Neural Networks 60 (2014) 17-24

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at ScienceDirect

Neural Networks

Simple randomized algorithms for online learning with kernels

Wenwu He *P*, James T. KwokP

@ CrossMark

2 Department of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China
b Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

ARTICLE INFO ABSTRACT

Article history:

Received 9 April 2014

Received in revised form 7 July 2014
Accepted 17 July 2014

Availabl line 2 ly 2014 . .
vailable online 28 July 20 efficiency.

Keywords:

Online learning
Kernel methods
Stochastic strategies
Budget

In online learning with kernels, it is vital to control the size (budget) of the support set because of the curse
of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling
the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results
on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Online learning is a popular and natural approach for solving
real-time and life-long learning problems, where instances arrive
sequentially. Online learning is also advantageous in large-scale
learning as it is often efficient and highly competitive (Shalev-
Shwartz, 2007, 2011). At each iteration t, an online learning
algorithm produces a function estimate f; € #, and then suffers
a loss £;(f;). Here, we assume that the function space # is closed
and convex, and £, (-) is convex. To evaluate the performance of the
algorithm, it is customary to measure its regret Ry = 23:1 e (f)—
£:(f)), where T is the horizon, w.r.t. a competitor f € F.

A standard online learning algorithm is the gradient descent
(GD) (Zinkevich, 2003), which updates f; as

feqr = g (fe — nge). (1)

Here, g; is the gradient (or subgradient) of £, w.r.t. f;, IT5 is the
Euclidean projection onto ¥, and 7 is the stepsize. Its regret is
O(ﬁ), and cannot be improved in general (Abernethy, Bartlett,
Rakhlin, & Tewari, 2008). To extend linear models for nonlinear
function learning, the kernel trick has been widely used (Kivinen,
Smola, & Williamson, 2004; Schélkopf & Smola, 2002). An input
instance x is first mapped to ¢(x) in a reproducing kernel Hilbert
space (RKHS) #, where ¢ is a feature map induced by the kernel

* Corresponding author at: Department of Mathematics and Physics, Fujian
University of Technology, Fuzhou, Fujian 350118, China. Tel.: +86 13290930180.
E-mail addresses: hwwhbb@163.com, hwwhbb@gmail.com (W. He),
jamesk@cse.ust.hk (J.T. Kwok).

http://dx.doi.org/10.1016/j.neunet.2014.07.006
0893-6080/© 2014 Elsevier Ltd. All rights reserved.

k(-,-) of #. The inner product (x;, X;) between two instances
X, X; in the linear algorithm is then replaced by «(x;,X;)) =
(Pp(xi), P(x))).

A bottleneck for kernelized online learning is that the set S; of
support vectors (SV’s) in f; keeps expanding as learning proceeds.
Subsequently, so are the memory and time costs. It is thus neces-
sary to keep |S;| under control with the use of budget (Crammer,
Kandola, & Singer, 2003; Weston, Bordes, & Bottou, 2005). In re-
cent years, various budget algorithms have been proposed, such as
the Projectron and its variants (He & Wu, 2012; Orabona, Keshet, &
Caputo, 2009), randomized budget perceptron (RBP) (Cesa-Bianchi
& Gentile, 2006; Sutskever, 2009) and the simplified Forgetron
(Dekel, Shalev-Shwartz, & Singer, 2008; Sutskever, 2009). These al-
gorithms are mainly for classification and only mistake bounds are
provided. A framework for algorithms with sublinear regret (as in
(1)) is lacking and highly desirable in the budget online learning
literature. With such a regret guarantee, we can directly general-
ize existing budget algorithms to regression and other problems.
Moreover, though some budget algorithms (such as the Projectron)
have remarkable classification accuracies, they have to update the
inverse of a Gram matrix in each iteration. This costs O(B?) time
and memory, where B is the budget. Besides, setting an appropri-
ate budget for a particular learning problem can be difficult.

In this paper, we propose a simple but effective stochastic strat-
egy for online learning with budget. The idea is to keep the excess
regret of the budget algorithm over its non-budget counterpart
small, while still controlling the growth of the budget. In particu-
lar, two algorithms, both with O(B) memory and time, will be pre-
sented.

http://dx.doi.org/10.1016/j.neunet.2014.07.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.07.006&domain=pdf
mailto:hwwhbb@163.com
mailto:hwwhbb@gmail.com
mailto:jamesk@cse.ust.hk
http://dx.doi.org/10.1016/j.neunet.2014.07.006

18 W. He,].T. Kwok / Neural Networks 60 (2014) 17-24

Algorithm 1 Online learning with kernels (OLK).
1: Input: Learning rate sequence {n; > 0}.
2: Initialize: S; =0, f; = 0.
3: fort=1,2,...,Tdo
receive input x;;
5. suffer loss ¢, (f;);
6: compute the subgradient g, € d¢,(f;);
7. if g, = O then
3:
9

noR

fripy =1
: St+1 =S5t
10: else

11 froy =fe—neges
12: Ser1 =S U{t};

13: end if
14: f[+1=17¢(f[+%).
15: end for

e The first one is based on dynamically increasing the budget
in a stochastic manner. This yields a sublinear expected regret

of O(THTV) (where 0 < y < 1), and a budget of (variable) size
O(T'~7) which is also sublinear in T.

e The second algorithm allows the use of a fixed budget, which
may be more convenient in some applications. When the pre-
assigned budget is exceeded, the algorithm randomly removes
an existing SV. This also yields a sublinear expected regret of

0(+/T) and a budget of size O(+/T).

The rest of this paper is organized as follows. Section 2 presents
a baseline algorithm for non-budget kernelized online learn-
ing. The stochastic strategy for (kernelized) online learning with
budget, with two specific budget algorithms, is demonstrated in
Section 3. A discussion on the related work is in Section 4. Experi-
mental results are reported in Section 5, and the last section gives
some concluding remarks.

2. Basic algorithm for Online Learning with Kernels

Given a sequence {(X¢, y;)}, with X; coming from the input
domain X € RY, y, from output domain Y CRandt € [T] =
[1,2,...,T], the learner aims to learn the underlying function
f : X — ¥ in an online manner. Let # be the RKHS associated
with the kernel function &, such that kj; = k (X;, X;) = (¢;, ¢;) and
¢ = ¢(x;) € FH.We assume that

el =1, Vtel[T] (2)

Unless explicitly stated, all the norms are ¢,-norms. Moreover, let
K be the Gram matrix with elements «;'s,

={feHllfll=U) (3)

for some given U > 0, and f; € ¥ be the function learned at itera-
tion t. Denote the loss of f; at iteration t by ¢;(f;), and g, € 3¢.(f;)
be its gradient (or subgradient). For any f € #, the operation

U
Hf(f)zargrggipllg—fllzmin{l,”f”}f (4)

projects f onto .

Algorithm 1 shows a basic kernel extension of GD in (1), and
will be called Online Learning with Kernels (OLK) in the sequel. Let
{fc € F}ter) be a sequence obtained by OLK. The following regret
can be easily obtained from (Zinkevich, 2003).

Theorem 1. (i) Using a constant stepsize n > 0, the regret of OLK is
bounded as
||f1 f ||2

N\QX

T
Z lge 11> 5)

Assume that maxer) lg:l? < G. We have Ry < 2U~/GT on

setting n = WG 2T~2
(ii) With a dynamic stepsize

1
nt = ntijs (6)
we have
VT max |lf; — f1I? T
te[T] 77 ||gt||2
Ri< ——M MM — 7
< T +5 ; (7)

On setting n = ~/2UG~%, we have Ry < +/2 <2U\/GT).

The constant stepsize n can be difficult to set unless T is known.
The OGD algorithm (Kivinen et al., 2004; Zhao, Wang, Wu, Jin, &
Hoi, 2012), which uses a constant stepsize, also suffers from the
same problem. Moreover, OGD has a regret of

AT+n !
Rr < ———— i = I +nZI|gr||

where A > 0Oisa regularlzatlon parameter. It is worse than the
bound in (5) by a factor of% onsetting A\T = n~! (Zhaoetal.,2012).

On the other hand, with the dynamic stepsize scheme in (6),
n; does not depend on T, and the learner can tune n for optimal
performance based on a subset of samples. The price to pay is that
its regret is only ~/2-competitive with that of the fixed stepsize.

We assume that at iteration t, the change which may be added
to f; can be written as «; ¢, for some «; € R, i.e,,

— & = oy (8)
This holds for many commonly used loss functions. For example,
for the hinge loss £;(f;) = max{0, 1 — y.fi(¢;)}, we have g, =
—y:¢: when £.(f;) > 0. Similarly, for the square loss ¢;(f;) =
5 e — fi(#))?, we have g = —(y: — fi(¢)) . Hence, f; can be
written as f; = ZIES o ¢.. On non-separable problems or noisy
data, the number of support vectors involved in f; may thus in-
crease with t, and both the update and prediction time will become
unlimited. This hinders the application of online learning with ker-
nels to large-scale problems.

When anew SV is to be added, f, 1+ = > ves, %rhr + o Note

that the projection I7¢ (f, . 1) (defined in (4)) involves computing

||ft+% |12, which can be easily obtained as:

2
ft+% =

2 2
el + e e + 20 Y tercr

TESH

= [If 1> + ‘szKtt + 20 fr (X;). (9)

Here, f;(X;) is the prediction at iteration t and needs to be
computed anyway. By storing ||f;||? in each iteration, computing
(9) is inexpensive in terms of both time and memory.

3. Randomized strategies for online learning with budget

In online learning with budget, we restrict each f; to have a
maximum of B SV's, where B > 0. The budget version of OLK
can be obtained by replacing f, +1 in Theorem 1 with ft'ir 1, whose

2

expression is to be specified.

Proposition 1. For any stepsize sequence {n;} (with n, > 0), the
regret for the budget version of OLK is bounded by

<R~B+Z T (Iler|| +2(fy —Foer)). (10)

where e;

_ B _ ~B _ T We—fIP =W =17 | nellgel?
_ft+% ft+%,andRT =>4 oot + S

W. He, J.T. Kwok / Neural Networks 60 (2014) 17-24 19

Proof. By convexity, ¢:(f;) — £:(f) < (i — f,&). We base our
analysis on the reduction ¢,(f) +— (g, f). Recall that |[[T¢(h) —
fll < ||lh—f| forall h, f € F.From Algorithm 1, we have
2

s =112 < |y 1]

= |If; — neg — fII?

= Ifi = FI? + Imegell — 2ne(fy
Consequently,

_f7gf>'

2:: —f, &)

[(Ilft FIP = lferr = FI%) + f||gt||2}=R?B-

Similarly, for the budget version, ||fi;1 —f]|* < ||f[i% — f]I?. Using

the fact that

AR Y RS S e |
+2<t+% _fvft+% _ft+%>’

we have
1

(fe—f.g) =< T(IIfr FIP = Wesr = FIP + llmegell?)

2 J—
3 = (e +2{f,y — f.e0)).
which leads to (10). O

Note that Ry B is upper-bounded by (5) for fixed stepsize, and (7)
for dynamic stepsize. Hence, the budget algorithm’s regret exceeds
its non-budget counterpart by a summation term. To ensure that R’%
is still sublinearin T (e.g., as O(+/T) in Theorem 1), we have to keep
this sum at least within the same order. Apparently, this is possible
if e; is small. However, a direct analysis of e; is difficult without
extra information on f. In the following, we propose a stochastic
strategy which maintains

Ele;] = 0. (11)
In other words,ftil is an unbiased estimator 0fft+1. The expecta-
5 2

tion of the regret in (10) then reduces to
1

E[R7] < R?B+ZEE[IIQII2]- (12)
=1 t

The issue becomes how to control Z[1 21 E[|le:]|?] with a proper
budget B.

3.1. Online Learning with Random Updating (OLRU)

In this section, we propose a simple but effective algorithm
called Online Learning with Random Updating (OLRU), shown in
Algorithm 2. Recall that at the tth iteration of OLK, whenever g; #
0, a new component a;¢; = —n;g; is added to f; to form fH%. For

learning with budget, we set
fri % =f+ arff’r,

whereo; = (1—6;)a, for some a, to be determined, and 6; € {0, 1}

is a random variable that takes the value 0 with probability p;.

When 6; = 0, a new SV is added; whereas when 6, = 1 (with

probability 1 — p;), no SV is added and fril = f;. To determine a;,
2

Algorithm 2 Online learning with random updating (OLRU).
1: Input: Learning rate sequence {5, > 0}.
2: Initialize: S; = ¢, ff = 0.
3: fort =1,2,...,Tdo
4: receive 1nput X, ; suffer loss £, (f;) and compute its subgradi-
entg;
set the indicator 6; using probability p; in (13);

w

6: ifgs =0o0r6; = 1then
7: f[ﬁ_% = fi,St41 =56
8: else
9: Py = —neg, ar = %?
10: ftil = fr + e, Ser1 = Se U {t};
2
11: end if
12: fr = Hﬁ(ftil)-
2
13: end for

recall that we try to maintain E[e;] = 0. Here, e; = ftB+l —ft+§ =
(a; — ;)¢ E[e;] = 0 thus implies E;[&;] = o, where E[-] is the
shorthand for E[-|p;]. Hence,

ar = —.

Dt

Let By = ZLl (1 — 6) be an upper bound on the total number
of SVs added in the T iterations (this is an upper bound because an
SV is added at iteration t only when g; # 0 is also satisfied). Thus,

E[Br] = Zt 1 Dt The goal is to control Z[1 21 E:[lle:||*]in (12)

with a reasonable value of E[Br].
Consider setting

13)

cT~” when a constant stepsize 1, = 7 is used
pe=3 __, 1y (
ct when a dynamic stepsize n, = nt~ 2 is used,

where y € (0, 1) and c is a constant. In both cases, E[Br] =
O(T'7).Asfor /_, ﬁEt[Het 121, it is easy to see that
1- Pr)a?’(rt

Er[”et”z] = Et[&f]xt[- a[‘ZKf[= o
t

Thus, on using (8),

T T 2
1 (1 —pyack
Y —Ellel’l =) ———=
= 2 t=1 211¢Pe
B i (1= poneligel?
t=1 zpt

i N ||gt||

t=1

1 T
=5 2l
t=1

2), we obtain the following regret

N | —

Combining this with (5) and (1
bound.

Theorem 2. Let b = HTV and use the update probability p; in (13).

(i) The expected regret of OLRU (with a constant stepsize n > 0) can
be bounded as

T
e < /0 f||2 angfnz

Assume that

max [|g]I < G. (14)
te[T]

We obtain E[RE] < 2UG2 ¢~ 3T" on setting n = 2Uc2G~2T~>.

20 W. He,].T. Kwok / Neural Networks 60 (2014) 17-24

(i) With a dynamic stepsize n, = nt~°, we have
TP max ||fy — f|? T 2
te[T] n llg: |l
ER < — 47 .
' 27 2 ; tbp,

Using i = 2U(cb)> G~ 7, we obtain E[RE] < 2UG? (ch)~2T?

Thus, for both stepsize schemes, OLRU has an expected regret

1+
of O(TTV) and a support set of size O(T'~7). Note that y trades
off the regret and support set size. As in OLK, the use of a dynamic
stepsize frees n from T and allows it to be tuned on a sample subset
without knowing T in advance, while its expected regret is only
|15 ﬂ/ -competitive with that for constant stepsize.
Moreover,

= [IfI> + a?Ktt + 2arfi (x,),

which is very similar to (9) for OLK. Thus, the projection I7# (f[B+ 1)
2

in step 12 can also be efficiently computed.

As will be empirically demonstrated in Section 5, this simple
algorithm is effective. The addition of new SVs is sparse (Br times
out of T iterations), and both the memory cost and regret are
sublinear with T. However, it does not utilize |«¢| in designing p¢,
and doing so may lead to improved performance.

3.2. Online Learning with Random Discarding (OLRD)

In OLRU, though E[Br] is sublinear with T, it is not fixed. In
some applications, it may be more convenient to directly specify
a fixed budget B. In this section, we propose an algorithm called
Online Learning with Random Discarding (OLRD) (Algorithm 3). It is
based on the idea that when |S;| > B at iteration t, one SV will be
randomly selected and discarded.

Specifically, in forming ft i 1, consider the case where the budget

2

is exceeded on adding a new component —ng to fr = ;.5 % 4},

where ¢f = ¢(x). In OLRD, one SV will be selected and discarded.
Let 6f € {0, 1} be the random variable such that 6/ = 1 when
the ith SV is selected (with probability g}); and 6/ = 0 otherwise.

Clearly, Z, 16f = 1. We then updatef:j_] as
2

fri% :f[B_l — Ne&t» (15)

whereff! = Y5 @il &l = (1—6/)al, and af’s are coefficients
to be determined. Recall that

€t thi% —f[_‘_% = (ftB_l — &) — (fr — me&r) :f[B_l —fe, (16)

and (11) requires
Ele.] =0 < E[f '] =F
< Et[a,'t] = Olit,

where E; is the shorthand for E[-|q'], and ¢° = (¢},q}).
Solving, we obtain

al

t 1
@ =—-::. 17
! 1— qf (17)
Thus,
rBi] = Z afq’)it,
ie[B]\i*

where i* = {i € [B] | 6/ = 1} contains indices of the removed SVs.

Algorithm 3 Online learning with random discarding (OLRD).
1: Input: Learning rate sequence {n; > 0}; ¢ > 0; B; set in (23)
when n; = n, and B; set in (24) when n; = nt’%.
2: Initialize: S; = ¥, ff = 0.
3: fort=1,2,...,Tdo
4: receive input X;; suffer loss £;(f;) and compute its subgradi-

ent g;;
5. if ge = O then
6: fti% = ft, St41 =S,

7: elseif |S;| < B; then

ftil = ft — &, Ser1 = S U {th

2

9: else

10: set the indicator 6" using (¢4, . . ., ¢5) in (19);
1 ={i]6 =1,ie B}

12: Jl = Zie[Br]\i* ﬁ‘ng;

13: f[’i% = —ng, Sep1 = (S; \ {i*th element in S;}) U {t};

14: end if

15: fiy1 = Hf(f::_l)-
2

16: end for

As in Section 3.1, we have to bound the term Zle ﬁE[[Het I12]
in (12). Now, from (16), (17),

Ecllle: 1?1 = EclIfF" — £ 112

2
> @ —6)aief

ie[B]

=Za a; ki Et

i,je[B]

> @)’qki —

i€[B]

< Z(af)2QfKii

i€[B]

t\2
Zq,(a) Kii (18)

— 2°
ze[B] qi)

(61— aiq;)

2

> diaief

ie[B]

Thus, the issue becomes how to minimize (18) with an appropriate
q-.

In the following, we consider using the simple uniform distri-
bution,

¢=-, i=12,...,B (19)

In other words, every SV has the same probability of being dis-
carded. Using the assumption in (2), (18) then reduces to

B Y llofofl?
i€[B
Ecllle|*] < ([81—71)2 (20)

However, the fact that f; € # only yields a bound on ||f;||*> =
> ey @ i 117, but not on Y~z llefbf[|1* in the RHS of (20). In
the following, we will show that this problem can be alleviated

by performing an approximate (instead of exact) projection of f[B+)
2

onto ¥. :
In the expansion f[’i% =37, a:+7 {, recall from (15) and

t+3 Lo . t+3
(17) that o, * = * 2

= ap. letaf | =
t+1

W. He, J.T. Kwok / Neural Networks 60 (2014) 17-24 21

1
t+a oy B
oy %, .0,],andl(t+%

. We have

be the kernel submatrix correspond-

ing to SV's inft'irl

2
= (ot > | (¢ 105
t+5 t+1 1

t+1
B Y
=tr(K; ,af (a 1)
41+ 1 \ T d

2

5tr(l(B 1))(13 1
t+§ t+§
2
< B’ocB 1
t+1
5 2
=5, | . 1)

where the second 1nequality follows from the assumption in (2),

t+1 . . .
and ; = max;{|o; °|}. To obtain f; 4, instead of project-

t+

ingftil onto F, we require
2

B lletey)12, < UZ, (22)
where a1 = [ait!, ..., "] is the vector of expansion coeffi-
cients for f;, 1. From (21), this can be satisfied by setting

U 1
o' = min {1, B}a:+2, Vi € [B].

Note that [|fi41]> < B?[leq1l?2, < U? and so we still have

frrneF.
From (20), we have
B Y llefof

E[lles 2] < iem - Blle; |2 B2l 112,

T B-12 T B-12 7 B—1)?

where o = [e], ..., a5]’. Combining this with (22), we have

5 2
E[|le < — .
ellleclI”] < B_1)

To keep ZL] Z%Et[lletnz] in (12) within the order of O(~/T), we
have to set B to be in the same order. Combining this with (5) (or
(7)) and (12), we obtain the following regret bound.

Theorem 3. Using the uniform distribution for q',

(i) the expected regret of OLRD, using a constant stepsize n > 0 and
fixed budget

B=1+cT? (23)

for some ¢ > 0, can be bounded as

E RB < 2

[R7] < (nfl I+ 5= 1)2> Z llge 1.
Assume that maxcr) |1g¢||*> < G. We obtain E[RE] < bU~/GT on
setting n = bUG 2T~ %, where b = J4+ Ciz

(ii) With a dynamic stepsize n, = nt‘% and a dynamic budget

B, =1+ct? (24)
for some ¢ > 0, we have
VT 2TU?
E[R}] < — |max|lfy —fI° + ——
n | telm (Br—1)
T 2
n llge |l
+ - (25)
22 i

~ 1

Setting n = bUG™ 2

b(2U/GT).

3.3. Discussion

here b = J2+ 2,we obtain E[R] <

As shown in Theorem 3, OLRD also has an expected regret
of O(ﬁ), which is the same as OLK (Theorem 1). However, in
comparison with the regrets there, the regrets in Theorem 3 have
an additional term (i2 in b, and 2 in b). Hence, ¢ controls the
budget (via (23) or (24)) and also the gap between the regrets of
the budget and non-budget algorithms.

To have optimal performance, we have to tune 5, which in
general depends on T and B. When budget is not used, one can tune
the parameters based on a subset of, say, Ty, samples. However, for
budget algorithms with a fixed budget B, the n value tuned from
these Ty samples may not be optimal w.r.t. all the T samples. By
specifying c (instead of B), Theorem 3 suggests that we can use

1

n = nOT(; 2 and tune 7, for optimal performance on the sample
. . 1

subset. Once 7y is determined, we can use = 19T~ 2 on the T

samples.

When T is not known and a fixed B is used, we cannot obtain
optimal performance by tuning n (or 79) on a sample subset, and
the gap may grow with t. So we turn to using a dynamic stepsize.

On setting n = /2 + 1)2 uG™ 2 the regret in (25) can be

rewritten as

5 1)2 QUVG).

Obviously, for optimal performance, we need to have 7 free from
t. In other words, we have to introduce a c to balance B and T. This
leads to a dynamic budget, i.e., B; = 0(+/t). Although B, changes
with time, its magnitude is predicable with any horizon t, and the
expected regret is 0(+/t).

Compared with OLRU, OLRD has an expected regret of O(ﬁ)
using 0(+/T) SVs. Hence, one may expect OLRD to have better
performance when T is large. On the other hand, OLRU is simple,
and is particularly useful when updates to the function iterates are
expected to be sparse.

ER] < 24+ ——

4. Related work

A related work is the BOGD algorithm in Zhao et al. (2012).
However, (i) BOGD claims to have an expected regret of O(+/T),
which is independent of B. Indeed, their Theorem 3 shows that the
regret is O(v/T) + ||f ||2+/T, where f is the non-budget competitor.
In BOGD, ||f ||> may become O(T), not a constant independent of T.

If|If||?and |If8]2 =0 () are required to have the same constant

upper bound, we need to have B +/T. (ii) The parameters used
in their BOGD experiments do not match their theoretical analysis.
(iii) BOGD is based on the OGD algorithm. As discussed in Section 2,
it is worse than the bound in (5) by a factor of % (iv) BOGD
needs to know the horizon T. (v) Their improved version BOGD++
uses a non-uniform ¢} distribution utilizing information on o} ¢;.
(B-1)lef]
ZiE[B] ”01,-[¢,-[H '
However, g} may become negative,'and their Theorem 4 will then
fail.

In general, the magnitude of «;¢; may be used to design
the update/discard probability. In particular, the OSKL algorithm

Specifically, it sets 1 — ¢} o |lai¢f|l,and g} = 1 —

1 For example, let B = 100, llafgfll = 1fori € [99], and [|a}oPigo | = 1.1. Then

¢ _q_ 1089
Q10 = 1= 3507 < O-

22 W. He,].T. Kwok / Neural Networks 60 (2014) 17-24

40 T T T
Projectron 36

- - - Projectron++ !
----OLRD 34
—OLRU '

351

16
Projectron Proj:eclron
- - -Projectron++ - - -Projectron++
---OLRD ----OLRD
—OLRU 14 < : —OLRU

324

307
30

28

AER(%)

26

25

Classification error(%)

Classification error(%)
>

[24}

22

201 &
! 5O 1 060 20‘00 30‘00 4060 5000 180 20‘00 4060 80‘00 10600 12000 40 10‘00 20‘00 3060 4600 5000
Budget size Budget size Budget size
(a)a9a (b) covertype-2. (c) ijenn1.
24
T Projectron 22 155
-~ -Projectron++ Erojec:ron ’ : : ‘ ‘ Projectron
: - -Projectrons+ J
2 [t : ; : igt:B 211 OLé{D 15} grl_olj:{ett):tronH
—OLRY 1 —OLRU
1 20 4 145
g 4 < 19
5 g
© 2 RN
I B B Rt o
N e T =
65 2000 4000 6000 8000 10000 12000) 2000 2000 5000 8000 10000 1055 1000 2000 3000 4000 5000 6000
Budget size Budget size Budget size
(d) emgpa. (e) vehicle. (f) waveform.
Fig. 1. Classification error vs. budget for Projectron, Projectron+-+ OLRU and OLRD.
Table 1 5. Experiments
Data sets used in the experiments.
Data set #samples #features In this section, experiments are performed on a number of
a9a 32561 123 binary? classification data sets from the LIBSVM archive® and UCI
covertype-2 100,000 54 data repository (Table 1). The hinge loss and Gaussian kernel are
ijennl 49,990 22 used. The kernel parameter, stepsize and value of U in (3) are tuned
e";lgp;l 133232 10?) by running the algorithm on a data subset with 10,000 randomly
venhicle R
waveform 100,000 21 selected samples.

(Zhang, Yi, Jin, Lin, & He, 2013) considers several special smooth
losses and uses their instant derivatives (|£'(y;, f; (X;))|) to design
the update probability. High probability regret and support set
sizes are derived, though only implicitly. However, OSKL is
aggressive in that the update probability is completely determined
by the scale of the instant derivative and may be sensitive to noise.
Besides, OSKL can only insert SV’s but not removing them. Thus, it
cannot remove noise learned in previous iterations.

Finally, note that RBP also proposed a random method that
removes one support vector when the budget is violated (Cesa-
Bianchi & Gentile, 2006). It is based on the shifting perceptron, and
driven by mistakes. In other words, when y; # sign({f;, ¢(x;))), it
updates f; as

1 = (A = A)fe +y:p(x0),

where A; > 0.This can also be viewed as a classifier using the hinge
loss but only updates when the loss value is larger than 1. On the
other hand, the proposed algorithms are regret-driven, make full
use of the loss information, and can be used in applications other
than classification.

5.1. Algorithms using a fixed budget

In this experiment, we compare the following online learning
algorithms that require a pre-defined fixed budget B: (i) RBP (Cesa-
Bianchi & Gentile, 2006); (ii) Forgetron (Dekel et al., 2008); and
(iii) OLRD (with constant stepsize specified in Theorem 2). Both
RBP and Forgetron take O(B) memory and time. The budget is set
using (23), with T equal to the number of samples and c varied in
{271, 21, 23} (leading to three budget sizes). To reduce statistical
variability, results are averaged over 10 permuted versions of the
data set.

Results on the classification error rates are shown in Table 2. As
can be seen, OLRD achieves the lowest error almost all the time.
Table 3 shows results on the running time. As can be seen, RBP
is slightly faster because it is mistake-driven and no projection

2 Two of the data sets (vehicle and waveform) are originally multiclass data sets.
They are converted to binary classification by merging some of the classes.

3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

W. He, J.T. Kwok / Neural Networks 60 (2014) 17-24 23
40 . 36 16 -
Projectron H Projectron Pro]_ectron
- - -Projectron++ - -Projectron++ - - -Projectron++
---*OLRD 34 ----OLRD ---*OLRD
—OLRU —OLRU 14| —OLRU
35
32 1
< 30] g 12
S 30 o
& < 28] 1 o
s z S 10
E w 3
g | < 261 4 =
g 25| ‘ ﬁ
o 24, g © sr
1
A S P S S A 2ot J .
“ N 6r 1 i
Y Sy
20 S] o L.
15 ; ; ; ; ; ; 18 ; ; ; ; 4 . , ,
100 200 300 400 500 600 700 500 1000 1500 2000 2500 0 50 100 150 200
Time(s) Time(s) Time(s)
(a) a9a. (b) covertype-2. (c) jjenn.
24 22 - 155
Projectron Projectron : Projectron
- --Projectron++ - - Projectron++ - -Projectron++
23 ---OLRD 21r ---OLRD 150 ----OLRD
—OLRU —OLRU | —OLRU
20} 14.5F]
22]
14
5 5 LT e e L e et T
° 1 o 181 E- ERRUNSEEEE vy S II -------] et S
£ 207 2 T 13
S|k S 17} € |4
8 3 » :
£ oaoft L k| 1250
&) | O 1 H
H T 12
18} Frcwsig sl \
i B 4 11,50\ :
17 N
‘\‘ ér "y..‘..__ mr ‘\-_~
L R R T T N A N R SO x |
16 ; ; ; ; ; ; 13 ; H H ; ; 105 ; ; ; ;
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 100 200 300 400 500 600
Time(s) Time(s) Time(s)
(d) emgpa. (e) vehicle. (f) waveform.
Fig. 2. Classification error (%) vs. time (seconds) for Projectron, Projectron++ OLRU and OLRD.
Table 2 Table 3

Classification errors (%) of RBP, Forgetron and OLRD on the various data sets. The
best results and those that are not significantly worse (according to the t-test with
a p-value less than 0.05) are in bold.

Time (in seconds) of RBP, Forgetron and OLRD on the various data sets. The best
results and those that are not significantly worse (according to the t-test with a
p-value less than 0.05) are in bold.

Data set Budget RBP Forgetron OLRD Data set Budget RBP Forgetron OLRD
a9a 91 26.23 +0.09 25.88 +0.15 24.07 £0.01 a9a 91 8.36 +0.61 10.53 £ 0.39 6.55 + 0.16
362 2345 +0.23 23.00 +0.17 20.16 £ 0.13 362 1245 £+ 1.40 16.07 £ 0.95 12.65 + 1.20
1445 21.71+0.27 21.70 +£0.05 18.64 + 0.07 1445 50.25 £+ 0.99 60.58 & 1.30 53.84 +0.80
covertype-2 159 38.18 +0.16 38.11+0.07 35.69 £0.12 covertype-2 159 18.98 2.0 2757+ 1.3 24.46 +0.48
633 32.58 +0.08 32.67 +0.06 29.89 +£0.12 633 3949 £5.1 46.79 £5.7 38.98 + 2.1
2531 26.55 +0.11 26.47 £ 0.11 23.72 £0.11 2531 1344 +38 175.6 £ 2.6 155.74 £ 1.1
ijennl 113 19.26 £ 0.11 18.71 £ 0.13 13.90 £+ 0.07 ijennl 113 6.44 +0.28 8.07 £ 0.07 9.27 £ 0.06
448 12.18 £0.13 11.89+£0.10 10.02 + 0.09 448 10.12 £ 0.16 12.63 £0.43 15.23 £ 0.36
1790 5.63 + 0.07 5.70 £0.11 5.83 +0.05 1790 15.87 4 0.90 18.73 £0.75 15.69 +0.73
emgpa 159 27.09 + 0.04 26.98 +0.08 23.68 £ 0.05 emgpa 159 11.56 & 0.03 17.79 £ 0.05 15.93 £0.15
633 24.01 +£0.07 23.83 +0.09 20.61 £ 0.07 633 16.00 £ 0.07 23.80 +£0.19 20.37 £ 0.06
2531 21.38 +0.14 2128 £0.12 17.50 + 0.09 2531 35.48 + 1.60 5222 +1.70 50.87 + 1.70
vehicle 141 22.73+0.15 22.57 £0.15 16.31+ 0.04 vehicle 141 17.62 £+ 0.85 24.15+1.20 19.45 £0.32
563 21.27 £0.11 2120+ 0.14 15.25 +0.02 563 32.90 + 3.80 43.73 £ 4.70 36.26 +3.70
2247 20.224+0.13 19.98 £ 0.06 15.06 & 0.04 2247 162.90 £3.70 201.00 +4.70 181.17 £ 2.80
waveform 159 17.35 £ 0.08 16.86 £ 0.11 14.83 + 0.09 waveform 159 12.28 +£0.13 17.01+£0.22 14.94 £ 0.08
633 15.15 £ 0.09 14.96 + 0.09 11.84 + 0.05 633 26.94 + 0.60 3473 +£0.85 32.02 +£0.58
2531 14.26 £ 0.09 14.17 £0.10 10.93 + 0.03 2531 30.52 + 3.50 69.32 4 2.50 65.42 + 2.60

operation is involved. This is then followed by OLRD, and the
Forgetron is the slowest. Moreover, as expected, a smaller budget
means f[B is easier (faster) to compute, and thus the running time
is also shorter. However, a small budget may also lead to more
mistakes and thus more updates (which slows the algorithm).

Hence, the trend between budget and running time is not always
monotonic. For example, on the ijcnn1 data set, when the budget
is increased to 1790, the classification error of OLRD decreases
significantly, and the corresponding increase in running time is

very small.

24 W. He,].T. Kwok / Neural Networks 60 (2014) 17-24

5.2. Algorithms with variable budgets

In the second experiment, we compare (i) Projectron (Orabona
et al., 2009); (ii) Projectron++ (Orabona et al., 2009); (iii) OLRD
(with constant stepsize specified in Theorem 2); and (iv) OLRU
(with constant stepsize specified in Theorem 3). Except for OLRD,
all the other algorithms do not have a fixed budget in advance. For
OLRU (with y = %) and OLRD, we vary the budget by changing
their ¢ values in (13) and (23), respectively. For Projectron and
Projectron++ we vary the budget by changing their n values
in the range {0.9,0.8,...,0.1,0.05}, as long as the number of
SVs obtained is below 6000 (otherwise, the training time will be
excessive). To reduce statistical variability, results are averaged
over 10 permuted versions of the data set.

Figs. 1 and 2 show the classification errors versus budget and
time, respectively. As can be seen, OLRU/OLRD usually require a
smaller budget than Projectron/Projectron++ for comparable or
better classification accuracy, except on the covertype-2 and ijcnnl
data sets. However, even in those cases, OLRU/OLRD decrease the
classification error much faster, as they only take O(B) memory
and time, while Projectron/Projectron++ take O(B?>) memory
and time. Besides, note that Projectron and Projectron++ being
mistake-driven, are usually less accurate.

Recall that OLRU has an expected regret of O(THTV) and a
support set size of O(T'~7); while OLRD has an O(ﬁ) expected
regret and a support set of size O(+/T). With the current setting of
y = %, OLRU thus needs a larger budget than OLRD for comparable
accuracy, though OLRU is usually faster than OLRD as OLRU adopts
a simple sparse update.

6. Conclusion

In this paper, we proposed a general framework for online
learning with budget. It is based on a simple stochastic strategy
with sublinear regret guarantee. Two specific algorithms, based
on random updating and random discarding respectively, are
presented and both can be realized efficiently. The parameter
tuning problem is also discussed and a dynamic budget strategy
is proposed to obtain optimal performance for online learning
with budget. Experiments on a number of benchmark data sets
demonstrate encouraging performance.

The proposed randomized budget algorithms are somewhat
conservative and do not utilize the expansion coefficients’ magni-
tudes in designing the update/discard probabilities. Robust proba-
bility distributions may be used to further improve performance.

Online learning with adaptive stepsize using subgradient infor-
mation may also allow the design of more aggressive algorithms.
Moreover, OLRU suggests an interesting way for online learning
with partially labeled instances. These will be further investigated
in the future.

Acknowledgments

We thank the editors and anonymous reviewers for their valu-
able comments and suggestions. This research has been sup-
ported by the NSF of Fujian Province (grant number 2012J01247),
and partly supported by NSFC (grant numbers 61304199 and
61304210) and the Research Grants Council of the Hong Kong Spe-
cial Administrative Region under grant 614513.

References

Abernethy, J., Bartlett, P.L., Rakhlin, A., & Tewari, A. (2008). Optimal strategies and
minimax lower bounds for online convex games. In Proceedings of the conference
on learning theory. Helsinki, Finland (pp. 415-424).

Cesa-Bianchi, N., & Gentile, C. (2006). Tracking the best hyperplane with a
simple budget perceptron. In Proceedings of the conference on learning theory.
Pittsburgh, PA, USA (pp. 483-498).

Crammer, K., Kandola, J., & Singer, Y. (2003). Online classification on a budget.
In Advances in neural information processing systems 16 (pp. 225-232).

Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2008). The forgetron: a kernel-based
perceptron on a budget. SIAM Journal on Computing, 37, 1342-1372.

He, W., & Wy, S. (2012). A kernel-based perceptron with dynamic memory. Neural
Networks, 25, 106-113.

Kivinen, J., Smola, A., & Williamson, R. (2004). Online learning with kernels. IEEE
Transactions on Signal Processing, 52, 2165-2176.

Orabona, F., Keshet,]., & Caputo, B. (2009). Bounded kernel-based online learning.
Journal of Machine Learning Research, 10, 2643-2666.

Scholkopf, B., & Smola, A. (2002). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press.

Shalev-Shwartz, S.(2007). Online learning: theory, algorithms, and applications (Ph.D.
thesis). Hebrew University.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4, 107-194.

Sutskever, I. (2009). A simpler unified analysis of budget perceptrons. In
Proceedings of the international conference on machine learning. Montreal, Canada
(pp. 985-992).

Weston, J., Bordes, A., & Bottou, L. (2005). Online (and offline) on an even tighter
budget. In Proceedings of the international conference on artificial intelligence and
statistics. Barbados (pp. 413-420).

Zhang, L., Yi, J., Jin, R, Lin, M., & He, X. (2013). Online kernel learning with a near
optimal sparsity bound. In Proceedings of the international conference on machine
learning. Atlanta, Georgia, USA (pp. 621-629).

Zhao, P., Wang, J., Wu, P,, Jin, R,, & Hoi, S. (2012). Fast bounded online gradient
descent algorithms for scalable kernel-based online learning. In Proceedings of
the international conference on machine learning. Edinburgh, Scotland.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the international conference on machine
learning. Washington, DC, USA (pp. 928-935).

http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref3
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref4
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref5
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref6
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref7
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref8
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref9
http://refhub.elsevier.com/S0893-6080(14)00163-4/sbref10

	Simple randomized algorithms for online learning with kernels
	Introduction
	Basic algorithm for Online Learning with Kernels
	Randomized strategies for online learning with budget
	Online Learning with Random Updating (OLRU)
	Online Learning with Random Discarding (OLRD)
	Discussion

	Related work
	Experiments
	Algorithms using a fixed budget
	Algorithms with variable budgets

	Conclusion
	Acknowledgments
	References

