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a b s t r a c t

In online learningwith kernels, it is vital to control the size (budget) of the support set because of the curse
of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling
the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results
on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and
efficiency.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Online learning is a popular and natural approach for solving
real-time and life-long learning problems, where instances arrive
sequentially. Online learning is also advantageous in large-scale
learning as it is often efficient and highly competitive (Shalev-
Shwartz, 2007, 2011). At each iteration t , an online learning
algorithm produces a function estimate ft ∈ F , and then suffers
a loss ℓt(ft). Here, we assume that the function space F is closed
and convex, and ℓt(·) is convex. To evaluate the performance of the
algorithm, it is customary tomeasure its regretRT =

T
t=1(ℓt(ft)−

ℓt(f )), where T is the horizon, w.r.t. a competitor f ∈ F .
A standard online learning algorithm is the gradient descent

(GD) (Zinkevich, 2003), which updates ft as

ft+1 = ΠF (ft − ηgt). (1)

Here, gt is the gradient (or subgradient) of ℓt w.r.t. ft , ΠF is the
Euclidean projection onto F , and η is the stepsize. Its regret is
O(

√
T ), and cannot be improved in general (Abernethy, Bartlett,

Rakhlin, & Tewari, 2008). To extend linear models for nonlinear
function learning, the kernel trick has been widely used (Kivinen,
Smola, & Williamson, 2004; Schölkopf & Smola, 2002). An input
instance x is first mapped to φ(x) in a reproducing kernel Hilbert
space (RKHS) H , where φ is a feature map induced by the kernel
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κ(·, ·) of H . The inner product ⟨xi, xj⟩ between two instances
xi, xj in the linear algorithm is then replaced by κ(xi, xj) =

⟨φ(xi), φ(xj)⟩.
A bottleneck for kernelized online learning is that the set St of

support vectors (SV’s) in ft keeps expanding as learning proceeds.
Subsequently, so are the memory and time costs. It is thus neces-
sary to keep |St | under control with the use of budget (Crammer,
Kandola, & Singer, 2003; Weston, Bordes, & Bottou, 2005). In re-
cent years, various budget algorithms have been proposed, such as
the Projectron and its variants (He &Wu, 2012; Orabona, Keshet, &
Caputo, 2009), randomized budget perceptron (RBP) (Cesa-Bianchi
& Gentile, 2006; Sutskever, 2009) and the simplified Forgetron
(Dekel, Shalev-Shwartz, & Singer, 2008; Sutskever, 2009). These al-
gorithms are mainly for classification and only mistake bounds are
provided. A framework for algorithms with sublinear regret (as in
(1)) is lacking and highly desirable in the budget online learning
literature. With such a regret guarantee, we can directly general-
ize existing budget algorithms to regression and other problems.
Moreover, though some budget algorithms (such as the Projectron)
have remarkable classification accuracies, they have to update the
inverse of a Gram matrix in each iteration. This costs O(B2) time
and memory, where B is the budget. Besides, setting an appropri-
ate budget for a particular learning problem can be difficult.

In this paper, we propose a simple but effective stochastic strat-
egy for online learning with budget. The idea is to keep the excess
regret of the budget algorithm over its non-budget counterpart
small, while still controlling the growth of the budget. In particu-
lar, two algorithms, both with O(B) memory and time, will be pre-
sented.

http://dx.doi.org/10.1016/j.neunet.2014.07.006
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Algorithm 1 Online learning with kernels (OLK).
1: Input: Learning rate sequence {ηt > 0}.
2: Initialize: S1 = ∅, f1 = 0.
3: for t = 1, 2, . . . , T do
4: receive input xt ;
5: suffer loss ℓt(ft);
6: compute the subgradient gt ∈ ∂ℓt(ft);
7: if gt = 0 then
8: ft+ 1

2
= ft ;

9: St+1 = St ;
10: else
11: ft+ 1

2
= ft − ηtgt ;

12: St+1 = St ∪ {t};
13: end if
14: ft+1 = ΠF (ft+ 1

2
).

15: end for

• The first one is based on dynamically increasing the budget
in a stochastic manner. This yields a sublinear expected regret
of O(T

1+γ
2 ) (where 0 < γ < 1), and a budget of (variable) size

O(T 1−γ ) which is also sublinear in T .
• The second algorithm allows the use of a fixed budget, which

may be more convenient in some applications. When the pre-
assigned budget is exceeded, the algorithm randomly removes
an existing SV. This also yields a sublinear expected regret of
O(

√
T ) and a budget of size O(

√
T ).

The rest of this paper is organized as follows. Section 2 presents
a baseline algorithm for non-budget kernelized online learn-
ing. The stochastic strategy for (kernelized) online learning with
budget, with two specific budget algorithms, is demonstrated in
Section 3. A discussion on the related work is in Section 4. Experi-
mental results are reported in Section 5, and the last section gives
some concluding remarks.

2. Basic algorithm for Online Learning with Kernels

Given a sequence {(xt , yt)}, with xt coming from the input
domain X ⊆ Rd, yt from output domain Y ⊆ R, and t ∈ [T ] ≡

[1, 2, . . . , T ], the learner aims to learn the underlying function
f : X → Y in an online manner. Let H be the RKHS associated
with the kernel function κ , such that κij ≡ κ(xi, xj) = ⟨φi, φj⟩ and
φt ≡ φ(xt) ∈ H . We assume that

∥φt∥ ≤ 1, ∀t ∈ [T ]. (2)

Unless explicitly stated, all the norms are ℓ2-norms. Moreover, let
K be the Gram matrix with elements κij’s,

F = {f ∈ H | ∥f ∥ ≤ U} (3)

for some given U > 0, and ft ∈ F be the function learned at itera-
tion t . Denote the loss of ft at iteration t by ℓt(ft), and gt ∈ ∂ℓt(ft)
be its gradient (or subgradient). For any f ∈ H , the operation

ΠF (f ) = argmin
g∈F

∥g − f ∥ = min

1,

U
∥f ∥


f (4)

projects f onto F .
Algorithm 1 shows a basic kernel extension of GD in (1), and

will be called Online Learning with Kernels (OLK) in the sequel. Let
{ft ∈ F }t∈[T ] be a sequence obtained by OLK. The following regret
can be easily obtained from (Zinkevich, 2003).

Theorem 1. (i) Using a constant stepsize η > 0, the regret of OLK is
bounded as

RT ≤
∥f1 − f ∥2

2η
+

η

2

T
t=1

∥gt∥2. (5)
Assume that maxt∈[T ] ∥gt∥2
≤ G. We have RT ≤ 2U

√
GT on

setting η = 2UG−
1
2 T−

1
2 .

(ii) With a dynamic stepsize

ηt = ηt−
1
2 , (6)

we have

RT ≤

√
T max

t∈[T ]

∥ft − f ∥2

2η
+

η

2

T
t=1

∥gt∥2

√
t

. (7)

On setting η =
√
2UG−

1
2 , we have RT ≤

√
2


2U

√
GT


.

The constant stepsize η can be difficult to set unless T is known.
The OGD algorithm (Kivinen et al., 2004; Zhao, Wang, Wu, Jin, &
Hoi, 2012), which uses a constant stepsize, also suffers from the
same problem. Moreover, OGD has a regret of

RT ≤
λT + η−1

2
∥f1 − f ∥2

+ η

T
t=1

∥gt∥2,

where λ > 0 is a regularization parameter. It is worse than the
bound in (5) by a factor of 1

2 on settingλT = η−1 (Zhao et al., 2012).
On the other hand, with the dynamic stepsize scheme in (6),

ηt does not depend on T , and the learner can tune η for optimal
performance based on a subset of samples. The price to pay is that
its regret is only

√
2-competitive with that of the fixed stepsize.

We assume that at iteration t , the change which may be added
to ft can be written as αtφt for some αt ∈ R, i.e.,
− ηtgt = αtφt . (8)
This holds for many commonly used loss functions. For example,
for the hinge loss ℓt(ft) = max{0, 1 − yt ft(φt)}, we have gt =

−ytφt when ℓt(ft) > 0. Similarly, for the square loss ℓt(ft) =
1
2 (yt − ft(φt))

2, we have gt = −(yt − ft(φt))φt . Hence, ft can be
written as ft =


τ∈St ατφτ . On non-separable problems or noisy

data, the number of support vectors involved in ft may thus in-
creasewith t , and both the update and prediction timewill become
unlimited. This hinders the application of online learningwith ker-
nels to large-scale problems.

When a new SV is to be added, ft+ 1
2

=


τ∈St ατφτ +αtφt . Note
that the projection ΠF (ft+ 1

2
) (defined in (4)) involves computing

∥ft+ 1
2
∥
2, which can be easily obtained as:ft+ 1

2

2
= ∥ft∥2

+ α2
t κtt + 2αt


τ∈St

ατκτ t

= ∥ft∥2
+ α2

t κtt + 2αt ft(xt). (9)
Here, ft(xt) is the prediction at iteration t and needs to be
computed anyway. By storing ∥ft∥2 in each iteration, computing
(9) is inexpensive in terms of both time and memory.

3. Randomized strategies for online learning with budget

In online learning with budget, we restrict each ft to have a
maximum of B SV’s, where B > 0. The budget version of OLK
can be obtained by replacing ft+ 1

2
in Theorem 1 with f B

t+ 1
2
, whose

expression is to be specified.

Proposition 1. For any stepsize sequence {ηt} (with ηt > 0), the
regret for the budget version of OLK is bounded by

RB
T ≤ R∼B

T +

T
t=1

1
2ηt


∥et∥2

+ 2

ft+ 1

2
− f , et


, (10)

where et = f B
t+ 1

2
− ft+ 1

2
, and R∼B

T =
T

t=1
∥ft−f ∥2−∥ft+1−f ∥2

2ηt
+

ηt∥gt∥2

2 .
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Proof. By convexity, ℓt(ft) − ℓt(f ) ≤ ⟨ft − f , gt⟩. We base our
analysis on the reduction ℓt(f ) → ⟨gt , f ⟩. Recall that ∥ΠF (h) −

f ∥ ≤ ∥h − f ∥ for all h, f ∈ F . From Algorithm 1, we have

∥ft+1 − f ∥2
≤

ft+ 1
2

− f
2

= ∥ft − ηtgt − f ∥2

= ∥ft − f ∥2
+ ∥ηtgt∥2

− 2ηt⟨ft − f , gt⟩.

Consequently,

RT ≤

T
t=1

⟨ft − f , gt⟩

≤

T
t=1


1
2ηt

(∥ft − f ∥2
− ∥ft+1 − f ∥2) +

ηt

2
∥gt∥2


= R∼B

T .

Similarly, for the budget version, ∥ft+1 − f ∥2
≤ ∥f B

t+ 1
2
− f ∥2. Using

the fact thatf Bt+ 1
2

− f
2

=

ft+ 1
2

− f
2

+

f Bt+ 1
2

− ft+ 1
2

2

+ 2

ft+ 1

2
− f , f B

t+ 1
2

− ft+ 1
2


,

we have

⟨ft − f , gt⟩ ≤
1
2ηt


∥ft − f ∥2

− ∥ft+1 − f ∥2
+ ∥ηtgt∥2

+
1
2ηt


∥et∥2

+ 2

ft+ 1

2
− f , et


,

which leads to (10). �

Note that R∼B
T is upper-bounded by (5) for fixed stepsize, and (7)

for dynamic stepsize. Hence, the budget algorithm’s regret exceeds
its non-budget counterpart by a summation term. To ensure thatRB

T
is still sublinear in T (e.g., asO(

√
T ) in Theorem 1), we have to keep

this sum at least within the same order. Apparently, this is possible
if et is small. However, a direct analysis of et is difficult without
extra information on f . In the following, we propose a stochastic
strategy which maintains

E[et ] = 0. (11)

In other words, f B
t+ 1

2
is an unbiased estimator of ft+ 1

2
. The expecta-

tion of the regret in (10) then reduces to

E[RB
T ] ≤ R∼B

T +

T
t=1

1
2ηt

E[∥et∥2
]. (12)

The issue becomes how to control
T

t=1
1

2ηt
E[∥et∥2

] with a proper
budget B.

3.1. Online Learning with Random Updating (OLRU)

In this section, we propose a simple but effective algorithm
called Online Learning with Random Updating (OLRU), shown in
Algorithm 2. Recall that at the tth iteration of OLK, whenever gt ≠

0, a new component αtφt = −ηtgt is added to ft to form ft+ 1
2
. For

learning with budget, we set

f B
t+ 1

2
= ft +αtφt ,

whereαt ≡ (1−θt)at for some at to be determined, and θt ∈ {0, 1}
is a random variable that takes the value 0 with probability pt .
When θt = 0, a new SV is added; whereas when θt = 1 (with
probability 1 − pt ), no SV is added and f B

t+ 1
2

= ft . To determine at ,
Algorithm 2 Online learning with random updating (OLRU).
1: Input: Learning rate sequence {ηt > 0}.
2: Initialize: S1 = ∅, f B1 = 0.
3: for t = 1, 2, . . . , T do
4: receive input xt ; suffer loss ℓt(ft) and compute its subgradi-

ent gt ;
5: set the indicator θt using probability pt in (13);
6: if gt = 0 or θt = 1 then
7: f B

t+ 1
2

= ft , St+1 = St ;

8: else
9: αtφt = −ηtgt , at =

αt
pt
;

10: f B
t+ 1

2
= ft + atφt , St+1 = St ∪ {t};

11: end if
12: ft+1 = ΠF (f B

t+ 1
2
).

13: end for

recall that we try to maintain E[et ] = 0. Here, et = f B
t+ 1

2
− ft+ 1

2
=

(αt − αt)φt . E[et ] = 0 thus implies Et [αt ] = αt , where Et [·] is the
shorthand for E[·|pt ]. Hence,

at =
αt

pt
.

Let BT =
T

t=1(1 − θt) be an upper bound on the total number
of SVs added in the T iterations (this is an upper bound because an
SV is added at iteration t only when gt ≠ 0 is also satisfied). Thus,
E[BT ] =

T
t=1 pt . The goal is to control

T
t=1

1
2ηt

Et [∥et∥2
] in (12)

with a reasonable value of E[BT ].
Consider setting

pt =


cT−γ when a constant stepsize ηt = η is used
ct−γ when a dynamic stepsize ηt = ηt−

1+γ
2 is used,

(13)

where γ ∈ (0, 1) and c is a constant. In both cases, E[BT ] =

O(T 1−γ ). As for
T

t=1
1

2ηt
Et [∥et∥2

], it is easy to see that

Et [∥et∥2
] = Et [α2

t ]κtt − α2
t κtt =

(1 − pt)α2
t κtt

pt
.

Thus, on using (8),
T

t=1

1
2ηt

Et [∥et∥2
] =

T
t=1

(1 − pt)α2
t κtt

2ηtpt

=

T
t=1

(1 − pt)ηt∥gt∥2

2pt

=
1
2

T
t=1

ηt∥gt∥2

pt
−

1
2

T
t=1

ηt∥gt∥2.

Combining this with (5) and (12), we obtain the following regret
bound.

Theorem 2. Let b ≡
1+γ

2 , and use the update probability pt in (13).

(i) The expected regret of OLRU (with a constant stepsize η > 0) can
be bounded as

E[RB
T ] ≤

∥f1 − f ∥2

2η
+

η

2

T
t=1

∥gt∥2

pt
.

Assume that

max
t∈[T ]

∥gt∥2
≤ G. (14)

We obtain E[RB
T ] ≤ 2UG

1
2 c−

1
2 T b on setting η = 2Uc

1
2 G−

1
2 T−b.
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(ii) With a dynamic stepsize ηt = ηt−b, we have

E[RB
T ] ≤

T b max
t∈[T ]

∥ft − f ∥2

2η
+

η

2

T
t=1

∥gt∥2

tbpt
.

Using η = 2U(cb)
1
2 G−

1
2 , we obtain E[RB

T ] ≤ 2UG
1
2 (cb)−

1
2 T b.

Thus, for both stepsize schemes, OLRU has an expected regret
of O(T

1+γ
2 ) and a support set of size O(T 1−γ ). Note that γ trades

off the regret and support set size. As in OLK, the use of a dynamic
stepsize frees η from T and allows it to be tuned on a sample subset
without knowing T in advance, while its expected regret is only

2
1+γ

-competitive with that for constant stepsize.
Moreover,f Bt+ 1
2

2
= ∥ft∥2

+ a2t κtt + 2at ft(xt),

which is very similar to (9) for OLK. Thus, the projection ΠF (f B
t+ 1

2
)

in step 12 can also be efficiently computed.
As will be empirically demonstrated in Section 5, this simple

algorithm is effective. The addition of new SVs is sparse (BT times
out of T iterations), and both the memory cost and regret are
sublinear with T . However, it does not utilize |αt | in designing pt ,
and doing so may lead to improved performance.

3.2. Online Learning with Random Discarding (OLRD)

In OLRU, though E[BT ] is sublinear with T , it is not fixed. In
some applications, it may be more convenient to directly specify
a fixed budget B. In this section, we propose an algorithm called
Online Learning with Random Discarding (OLRD) (Algorithm 3). It is
based on the idea that when |St | > B at iteration t , one SV will be
randomly selected and discarded.

Specifically, in forming f B
t+ 1

2
, consider the casewhere the budget

is exceeded on adding a new component−ηtgt to ft =


i∈[B] α
t
i φ

t
i ,

where φt
i ≡ φ(xti ). In OLRD, one SV will be selected and discarded.

Let θ t
i ∈ {0, 1} be the random variable such that θ t

i = 1 when
the ith SV is selected (with probability qti ); and θ t

i = 0 otherwise.
Clearly,

B
i=1 θ t

i = 1. We then update f B
t+ 1

2
as

f B
t+ 1

2
= f B−1

t − ηtgt , (15)

where f B−1
t =


i∈[B] αt

i φ
t
i ,αt

i = (1−θ t
i )a

t
i , and ati ’s are coefficients

to be determined. Recall that

et = f B
t+ 1

2
− ft+ 1

2
= (f B−1

t − ηtgt) − (ft − ηtgt) = f B−1
t − ft , (16)

and (11) requires

E[et ] = 0 ⇔ E[f B−1
t ] = ft

⇔ Et [αt
i ] = αt

i ,

where Et is the shorthand for E[·|qt
], and qt

≡ (qt1, . . . , q
t
B).

Solving, we obtain

ati =
αt
i

1 − qti
. (17)

Thus,

f B−1
t =


i∈[B]\i∗

atiφ
t
i ,

where i∗ = {i ∈ [B] | θ t
i = 1} contains indices of the removed SVs.
Algorithm 3 Online learning with random discarding (OLRD).
1: Input: Learning rate sequence {ηt > 0}; c > 0; Bt set in (23)

when ηt = η, and Bt set in (24) when ηt = ηt−
1
2 .

2: Initialize: S1 = ∅, f B1 = 0.
3: for t = 1, 2, . . . , T do
4: receive input xt ; suffer loss ℓt(ft) and compute its subgradi-

ent gt ;
5: if gt = 0 then
6: f B

t+ 1
2

= ft , St+1 = St ;

7: else if |St | < Bt then
8: f B

t+ 1
2

= ft − ηtgt , St+1 = St ∪ {t};

9: else
10: set the indicator θt using (qt1, . . . , q

t
B) in (19);

11: i∗ = {i | θ t
i = 1, i ∈ [Bt ]};

12: f B−1
t =


i∈[Bt ]\i∗

αt
i

1−qti
φt
i ;

13: f B
t+ 1

2
= f B−1

t −ηtgt , St+1 = (St \{i∗th element in St})∪{t};

14: end if
15: ft+1 = ΠF (f B

t+ 1
2
).

16: end for

As in Section 3.1, we have to bound the term
T

t=1
1

2ηt
Et [∥et∥2

]

in (12). Now, from (16), (17),

Et [∥et∥2
] = Et [∥f B−1

t − ft∥2
]

= Et


i∈[B]

(qti − θ t
i )a

t
iφ

t
i


2


=


i,j∈[B]

ati a
t
jκij


Et [θ

t
i θ

t
j ] − qti q

t
j


=


i∈[B]

(ati )
2qtiκii −


i∈[B]

ati q
t
iφ

t
i


2

≤


i∈[B]

(ati )
2qtiκii

=


i∈[B]

qti (α
t
i )

2κii

(1 − qti )2
. (18)

Thus, the issue becomes how tominimize (18) with an appropriate
qt .

In the following, we consider using the simple uniform distri-
bution,

qti =
1
B
, i = 1, 2, . . . , B. (19)

In other words, every SV has the same probability of being dis-
carded. Using the assumption in (2), (18) then reduces to

Et [∥et∥2
] ≤

B

i∈[B]

∥αt
i φ

t
i ∥

2

(B − 1)2
. (20)

However, the fact that ft ∈ F only yields a bound on ∥ft∥2
=

∥


i∈[B] α
t
i φ

t
i ∥

2, but not on


i∈[B] ∥α
t
i φ

t
i ∥

2 in the RHS of (20). In
the following, we will show that this problem can be alleviated
by performing an approximate (instead of exact) projection of f B

t+ 1
2

onto F .
In the expansion f B

t+ 1
2

=
B

i=1 α
t+ 1

2
i φt

i , recall from (15) and

(17) that α
t+ 1

2
i =

αt
i

1−qti
∀i ∈ [B] \ i∗ and α

t+ 1
2

B = αt . Let αB
t+ 1

2
=
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[α
t+ 1

2
1 , . . . , α

t+ 1
2

B ]
′, and KB

t+ 1
2
be the kernel submatrix correspond-

ing to SV’s in f B
t+ 1

2
. We havef Bt+ 1

2

2
=


αB
t+ 1

2

′

KB
t+ 1

2
αB
t+ 1

2

= tr

KB

t+ 1
2
αB
t+ 1

2


αB
t+ 1

2

′


≤ tr

KB

t+ 1
2

 αB
t+ 1

2

2

≤ B
αB

t+ 1
2

2

≤ B2
αB

t+ 1
2

2

∞

, (21)

where the second inequality follows from the assumption in (2),

and
αB

t+ 1
2


∞

= maxi{|α
t+ 1

2
i |}. To obtain ft+1, instead of project-

ing f B
t+ 1

2
onto F , we require

B2
∥αt+1∥

2
∞

≤ U2, (22)

where αt+1 = [αt+1
1 , . . . , αt+1

B ]
′ is the vector of expansion coeffi-

cients for ft+1. From (21), this can be satisfied by setting

αt+1
i = min


1,

U
B


α

t+ 1
2

i , ∀i ∈ [B].

Note that ∥ft+1∥
2

≤ B2
∥αt+1∥

2
∞

≤ U2, and so we still have
ft+1 ∈ F .

From (20), we have

Et [∥et∥2
] ≤

B

i∈[B]

∥αt
i φ

t
i ∥

2

(B − 1)2
≤

B∥αt∥
2

(B − 1)2
≤

B2
∥αt∥

2
∞

(B − 1)2
,

where αt = [αt
1, . . . , α

t
B]

′. Combining this with (22), we have

Et [∥et∥2
] ≤

U2

(B − 1)2
.

To keep
T

t=1
1

2ηt
Et [∥et∥2

] in (12) within the order of O(
√
T ), we

have to set B to be in the same order. Combining this with (5) (or
(7)) and (12), we obtain the following regret bound.

Theorem 3. Using the uniform distribution for qt ,
(i) the expected regret of OLRD, using a constant stepsize η > 0 and

fixed budget

B = 1 + cT
1
2 (23)

for some c > 0, can be bounded as

E[RB
T ] ≤

1
2η


∥f1 − f ∥2

+
TU2

(B − 1)2


+

η

2

T
t=1

∥gt∥2.

Assume that maxt∈[T ] ∥gt∥2
≤ G. We obtain E[RB

T ] ≤ bU
√
GT on

setting η = bUG−
1
2 T−

1
2 , where b =


4 +

1
c2
.

(ii) With a dynamic stepsize ηt = ηt−
1
2 and a dynamic budget

Bt = 1 + ct
1
2 (24)

for some c > 0, we have

E[RB
T ] ≤

√
T

2η


max
t∈[T ]

∥ft − f ∥2
+

2TU2

(BT − 1)2



+
η

2

T
t=1

∥gt∥2

√
t

. (25)
Setting η = b̃UG−
1
2 where b̃ =


2 +

1
c2
, we obtain E[RB

T ] ≤

b̃(2U
√
GT ).

3.3. Discussion

As shown in Theorem 3, OLRD also has an expected regret
of O(

√
T ), which is the same as OLK (Theorem 1). However, in

comparison with the regrets there, the regrets in Theorem 3 have
an additional term ( 1

c2
in b, and 1

c2
in b̃). Hence, c controls the

budget (via (23) or (24)), and also the gap between the regrets of
the budget and non-budget algorithms.

To have optimal performance, we have to tune η, which in
general depends on T and B. When budget is not used, one can tune
the parameters based on a subset of, say, T0, samples. However, for
budget algorithms with a fixed budget B, the η value tuned from
these T0 samples may not be optimal w.r.t. all the T samples. By
specifying c (instead of B), Theorem 3 suggests that we can use

η = η0T
−

1
2

0 , and tune η0 for optimal performance on the sample
subset. Once η0 is determined, we can use η = η0T−

1
2 on the T

samples.
When T is not known and a fixed B is used, we cannot obtain

optimal performance by tuning η (or η0) on a sample subset, and
the gap may grow with t . So we turn to using a dynamic stepsize.
On setting η =


2 +

t
(Bt−1)2

UG−
1
2 , the regret in (25) can be

rewritten as

E[RB
t ] ≤


2 +

t
(Bt − 1)2

(2U
√
Gt).

Obviously, for optimal performance, we need to have η free from
t . In other words, we have to introduce a c to balance B and T . This
leads to a dynamic budget, i.e., Bt = O(

√
t). Although Bt changes

with time, its magnitude is predicable with any horizon t , and the
expected regret is O(

√
t).

Compared with OLRU, OLRD has an expected regret of O(
√
T )

using O(
√
T ) SVs. Hence, one may expect OLRD to have better

performance when T is large. On the other hand, OLRU is simple,
and is particularly useful when updates to the function iterates are
expected to be sparse.

4. Related work

A related work is the BOGD algorithm in Zhao et al. (2012).
However, (i) BOGD claims to have an expected regret of O(

√
T ),

which is independent of B. Indeed, their Theorem 3 shows that the
regret is O(

√
T ) + ∥f ∥2

√
T , where f is the non-budget competitor.

In BOGD, ∥f ∥2 may become O(T ), not a constant independent of T .
If ∥f ∥2 and ∥f Bt ∥

2
= O


B2
T


are required to have the same constant

upper bound, we need to have B ∝
√
T . (ii) The parameters used

in their BOGD experiments do not match their theoretical analysis.
(iii) BOGD is based on the OGD algorithm. As discussed in Section 2,
it is worse than the bound in (5) by a factor of 1

2 . (iv) BOGD
needs to know the horizon T . (v) Their improved version BOGD++
uses a non-uniform qti distribution utilizing information on αt

i φ
t
i .

Specifically, it sets 1 − qti ∝ ∥αt
i φ

t
i ∥, and qti = 1 −

(B−1)∥αt
i φ

t
i ∥

i∈[B] ∥αt
i φ

t
i ∥
.

However, qti may become negative,1and their Theorem 4 will then
fail.

In general, the magnitude of αiφi may be used to design
the update/discard probability. In particular, the OSKL algorithm

1 For example, let B = 100, ∥αt
i φ

t
i ∥ = 1 for i ∈ [99], and ∥αt

100φ
t
100∥ = 1.1. Then

qt100 = 1 −
108.9
100.1 < 0.
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(a) a9a. (b) covertype-2. (c) ijcnn1.

(d) emgpa. (e) vehicle. (f) waveform.

Fig. 1. Classification error vs. budget for Projectron, Projectron++ OLRU and OLRD.
Table 1
Data sets used in the experiments.

Data set #samples #features

a9a 32,561 123
covertype-2 100,000 54
ijcnn1 49,990 22
emgpa 100,000 8
vehicle 78,823 100
waveform 100,000 21

(Zhang, Yi, Jin, Lin, & He, 2013) considers several special smooth
losses and uses their instant derivatives (|ℓ′(yt , ft(xt))|) to design
the update probability. High probability regret and support set
sizes are derived, though only implicitly. However, OSKL is
aggressive in that the update probability is completely determined
by the scale of the instant derivative andmay be sensitive to noise.
Besides, OSKL can only insert SV’s but not removing them. Thus, it
cannot remove noise learned in previous iterations.

Finally, note that RBP also proposed a random method that
removes one support vector when the budget is violated (Cesa-
Bianchi & Gentile, 2006). It is based on the shifting perceptron, and
driven by mistakes. In other words, when yt ≠ sign(⟨ft , φ(xt)⟩), it
updates ft as

ft+1 = (1 − λt)ft + ytφ(xt),
whereλt > 0. This can also be viewed as a classifier using the hinge
loss but only updates when the loss value is larger than 1. On the
other hand, the proposed algorithms are regret-driven, make full
use of the loss information, and can be used in applications other
than classification.
5. Experiments

In this section, experiments are performed on a number of
binary2 classification data sets from the LIBSVM archive3 and UCI
data repository (Table 1). The hinge loss and Gaussian kernel are
used. The kernel parameter, stepsize and value ofU in (3) are tuned
by running the algorithm on a data subset with 10,000 randomly
selected samples.

5.1. Algorithms using a fixed budget

In this experiment, we compare the following online learning
algorithms that require a pre-defined fixed budget B: (i) RBP (Cesa-
Bianchi & Gentile, 2006); (ii) Forgetron (Dekel et al., 2008); and
(iii) OLRD (with constant stepsize specified in Theorem 2). Both
RBP and Forgetron take O(B) memory and time. The budget is set
using (23), with T equal to the number of samples and c varied in
{2−1, 21, 23

} (leading to three budget sizes). To reduce statistical
variability, results are averaged over 10 permuted versions of the
data set.

Results on the classification error rates are shown in Table 2. As
can be seen, OLRD achieves the lowest error almost all the time.
Table 3 shows results on the running time. As can be seen, RBP
is slightly faster because it is mistake-driven and no projection

2 Two of the data sets (vehicle and waveform) are originally multiclass data sets.
They are converted to binary classification by merging some of the classes.
3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


W. He, J.T. Kwok / Neural Networks 60 (2014) 17–24 23
(a) a9a. (b) covertype-2. (c) ijcnn1.

(d) emgpa. (e) vehicle. (f) waveform.

Fig. 2. Classification error (%) vs. time (seconds) for Projectron, Projectron++ OLRU and OLRD.
Table 2
Classification errors (%) of RBP, Forgetron and OLRD on the various data sets. The
best results and those that are not significantly worse (according to the t-test with
a p-value less than 0.05) are in bold.

Data set Budget RBP Forgetron OLRD

a9a 91 26.23 ± 0.09 25.88 ± 0.15 24.07 ± 0.01
362 23.45 ± 0.23 23.00 ± 0.17 20.16 ± 0.13

1445 21.71 ± 0.27 21.70 ± 0.05 18.64 ± 0.07

covertype-2 159 38.18 ± 0.16 38.11 ± 0.07 35.69 ± 0.12
633 32.58 ± 0.08 32.67 ± 0.06 29.89 ± 0.12

2531 26.55 ± 0.11 26.47 ± 0.11 23.72 ± 0.11

ijcnn1 113 19.26 ± 0.11 18.71 ± 0.13 13.90 ± 0.07
448 12.18 ± 0.13 11.89 ± 0.10 10.02 ± 0.09

1790 5.63 ± 0.07 5.70 ± 0.11 5.83 ± 0.05

emgpa 159 27.09 ± 0.04 26.98 ± 0.08 23.68 ± 0.05
633 24.01 ± 0.07 23.83 ± 0.09 20.61 ± 0.07

2531 21.38 ± 0.14 21.28 ± 0.12 17.50 ± 0.09

vehicle 141 22.73 ± 0.15 22.57 ± 0.15 16.31 ± 0.04
563 21.27 ± 0.11 21.20 ± 0.14 15.25 ± 0.02

2247 20.22 ± 0.13 19.98 ± 0.06 15.06 ± 0.04

waveform 159 17.35 ± 0.08 16.86 ± 0.11 14.83 ± 0.09
633 15.15 ± 0.09 14.96 ± 0.09 11.84 ± 0.05

2531 14.26 ± 0.09 14.17 ± 0.10 10.93 ± 0.03

operation is involved. This is then followed by OLRD, and the
Forgetron is the slowest. Moreover, as expected, a smaller budget
means f Bt is easier (faster) to compute, and thus the running time
is also shorter. However, a small budget may also lead to more
mistakes and thus more updates (which slows the algorithm).
Table 3
Time (in seconds) of RBP, Forgetron and OLRD on the various data sets. The best
results and those that are not significantly worse (according to the t-test with a
p-value less than 0.05) are in bold.

Data set Budget RBP Forgetron OLRD

a9a 91 8.36 ± 0.61 10.53 ± 0.39 6.55 ± 0.16
362 12.45 ± 1.40 16.07 ± 0.95 12.65 ± 1.20

1445 50.25 ± 0.99 60.58 ± 1.30 53.84 ± 0.80

covertype-2 159 18.98 ± 2.0 27.57 ± 1.3 24.46 ± 0.48
633 39.49 ± 5.1 46.79 ± 5.7 38.98 ± 2.1

2531 134.4 ± 3.8 175.6 ± 2.6 155.74 ± 1.1

ijcnn1 113 6.44 ± 0.28 8.07 ± 0.07 9.27 ± 0.06
448 10.12 ± 0.16 12.63 ± 0.43 15.23 ± 0.36

1790 15.87 ± 0.90 18.73 ± 0.75 15.69 ± 0.73

emgpa 159 11.56 ± 0.03 17.79 ± 0.05 15.93 ± 0.15
633 16.00 ± 0.07 23.80 ± 0.19 20.37 ± 0.06

2531 35.48 ± 1.60 52.22 ± 1.70 50.87 ± 1.70

vehicle 141 17.62 ± 0.85 24.15 ± 1.20 19.45 ± 0.32
563 32.90 ± 3.80 43.73 ± 4.70 36.26 ± 3.70

2247 162.90 ± 3.70 201.00 ± 4.70 181.17 ± 2.80

waveform 159 12.28 ± 0.13 17.01 ± 0.22 14.94 ± 0.08
633 26.94 ± 0.60 34.73 ± 0.85 32.02 ± 0.58

2531 30.52 ± 3.50 69.32 ± 2.50 65.42 ± 2.60

Hence, the trend between budget and running time is not always
monotonic. For example, on the ijcnn1 data set, when the budget
is increased to 1790, the classification error of OLRD decreases
significantly, and the corresponding increase in running time is
very small.
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5.2. Algorithms with variable budgets

In the second experiment, we compare (i) Projectron (Orabona
et al., 2009); (ii) Projectron++ (Orabona et al., 2009); (iii) OLRD
(with constant stepsize specified in Theorem 2); and (iv) OLRU
(with constant stepsize specified in Theorem 3). Except for OLRD,
all the other algorithms do not have a fixed budget in advance. For
OLRU (with γ =

1
4 ) and OLRD, we vary the budget by changing

their c values in (13) and (23), respectively. For Projectron and
Projectron++ we vary the budget by changing their η values
in the range {0.9, 0.8, . . . , 0.1, 0.05}, as long as the number of
SVs obtained is below 6000 (otherwise, the training time will be
excessive). To reduce statistical variability, results are averaged
over 10 permuted versions of the data set.

Figs. 1 and 2 show the classification errors versus budget and
time, respectively. As can be seen, OLRU/OLRD usually require a
smaller budget than Projectron/Projectron++ for comparable or
better classification accuracy, except on the covertype-2 and ijcnn1
data sets. However, even in those cases, OLRU/OLRD decrease the
classification error much faster, as they only take O(B) memory
and time, while Projectron/Projectron++ take O(B2) memory
and time. Besides, note that Projectron and Projectron++ being
mistake-driven, are usually less accurate.

Recall that OLRU has an expected regret of O(T
1+γ
2 ) and a

support set size of O(T 1−γ ); while OLRD has an O(
√
T ) expected

regret and a support set of size O(
√
T ). With the current setting of

γ =
1
4 , OLRU thus needs a larger budget than OLRD for comparable

accuracy, though OLRU is usually faster than OLRD as OLRU adopts
a simple sparse update.

6. Conclusion

In this paper, we proposed a general framework for online
learning with budget. It is based on a simple stochastic strategy
with sublinear regret guarantee. Two specific algorithms, based
on random updating and random discarding respectively, are
presented and both can be realized efficiently. The parameter
tuning problem is also discussed and a dynamic budget strategy
is proposed to obtain optimal performance for online learning
with budget. Experiments on a number of benchmark data sets
demonstrate encouraging performance.

The proposed randomized budget algorithms are somewhat
conservative and do not utilize the expansion coefficients’ magni-
tudes in designing the update/discard probabilities. Robust proba-
bility distributions may be used to further improve performance.
Online learning with adaptive stepsize using subgradient infor-
mation may also allow the design of more aggressive algorithms.
Moreover, OLRU suggests an interesting way for online learning
with partially labeled instances. These will be further investigated
in the future.
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