sets. For each method, the number on
the left denotes the clustering accuracy, and the number on the right stands for the Rand Index. The symbol
‘-’ means that the corresponding algorithm cannot handle the data set in reasonable time. Moreover, note that
IterSVR can only be used on two-class data sets.

Data K1 K2 K3 MKC KM NC IterSVR
digits1v7 100.00 1.00 95.52 0.915 95.24 0.910 100.00 1.00 99.45 0.995 55.00 0.504 99.45 0.995
digits2v7 100.00 1.00 97.47 0.951 99.16 0.989 100.00 1.00 96.91 0.940 66.00 0.550 100.00 1.00
ionosphere 72.36 0.599 62.51 0.531 86.52 0.767 91.01 0.839 68.00 0.564 75.00 0.626 67.70 0.562
svmguide1-a 78.40 0.661 77.60 0.653 84.30 0.735 85.50 0.752 76.50 0.640 87.50 0.781 93.20 0.873
ringnorm 76.70 0.642 58.10 0.513 98.40 0.969 99.00 0.980 76.00 0.635 77.70 0.653 80.70 0.831
letterAvB 93.12 0.873 90.35 0.826 93.38 0.877 93.83 0.885 82.06 0.706 76.80 0.644 92.80 0.867
satellite 98.48 0.971 76.79 0.644 88.68 0.799 99.37 0.992 95.93 0.922 95.79 0.919 96.82 0.939
digits0689 96.63 0.968 94.11 0.946 84.57 0.887 97.77 0.978 42.33 0.696 93.13 0.939
digits1279 94.01 0.943 90.11 0.911 90.39 0.914 94.43 0.948 40.42 0.681 90.11 0.909
letterABCD 70.77 0.804 65.05 0.761 53.55 0.684 71.89 0.821 66.18 0.782 68.19 0.811
minst01234 89.98 0.901 87.34 0.882 90.12 0.907 91.55 0.922 67.63 0.898 - -
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Figure 1: CPU-time (seconds) of MKC and MMC as a
function of the data set size n.

5.4 Scaling Properties of MKC In Section 3, we
showed that the time complexity ofMKC scales linearly
with the number of samples. Figure 2 shows a log-log
plot of the empirical results. Note that lines in a log-log
plot correspond to polynomial growth O(nd), where d
is the slope of the line. As can be seen, the CPU-time
of MKC scales roughly as O(n), and is thus consistent
with Theorem 3.1.

Moreover, as mentioned in Section 3, each round
of MKC requires fewer than 10 iterations for solving
problem (2.7) or (4.34) subject to the constraints in
Ω. Again, this is confirmed by the experimental results
in Figure 2, which shows how the number of CCCP
iterations (averaged over all the cutting plane iterations)
varies with sample size on the various data sets.

102 103 104100

101

102

103

Data Set Size

C
P

U
−T

im
e 

(s
ec

on
ds

)

 

 

svmguide1−a
ringnorm
letterAvB
satellite
digits0689
digits1279
letterABCD
mnist01234
O(n)

102 103 1042

4

6

8

10

12

Data Set Size

C
C

C
P

 It
er

at
io

ns

 

 

svmguide1−a
ringnorm
letterAvB
satellite
digits0689
digits1279
letterABCD
mnist01234

Figure 2: Left: CPU-time of MKC vs. data set size.
Right: Average number of CCCP iterations in MKC
vs. data set size.

Next, we study how the CPU-time of MKC varies
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Figure 3: Left: CPU-time of MKC vs. the number of
kernels. Right: CPU-time of MKC vs. ε.

when the number of base kernels6 is increased from one
to ten. As can be seen from Figure 3, the CPU-time
of MKC scales roughly quadratically with the number
of base kernels. This is much better than the bound of
O(M3.5) in Section 3.

Finally, Section 3 states that the total number of
iterations involved in MKC is at most CR

ε2 . This means
that with a higher ε, the algorithm might converge
faster. Figure 3 shows how the CPU-time ofMKC scales
with ε. As can be seen, the empirical scaling is roughly

O( 1
ε0.2 ), which is much better than O(

D3.5+nD
ε2 + D2.5

ε4 )
shown in the bound.

5.5 Generalization Ability of MKC Recall that
maximum margin clustering adopts the maximum mar-
gin principle of SVM, which often allows good gener-
alization on unseen data. In this experiment, we also
examine the generalization ability of MKC on unseen
data samples. We first learn the multiple kernel cluster-
ing model on a data subset randomly drawn from the
whole data set. Then we use the learned model to clus-
ter the whole data set. As can be seen in Table 3, the
clustering performance of the model learned on the data
subset is comparable with that of the model learned on
the whole data set. This suggests an important applica-
tion scenario for multiple kernel clustering, namely that

6Gaussian kernels are used here.
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for a large data set, we can simply perform the cluster-
ing process on a small subset of the data and then use
the learned model to cluster the remaining data points.

Table 3: Generalization ability of MKC.

Data
from whole set from data subset
Acc RIndex subset size Acc RIndex

letterAvB 93.83 0.885 500 93.27 0.874
satellite 99.37 0.992 500 98.47 0.984

letterABCD 71.89 0.821 500 70.00 0.781
mnist01234 91.55 0.922 1000 91.68 0.920

6 Conclusions

In this paper, we extend multiple kernel learning to un-
supervised learning. In particular, we propose the mul-
tiple kernel clustering (MKC) algorithm that simultane-
ously finds the maximum margin hyperplane, the best
cluster labeling and the optimal kernel. Experimental
results on both toy and real-world data sets demonstrate
the effectiveness and efficiency of the algorithm.
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