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Abstract— In this paper, we show that one-class SVMs can
also utilize data covariance in a robust manner to improve
performance. Furthermore, by constraining the desired kernel
function as a convex combination of base kernels, we show
that the weighting coefficients can be learned via quadratically
constrained quadratic programming (QCQP) or second order
cone programming (SOCP) methods. Performance on both toy
and real-world data sets show promising results. This paper
thus offers another demonstration of the synergy between
convex optimization and kernel methods.

I. INTRODUCTION

In recent years, kernel methods have been successfully
used in various aspects of machine learning, such as clas-
sification, regression and clustering [1]. In this paper, we
will focus on the use of one-class support vector machines
(SVMs) [2] for novelty detection, in which only a set of
unlabeled patterns are given. The one-class SVM, like other
kernel methods, first maps the data from the input space to
a feature space H via some map ϕ, and then constructs a
hyperplane in H that separates the ϕ-mapped patterns from
the origin with maximum margin. The computations do not
require ϕ explicitly, but depend only on the inner product
defined in H, which in turn can be obtained efficiently from
a suitable kernel function (the “kernel trick”). The one-
class SVM also closely resembles the support vector data
description [3], which uses balls (instead of hyperplanes) to
describe the data in H. In fact, these two approaches are
equivalent when stationary kernels are used [2].

However, one-class SVMs rely on the Euclidean distance,
which is often sub-optimal. A standard alternative is to utilize
information from the data, such as the readily accessible
sample covariance matrix. For example, the single-class
minimax probability machine (MPM) [4], which is another
kernel-based technique for novelty detection, maximizes the
Mahalanobis distance of the hyperplane to the origin instead.
In the context of supervised learning, the covariance of differ-
ent classes have also been used to improve the performance
of the SVM [5]. Moreover, to alleviate the undesirable effects
of estimation error in the covariance matrix, [4] adopted
an uncertainty model for the sample mean and covariance
matrix, and then used robust optimization to address this
estimation problem.

Another issue in using one-class SVMs is the choice
of kernels. As in other kernel methods, because of the
central role of the kernel, a poor kernel choice can lead
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to significantly impaired performance. As reported in [6],
one-class SVMs can be very sensitive in this aspect. In the
supervised learning setting, progress has been made in the
past few years on how to choose the parameters of a kernel
with fixed parametric form. Typically, this is performed
by optimizing a quality functional of the kernel [7], such
as the kernel target alignment, generalization error bounds,
Bayesian probabilities and cross-validation error. Recently,
instead of adapting only the kernel parameters, one also
attempts to adapt the form of the kernel directly. As all
information on the feature space is encoded in the kernel
matrix, one can bypass learning of the kernel function by just
learning the kernel matrix instead [8], [9], [10], [11]. These
methods, however, usually work better in a transductive
setting. For induction, a novel approach that selects the kernel
function directly is by using the hyperkernel [7]. However,
all these results are designed for supervised learning and not
readily applicable to one-class SVMs.

In this paper, we first show that covariance information
can also be utilized in a robust manner by one-class SVMs.
This includes an uncertainty model on the covariance matrix
which is more general than the one used by single-class
MPMs. Furthermore, by constraining the kernel function in
the one-class SVM as a convex combination of some fixed
base kernels, we show that the weighting coefficients can be
learned by convex programming techniques. The rest of this
paper is organized as follows. Section II describes the robust
use of covariance information in one-class SVMs. Section III
then addresses the problem of kernel learning in one-class
SVMs. Experimental results are presented in Section IV, and
the last section gives some concluding remarks. Because of
the lack of space, detailed proofs cannot be included in this
paper.

II. ONE-CLASS SVM WITH THE MAHALANOBIS

DISTANCE

Given a set of unlabeled patterns {x1, . . . ,xn}, the one-
class SVM first maps them to the feature space H via a
nonlinear map ϕ. In the sequel, for simplicity, we will abuse
the notation and still write ϕ(x) as x. The data is then
separated from the origin by solving

minw,ξ,ρ

1
2
w′w +

1
νn

∑
i

ξi − ρ

s.t. w′xi ≥ ρ − ξi,

ξi ≥ 0,

where w′x = ρ is the desired hyperplane and
ξ = [ξ1, . . . , ξn]′. The corresponding dual (with α =
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[α1, . . . , αn]′,1 = [1, . . . , 1]′ and kernel matrix K)

minα
1
2
α′Kα (1)

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1, (2)

is a quadratic programming (QP) problem.

A. Using the Covariance Information by Robust Optimiza-
tion

As mentioned in Section I, it is often beneficial to utilize
the covariance matrix Σ and use the Mahalanobis distance
instead. Writing X = [x1, . . . ,xn], a common estimator for
Σ is

Σ0 = cXHX′,

where H = I − 1
n11′1, I is the identity matrix, and c = 1

n
(or 1

n−1 ) for the maximum likelihood (or sample) covariance
matrix. The primal now becomes:

min
w,ξ,ρ

1
2
w′Σ−1w +

1
νn

∑
i

ξi − ρ (3)

s.t. w′Σ−1xi ≥ ρ − ξi,

ξi ≥ 0.

Putting w = Σu, (3) is equivalent to

min
u,ξ,ρ

1
2
u′Σu +

1
νn

∑
i

ξi − ρ (4)

s.t. u′xi ≥ ρ − ξi,

ξi ≥ 0.

(3) is thus the same as still using the Euclidean metric, but
maximizes instead the Mahalanobis distance of the plane
u′x = ρ to the origin (which is given by ρ/

√
u′Σu [4]).

In the sequel, we will use the formulation in (4) (and write
w instead of u).

In general, there is uncertainty in the estimation of Σ. As
in [4], we assume that Σ is only known to be within the set

{Σ : ‖Σ − Σ0‖F ≤ r},
where r > 0 is fixed and ‖ · ‖F denotes the Frobenius norm.
The primal in (4) can then be modified as

min
w,ξ,ρ

maxΣ
1
2
w′Σw +

1
νn

∑
i

ξi − ρ (5)

s.t. w′xi ≥ ρ − ξi,

ξi ≥ 0,

‖Σ − Σ0‖F ≤ r.

Now,

max
Σ:‖Σ−Σ0‖F ≤r

w′Σw = w′(rI + Σ0)w

1The following properties on H can be easily verified: H = H′,HH =
H and H1 = 0.

[4]. Therefore, (5) becomes

minw,ξ,ρ

1
2
w′Σrw +

1
νn

∑
i

ξi − ρ

s.t. w′xi ≥ ρ − ξi,

ξi ≥ 0,

where Σr = rI+Σ0 = rI+ cXHX′ is always non-singular
for r > 0. In effect, this is similar to the common trick of
making Σ0 non-singular. The corresponding dual is then:

minα
1
2
α′X′Σ−1

r Xα (6)

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1.

As we would expect, when the covariance information is not
used (i.e., c = 0), (6) reduces to the original dual in (1).
Using the Woodbury formula [12]

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

and HH = H, we obtain

Σ−1
r = (rI + cXHHX′)−1

=
1
r
I − c

r
XH (rI + cHX′XH)−1 HX′.

(6) then becomes

minα
1
2r

α′ (K − cKH(rI + cHKH)−1HK
)
α (7)

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1,

where K = X′X is the kernel matrix2. This is again a
standard QP. Moreover, when K is invertible, (7) can be
further simplified to

minα
1
2
α′ (rK−1 + cH

)−1
α (8)

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1,

by using the Woodbury formula. Besides, as for the original
one-class SVM, ν ∈ (0, 1) is an upper bound on the fraction
of outliers and a lower bound on the fraction of support
vectors.

B. A More General Uncertainty Model

In this Section, the uncertainty set takes a more general
form, as

{Σ : 0 � Σ � Σ0 + ∆},
where ∆ � 0. Here, the notation A � 0 (A � 0)
means that the matrix A is symmetric and positive semi-
definite (definite). Similarly, � and ≺ means negative semi-
definite (definite). When ∆ = r√

n
I, this reduces to the

2Recall that our xi’s here are in fact ϕ(xi)’s in the kernel-induced feature
space.
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uncertainty model in Section II-A. Alternatively, ∆ can also
be considered as a more general prior on w [4]. Now, for
any w,

Σ0 + ∆ � Σ

⇒ w′(Σ0 + ∆)w ≥ w′Σw,

with the equality attained when Σ = Σ0 + ∆. Hence,

max
0�Σ�Σ0

+∆
w′Σw = w′(Σ0 + ∆)w.

In other words, we can follow the same steps in Section II-A
by simply replacing Σr by Σ0 + ∆, and obtain the primal
as

min
w,ξ,ρ

1
2
w′(∆ + cXHX′)w +

1
νn

∑
i

ξi − ρ

s.t. w′xi ≥ ρ − ξi,

ξi ≥ 0.

By using the Woodbury formula and recalling that HH = H,
we have

(∆ + cXHHX′)−1|
= ∆−1 − ∆−1XH(

1
c
I + HX′∆−1XH)−1HX′∆−1,

and the dual becomes

minα
1
2
α′

(
K̃ − K̃H(

1
c
I + HK̃H)−1HK̃

)
α

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1,

where K̃ = X′∆−1X. This, again, is a QP. When K̃ is
invertible, by using the Woodbury formula, the dual can be
reduced to

minα
1
2
α′(K̃−1 + cH)−1α (9)

s.t. 0 ≤ α ≤ 1
νn

1,

α′1 = 1.

III. LEARNING THE KERNEL MATRIX

Notice that the objectives in (1), (8) and (9) are of the
same form, namely,

1
2
α′(K̂−1 + cH)−1α. (10)

K̂ thus embodies information on both the original kernel
K and the uncertainty model of the data covariance. In
this Section, we consider learning this K̂ directly. As the
uncertainty model corresponds to a prior on w, learning K̂
also learns this prior from the empirical data, in the same
spirit as empirical Bayes methods. We constrain the target
kernel function K̂ to be a convex combination of some fixed
base kernels Ki’s, i.e.,

K̂ =
m∑

i=1

µiKi, (11)

where µ = [µ1, . . . , µm]′ ≥ 0, and µ′1 = 1. As usual,
the corresponding kernel matrices defined on the training set
will be denoted in bold. Obviously, Ki � 0 for all base
kernels implies K̂ � 0. While one may want to directly
minimize the objective in (10) over the allowable K̂’s, this is
not desirable as different kernels will induce different feature
spaces with different scales. A kernel can easily “cheat” by
simply expanding the data distribution (in the feature space)
and thus obtain a large margin. Hence, some normalization
is necessary in order to compare the margins in a meaningful
manner.

A. Modified One-Class SVM Formulation

In this Section, we offer a simple remedy by modifying
the primal in (4) to

minw,ξ,ρ,R

1
2
w′Σw +

1
νn

∑
i

ξi − ρ + CR

s.t. 1 ≤ w′xi ≤ R,

w′xi ≥ ρ − ξi,

ξi ≥ 0.

The constraint 1 ≤ w′xi ≤ R sets a scale in the kernel-
induced feature space. Those kernels that achieve a large
margin by simply having a large R will get penalized in the
primal objective. By introducing Lagrange multipliers

αh = [αh1, . . . , αhn]′ ≥ 0,

αr = [αr1, . . . , αrn]′ ≥ 0,

αs = [αs1, . . . , αsn]′ ≥ 0,

η = [η1, . . . , ηl]′ ≥ 0,

the Lagrangian is then:

L(w, ξ, ρ, R,α,η)

=
1
2
w′Σw +

1
νn

∑
i

ξi − ρ + CR −
∑

i

αhi(w′xi − 1)

−
∑

i

αri(R − w′xi) −
∑

i

αsi(w′xi − ρ + ξi)

−
∑

i

ηiξi.

where, for simplicity of notation, we have encapsulated
αs,αh and αr together as α. Setting the derivatives of L
w.r.t. all primal variables to zero, and assuming that Σ is
non-singular, the dual becomes:

maxα α′
h1

−1
2
(αs + αh − αr)′X′Σ−1X(αs + αh − αr)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C.
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Proceeding as in Section II-B with the uncertainty models
and together with (11), we obtain

minK̂ maxα α′
h1 (12)

−1
2
(αs + αh − αr)′(K̂−1 + cH)−1(αs + αh − αr)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C,

K̂ =
∑

i

µiKi,

µ′1 = 1,

µ ≥ 0.

B. Without Use of Covariance Information: A QCQP For-
mulation

First, consider the special case when covariance is not used
(c = 0). (12) then reduces to

minK̂ maxα α′
h1

−1
2
(αs + αh − αr)′K̂(αs + αh − αr)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C,

K̂ =
∑

i

µiKi,

µ′1 = 1,

µ ≥ 0

= minµ′1=1, µ≥0 max
α

α′
h1

−
∑

i

µi

(
1
2
(αs + αh − αr)′Ki(αs + αh − αr)

)

0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C.

The Slater’s condition [11] is satisfied and we can inter-
change min and max, as:

maxα min
µ′1=1, µ≥0

α′
h1

−
∑

i

µi

(
1
2
(αs + αh − αr)′Ki(αs + αh − αr)

)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C

= maxα α′
h1 −

[
max

µ′1=1, µ≥0∑
i

µi

(
1
2
(αs + αh − αr)′Ki(αs + αh − αr)

)]

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C

= maxα α′
h1

−max
i

1
2
(αs + αh − αr)′Ki(αs + αh − αr)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C

= maxα,t α′
h1 − t

s.t. t ≥ 1
2
(αs + αh − αr)′Ki(αs + αh − αr),

0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C,

which is a quadratically constrained quadratic programming
(QCQP) problem.
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C. With the Use of Covariance Information: A SOCP For-
mulation

We now return to (12) (with c �= 0). First, consider the
sub-problem involving α,

maxα α′
h1 (13)

−1
2
(αs + αh − αr)′(K̂−1 + cH)−1(αs + αh − αr)

s.t. 0 ≤ αs ≤ 1
νn

1,

α′
s1 = 1,

αh ≥ 0,

αr ≥ 0,

α′
r1 = C.

By introducing Lagrange multipliers

γh = [γh1, . . . , γhn]′ ≥ 0,

γr = [γr1, . . . , γrn]′ ≥ 0,

γs = [γs1, . . . , γsn]′ ≥ 0,

β = [β1, . . . , βn]′ ≥ 0

and λs, λr, the Lagrangian is then:

L(α,γ,β,λ)
= α′

h1

−1
2
(αs + αh − αr)′(K̂−1 + cH)−1(αs + αh − αr)

+γ′
sαs + β′(

1
νn

1 − αs) + λs(α′
s1 − 1)

+γ′
hαh + γ′

rαr + λr(C − α′
r1),

where, again, we have used γ to represent (γs,γh,γr) and
λ for (λs, λr). As (13) is a QP,

max
α

min
γ,β≥0,λ

L(α,γ,β,λ)

= min
γ,β≥0,λ

max
α

L(α,γ,β,λ).

For maxα L(α,γ,β,λ), the derivatives of L(α,γ,β,λ)
w.r.t. α are zero. Substituting these back into (13) and on

using H1 = 0, the dual becomes:

minγ,β,λ
1
2
(γs − β + λs1)′(K̂−1 + cH)(γs − β + λs1)

+
1
νn

β′1 − λs + Cλr (14)

s.t. γs ≥ 0,

γh ≥ 0,

γr ≥ 0,

β ≥ 0,

γs − β + λs1 = −γr + λr1,

γs − β + λs1 = γh + 1

= minγ,β,λ,t1,t2

1
2
t1 +

c

2
t2 +

1
νn

β′1 − λs + Cλr

γs ≥ 0,

γh ≥ 0,

γr ≥ 0,

β ≥ 0,

γs − β + λs1 = −γr + λr1,

γs − β + λs1 = γh + 1,

t1 ≥ (γs − β + λs1)′K̂−1(γs − β + λs1),
t2 ≥ (γs − β)′H(γs − β).

Recall that K̂ is of the form in (11), [13], [14] show that the
constraint

t1 ≥ (γs − β + λs1)′K̂−1(γs − β + λs1)

above can then be replaced by

∑
i

K
1
2
i ci = γs − β + λs1,

∑
i

τi ≤ t1,

τ ≥ 0,

c′ici ≤ µiτi.

Moreover, the constraints

µiτi ≥ c′ici

and

t2 ≥ (γs − β)′H(γs − β)

can be converted to second-order cone constraints by using
the fact that the constraint w′w ≤ xy (where x, y ≥ 0) is
equivalent to the constraint

∥∥∥∥
[

2w
x − y

]∥∥∥∥ ≤ x + y
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[13]. Applying these conversions, and together with the
optimization w.r.t. µ in (12), we finally obtain

minµ,γ,β,λ,t1,t2,τ ,ci

1
2
t1 +

c

2
t2 +

1
νn

β′1 − λs + Cλr

s.t. γs ≥ 0,

γh ≥ 0,

γr ≥ 0,

β ≥ 0,

γs − β + λs1 = −γr + λr1,

γs − β + λs1 = γh + 1,∑
i

K
1
2
i ci = γs − β + λs1,

t1 ≥
∑

i

τi,

µ ≥ 0,

τ ≥ 0,

µ′1 = 1,

µi + τi ≥
∥∥∥∥
[

2ci

µi − τi

]∥∥∥∥ ,

t2 + 1 ≥
∥∥∥∥
[

2H(γs − β)
t2 − 1

]∥∥∥∥ ,

which is a second order cone programming (SOCP) problem.

IV. EXPERIMENTS

We first perform experiments on a toy problem, with
the “normal” data coming from a banana-shaped set. 50
“normal” points are used for training the (Mahalanobis) one-
class SVM with RBF kernel k(x,y) = exp(−β‖x − y‖2).
Here, we set β = β0 where 1/β0 is the mean distance
between points. For testing, we use another 200 “normal”
points and 200 outliers outside the banana-shaped region.
Table I shows the improvements on classification accuracies
(averaged over 50 repetitions) when different amounts of
covariance information are used. Next, we use four RBF
kernels, with β = 2β0, β0, β0/2 and β0/3 respectively, as
base kernels in (11). Figure 1 compares the resultant data
descriptions and Table II shows the corresponding accuracies.
As can be seen, the learned kernel can obtain a good data
description and almost the best accuracy over the range of ν
experimented.

Experiments are then performed on three real-world data
sets (ionosphere, heart and sonar) from the UCI machine
learning repository. For each data set, we treat each class
as the “normal” data in separate experiments. We randomly
choose 90% of points as training and the remaining 10% as
testing, lumping the latter with the points of the opposite
class. Results are averaged over 10 repetitions. Table III
shows that the learned kernel is often competitive with the
kernel having the “best” β, particularly on the sonar data set.

V. CONCLUSION

In this paper, we extended the one-class SVMs so that
covariance information from the data can be utilized in
a robust manner. Furthermore, by constraining the desired

kernel function as a convex combination of some base
kernels, we showed that the weighting coefficients can be
obtained by solving a QCQP or SOCP problem. Results on
both toy and real-world data sets show promising results. In
the future, we will explore using other forms for the target
kernel function.
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TABLE I

TEST SET CLASSIFICATION ACCURACIES ON THE TOY DATA WITH DIFFERENT AMOUNTS OF COVARIANCE INFORMATION (ν = 0.25).

c/r in (8) 0 1/n 10/n 100/n 1000/n 10000/n
accuracy 86.07% 86.09% 86.11% 86.56% 91.29% 89.98%

TABLE II

TEST SET CLASSIFICATION ACCURACIES ON THE TOY DATA AT DIFFERENT ν’S.

ν learned base kernels
kernel β = 2β0 β = β0 β = β0/2 β = β0/3

0.1 90.50% 80.75% 78.25% 86.00% 77.50%
0.2 79.50% 78.25% 79.75% 77.75% 85.75%
0.3 84.75% 74.75% 81.50% 77.25% 78.00%
0.4 80.75% 75.00% 79.00% 78.50% 77.25%

Fig. 1. Data descriptions of the toy data (Top to bottom: ν = 0.1, 0.2, 0.3, 0.4. Left to right: learned kernel, base kernels with β = 2β0, β0, β0/2, β0/3).

TABLE III

TEST SET CLASSIFICATION ACCURACIES ON THE UCI DATA.

data set learned base kernels
kernel β = 2β0 β = β0 β = β0/2 β = β0/3

ionosphere class + 66.05% 93.29% 22.27% 66.95% 21.43%
class – 70.99% 28.61% 21.43% 53.49% 73.53%

heart class + 69.96% 76.18% 28.61% 21.43% 72.10%
class – 71.78% 55.74% 50.17% 21.43% 76.33%

sonar class + 93.29% 46.93% 42.99% 40.60% 70.85%
class – 90.49% 55.66% 42.99% 21.43% 68.25%
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