
Fast-and-Light Stochastic ADMM

Shuai Zheng James T. Kwok
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong
{szhengac, jamesk}@cse.ust.hk

Abstract
The alternating direction method of multipliers
(ADMM) is a powerful optimization solver in ma-
chine learning. Recently, stochastic ADMM has
been integrated with variance reduction methods
for stochastic gradient, leading to SAG-ADMM
and SDCA-ADMM that have fast convergence
rates and low iteration complexities. However, their
space requirements can still be high. In this pa-
per, we propose an integration of ADMM with
the method of stochastic variance reduced gradient
(SVRG). Unlike another recent integration attempt
called SCAS-ADMM, the proposed algorithm re-
tains the fast convergence benefits of SAG-ADMM
and SDCA-ADMM, but is more advantageous in
that its storage requirement is very low, even inde-
pendent of the sample size n. Experimental results
demonstrate that it is as fast as SAG-ADMM and
SDCA-ADMM, much faster than SCAS-ADMM,
and can be used on much bigger data sets.

1 Introduction
In this big data era, tons of information are generated every
day. Thus, efficient optimization tools are needed to solve the
resultant large-scale machine learning problems. In particu-
lar, the well-known stochastic gradient descent (SGD) [Bot-
tou, 2004] and its variants [Parikh and Boyd, 2014] have
drawn a lot of interest. Instead of visiting all the training sam-
ples in each iteration, the gradient is computed by using one
sample or a small mini-batch of samples. The per-iteration
complexity is then reduced from O(n), where n is the num-
ber of training samples, to O(1). Despite its scalability, the
stochastic gradient is much noisier than the batch gradient.
Thus, the stepsize has to be decreased gradually as stochastic
learning proceeds, leading to slower convergence.

Recently, a number of fast algorithms have been developed
that try to reduce the variance of stochastic gradients [Defazio
et al., 2014; Johnson and Zhang, 2013; Roux et al., 2012;
Shalev-Shwartz and Zhang, 2013]. With the variance re-
duced, a larger constant stepsize can be used. Consequently,
much faster convergence, even matching that of its batch
counterpart, is attained. A prominent example is the stochas-
tic average gradient (SAG) [Roux et al., 2012], which reuses

the old stochastic gradients computed in previous iterations.
A related method is stochastic dual coordinate ascent (SDCA)
[Shalev-Shwartz and Zhang, 2013], which performs stochas-
tic coordinate ascent on the dual. However, a caveat of SAG
is that storing the old gradients takes O(nd) space, where d is
the dimensionality of the model parameter. Similarly, SDCA
requires storage of the dual variables, which scales as O(n).
Thus, they can be expensive in applications with large n (big
sample size) and/or large d (high dimensionality).

Moreover, many machine learning problems, such as
graph-guided fused lasso and overlapping group lasso, are too
complicated for SGD-based methods. The alternating direc-
tion method of multipliers (ADMM) has been recently advo-
cated as an efficient optimization tool for a wider variety of
models [Boyd et al., 2011]. Stochastic ADMM extensions
have also been proposed [Ouyang et al., 2013; Suzuki, 2013;
Wang and Banerjee, 2012], though they only have subop-
timal convergence rates. Recently, researchers have bor-
rowed variance reduction techniques into ADMM. The resul-
tant algorithms, SAG-ADMM [Zhong and Kwok, 2014] and
SDCA-ADMM [Suzuki, 2014], have fast convergence rate as
batch ADMM but are much more scalable. The downside is
that they also inherit the drawbacks of SAG and SDCA. In
particular, SAG-ADMM and SDCA-ADMM require O(nd)
and O(n) space, respectively, to store the past gradients and
weights or dual variables. This can be problematic in large
multitask learning, where the space complexities is scaled by
N , the number of tasks. For example, in one of our mul-
titask learning experiments, SAG-ADMM needs 38.2TB for
storing the weights, and SDCA-ADMM needs 9.6GB for the
dual variables.

To alleviate this problem, one can integrate ADMM with
another popular variance reduction method, namely, stochas-
tic variance reduced gradient (SVRG) [Johnson and Zhang,
2013]. In particular, SVRG is advantageous in that no ex-
tra space for the intermediate gradients or dual variables is
needed. However, this integration is not straightforward. A
recent initial attempt is made in [Zhao et al., 2015]. Essen-
tially, their SCAS-ADMM algorithm uses SVRG as an in-
exact stochastic solver for one of the ADMM subproblems.
The other ADMM variables are not updated until that sub-
problem has been approximately solved. Analogous to the
difference between Jacobi iteration and Gauss-Seidel itera-
tion, this slows down convergence. Indeed, on strongly con-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2407

vex problems, SCAS-ADMM only has sublinear convergence
while SDCA-ADMM has a linear rate. On general convex
problems, SCAS-ADMM requires the stepsize to be grad-
ually reduced. This defeats the original purpose of using
SVRG-based algorithms, which aim at using a larger, con-
stant learning rate to achieve fast convergence [Johnson and
Zhang, 2013].

In this paper, we propose a tighter integration of SVRG
and ADMM with a constant learning rate. The per-iteration
computational cost of the resultant SVRG-ADMM algorithm
is as low as existing stochastic ADMM methods, but yet it
admits fast linear convergence on strongly convex problems.
Among existing stochastic ADMM algorithms, a similar lin-
ear convergence result is only proved in SDCA-ADMM for a
special ADMM setting. Besides, it is well-known that the
penalty parameter in ADMM can significantly affect con-
vergence [Nishihara et al., 2015]. While its effect on the
batch ADMM has been well-studied [Deng and Yin, 2015;
Nishihara et al., 2015], that on stochastic ADMM is still un-
clear. We show that its optimal setting is, interestingly, the
same as that in the batch setting. Moreover, SVRG-ADMM
does not need to store the gradients or dual variables through-
out the iterations. This makes it particularly appealing when
both the number of samples and label classes are large.
Notation: For a vector x, kxk is its `

2

-norm, and kxk
Q

=

p

xTQx. For a matrix X , kXk is its spectral norm, �
max

(X)

(resp. �
min

(X)) is its largest (resp. smallest) eigenvalue, and
X† its pseudoinverse. For a function f , f 0 is a subgradient.
When f is differentiable, we userf as its gradient.

2 Related Work
Consider the regularized risk minimization problem:
min

x

1

n

P

n

i=1

f
i

(x) + r(x), where x is the model pa-
rameter, n is the number of training samples, f

i

is
the loss due to sample i, and r is a regularizer. For
many structured sparsity regularizers, r(x) is of the
form g(Ax), where A is a matrix [Kim et al., 2009;
Jacob et al., 2009]. By introducing an additional y, the
problem can be rewritten as

min

x,y

f(x) + g(y) : Ax� y = 0, (1)

where

f(x) =
1

n

n

X

i=1

f
i

(x). (2)

Problem (3) can be conveniently solved by the alternating di-
rection method of multipliers (ADMM) [Boyd et al., 2011].
In general, ADMM considers problems of the form

min

x,y

f(x) + g(y) : Ax+By = c, (3)

where f, g are convex functions, and A,B (resp. c) are con-
stant matrices (resp. vector). Let ⇢ > 0 be a penalty pa-
rameter, and u be the dual variable. At iteration t, ADMM
performs the updates:

y
t

= argmin

y

g(y) +
⇢

2

kAx
t�1

+By � c+ u
t�1

k2, (4)

x
t

= argmin

x

f(x) +
⇢

2

kAx+By
t

� c+ u
t�1

k2, (5)

u
t

= u
t�1

+Ax
t

+By
t

� c. (6)

With f in (2), solving (5) can be computationally ex-
pensive when the data set is large. Recently, a number
of stochastic and online variants of ADMM have been de-
veloped [Wang and Banerjee, 2012; Ouyang et al., 2013;
Suzuki, 2013]. However, they converge much slower than
the batch ADMM, namely, O(1/

p
T) vs O(1/T) for convex

problems, and O(log T/T) vs linear convergence for strongly
convex problems.

For gradient descent, a similar gap in convergence rates
between the stochastic and batch algorithms is well-known
[Roux et al., 2012]. As noted by [Johnson and Zhang, 2013],
the underlying reason is that SGD has to control the gradi-
ent’s variance by gradually reducing its stepsize ⌘. Recently,
by observing that the training set is always finite in practice,
a number of variance reduction techniques have been devel-
oped that allow the use of a constant stepsize, and conse-
quently faster convergence. In this paper, we focus on the
SVRG [Johnson and Zhang, 2013], which is advantageous in
that no extra space for the intermediate gradients or dual vari-
ables is needed. The algorithm proceeds in stages. At the
beginning of each stage, the gradient z̃ =

1

n

P

n

i=1

rf
i

(x̃) is
computed using a past parameter estimate x̃. For each subse-
quent iteration t in this stage, the approximate gradient

ˆrf(x
t�1

) =

1

b

X

it2It

(rf
it(xt�1

)�rf
it(x̃)) + z̃ (7)

is used, where I
t

is a mini-batch of size b from {1, 2, . . . , n}.
Note that ˆrf(x

t�1

) is unbiased (i.e., E ˆrf(x
t�1

) =

rf(x
t�1

)), and its (expected) variance goes to zero asymp-
totically.

Recently, variance reduction has also been incorporated
into stochastic ADMM. For example, SAG-ADMM [Zhong
and Kwok, 2014] is based on SAG [Roux et al., 2012]; and
SDCA-ADMM [Suzuki, 2014] is based on SDCA [Shalev-
Shwartz and Zhang, 2013]. Both enjoy low iteration com-
plexities and fast convergence. However, SAG-ADMM re-
quires O(nd) space for the old gradients and weights, where
d is the dimensionality of x. As for SDCA-ADMM, even
though its space requirement is lower, it is still proportional to
N , the number of labels in a multiclass/multilabel/multitask
learning problem. As N can easily be in the thousands or
even millions (e.g., Flickr has more than 20 millions tags),
SAG-ADMM and SDCA-ADMM can still be problematic.

3 Integrating SVRG with Stochastic ADMM
In this paper, we make the following assumptions on the f

i

’s
in (2) and g in (3).
Assumption 1. Each f

i

is convex, continuously differen-
tiable, and has L

i

-Lipschitz-continuous gradient. In other
words, there exists L

i

> 0 such that f
i

(x
j

) f
i

(x
i

) +

rf
i

(x
i

)

T

(x
j

� x
i

) +

Li
2

kx
i

� x
j

k2 for all x
i

, x
j

.
Assumption 2. g is convex, but can be nonsmooth.

Let (x⇤, y⇤) be the optimal (primal) solution of (3), and u⇤
the corresponding dual solution. At optimality, we have

rf(x⇤) + ⇢ATu⇤ = 0, g0(y⇤) + ⇢BTu⇤ = 0, (8)

Ax⇤ +By⇤ = c. (9)

2408

3.1 Strongly Convex Problems
In this section, we consider the case where f is strongly con-
vex. A popular example in machine learning is the square
loss.
Assumption 3. f is strongly convex, i.e., there exists �

f

> 0

such that f(x
i

) � f(x
j

)+rf(x
j

)

T

(x
i

�x
j

)+

�f

2

kx
i

�x
j

k2
for all x

i

, x
j

.
Moreover, we assume that matrix A has full row rank.

This assumption has been commonly used in the conver-
gence analysis of ADMM algorithms [Deng and Yin, 2015;
Ghadimi et al., 2015; Giselsson and Boyd, 2014; Nishihara et
al., 2015].
Assumption 4. Matrix A has full row rank.

The proposed procedure is shown in Algorithm 1. Sim-
ilar to SVRG, it is divided into stages, each with m iter-
ations. The updates for y

t

and u
t

are the same as batch
ADMM ((4) and (6)). The key change is on the more ex-
pensive x

t

update. We first replace (5) by its first-order
approximation f(x

t�1

) + rf(x
t�1

)

Tx. As in SVRG, the
full gradient rf(x

t�1

) is approximated by ˆrf(x
t�1

) in (7).
Recall that ˆrf(x

t�1

) is unbiased and its (expected) vari-
ance goes to zero. In other words, ˆrf(x

t�1

) ! rf(x⇤)
when x

t�1

and x̃ approach the optimal x⇤, which allows the
use of a constant stepsize. In contrast, traditional stochas-
tic approximations such as OPG-ADMM [Suzuki, 2013] use
1

b

P

it2It
rf

it(xt�1

) to approximate the full gradient, and a
decreasing step size is needed to ensure convergence.

Unlike SVRG, the optimization subproblem in Step 9 has
the additional terms ⇢

2

kAx+By
t

�c+u
t�1

k2 (from subprob-
lem (5)) and 1

2⌘

kx�x
t�1

k2
G

(to ensure that the next iterate is
close to the current iterate x

t�1

). A common setting for G is
simply G = I [Ouyang et al., 2013]. Step 9 then reduces to

x
t

=

✓

1

⌘
I + ⇢ATA

◆�1

✓

x
t�1

⌘
�ˆrf(x

t�1

) + ⇢AT

(By
t

� c+ u
t�1

)

◆

.(10)

Note that (1
⌘

I + ⇢ATA)

�1 above can be pre-computed. On
the other hand, while some stochastic ADMM algorithms
[Ouyang et al., 2013; Zhong and Kwok, 2014] also need to
compute a similar matrix inverse, their ⌘’s change with itera-
tions and so cannot be pre-computed.

When ATA is large, storage of this matrix may still be
problematic. To alleviate this, a common approach is lin-
earization (also called the inexact Uzawa method) [Zhang et
al., 2011]. It sets G = �I � ⌘⇢ATA with

� � �
min

⌘ ⌘⇢kATAk+ 1 (11)
to ensure that G ⌫ I . The x

t

update in (10) then simplifies to

x
t

= x
t�1

� ⌘

�

⇣

ˆrf(x
t�1

)

+⇢AT

(Ax
t�1

+By
t

� c+ u
t�1

)

�

. (12)
Note that steps 2 and 12 in Algorithm 1 involve the pseudo-

inverse A†. As A is often sparse, this can be efficiently com-
puted by the Lanczos algorithm [Golub and Van Loan, 2012].

Algorithm 1 SVRG-ADMM for strongly convex problems.
1: Input: m, ⌘, ⇢ > 0.
2: initialize x̃

0

, ỹ
0

and ũ
0

= � 1

⇢

(AT

)

†rf(x̃
0

);
3: for s = 1, 2, . . . do
4: x̃ = x̃

s�1

;
5: x

0

= x̃
s�1

; y
0

= ỹ
s�1

; u
0

= ũ
s�1

;
6: z̃ =

1

n

P

n

i=1

rf
i

(x̃);
7: for t = 1, 2, . . . ,m do
8: y

t

 argmin

y

g(y)+ ⇢

2

kAx
t�1

+By�c+u
t�1

k2;
9: x

t

 argmin

x

ˆrf(x
t�1

)

Tx+

⇢

2

kAx+By
t

� c+

u
t�1

k2 + kx�xt�1

k2

G
2⌘

;
10: u

t

 u
t�1

+Ax
t

+By
t

� c;
11: end for
12: x̃

s

=

1

m

P

m

t=1

x
t

; ỹ
s

=

1

m

P

m

t=1

y
t

; ũ
s

=

� 1

⇢

(AT

)

†rf(x̃
s

);
13: end for
14: Output: x̃

s

, ỹ
s

;

In general, as in other stochastic algorithms, the stochas-
tic gradient is computed based on a mini-batch of size b. The
following Proposition shows that the variance can be progres-
sively reduced. Note that this and other results in this section
also hold for the batch mode, in which the whole data set is
used in each iteration (i.e., b = n).
Proposition 1. The variance of ˆrf(x

t�1

) is
bounded by Ek ˆrf(x

t�1

) � rf(x
t�1

)k2
4L

max

�(b) (J(x
t�1

)� J(x⇤) + J(x̃)� J(x⇤)), where
L
max

⌘ max

i

L
i

, �(b) =

n�b

b(n�1)

, J(x) = f(x) + ⇢uT

⇤ Ax,
and J(x

t�1

)� J(x⇤) + J(x̃)� J(x⇤) � 0.
Using (8) and (9), J(x) � J(x⇤) = f(x) � f(x⇤) �

rf(x⇤)
T

(x � x⇤) = 0 when x ! x⇤, and thus the variance
goes to zero. Moreover, as expected, the variance reduces
when b increases, and goes to zero when b = n. However,
a large b leads to a high per-iteration cost. Thus, there is a
tradeoff between “high variance with cheap iterations” and
“low variance with expensive iterations”.

Convergence Analysis
In this section, we study the convergence w.r.t. R(x, y) ⌘
f(x)�f(x⇤)�rf(x⇤)

T

(x�x⇤)+g(y)�g(y⇤)�g0(y⇤)T (y�
y⇤). First, note that R(x, y) is always non-negative.
Proposition 2. R(x, y) � 0 for any x and y.

Using the optimality conditions in (8) and (9), R(x, y) can
be rewritten as f(x)+g(y)+⇢uT

⇤ (Ax+By� c)� (f(x⇤)+
g(y⇤) + ⇢uT

⇤ (Ax⇤ + By⇤ � c)), which is the difference of
the Lagrangians in (3) evaluated at (x, y, u⇤) and (x⇤, y⇤, u⇤).
Moreover, R(x, y) � 0 is the same as the variational inequal-
ity used in [He and Yuan, 2012].

The following shows that Algorithm 1 converges linearly.
Theorem 1. Let

 =

kG+ ⌘⇢ATAk
�
f

⌘(1� 4L
max

⌘�(b))m
+

4L
max

⌘�(b)(m+ 1)

(1� 4L
max

⌘�(b))m

+

L
f

⇢(1� 4L
max

⌘�(b))�
min

(AAT

)m
. (13)

2409

Choose 0 < ⌘ < min

n

1

Lf
, 1

4L

max

�(b)

o

, and the number
of iterations m is sufficiently large such that < 1. Then,
ER(x̃

s

, ỹ
s

) sR(x̃
0

, ỹ
0

).
Theorem 1 is similar to the SVRG results in [Johnson and

Zhang, 2013; Xiao and Zhang, 2014]. However, it is not a
trivial extension because of the presence of the equality con-
straint and Lagrangian multipliers in the ADMM formulation.
Moreover, for the existing stochastic ADMM algorithms, lin-
ear convergence is only proved in SDCA-ADMM for a spe-
cial case (B = �I and c = 0 in (3)). Here, we have linear
convergence for a general B and any G ⌫ I (in step 9).
Corollary 1. For a fixed and ✏ > 0, the number
of stages s required to ensure ER(x̃

s

, ỹ
s

) ✏ is s �
log

⇣

R(x̃

0

,ỹ

0

)

✏

⌘

/ log
�

1

�

. Moreover, for any � 2 (0, 1), we

have the high-probability bound: Prob(R(x̃
s

, ỹ
s

) ✏) �
1� � if s � log

⇣

R(x̃

0

,ỹ

0

)

✏�

⌘

/ log
�

1

�

.

Optimal ADMM Parameter ⇢
With linearization, the first term in (13) becomes
k�Ik/(�

f

⌘(1 � 4L
max

⌘�(b))m). Obviously, it is de-
sirable to have a small convergence factor , and so we will
always use � = �

min

in (11). The following Proposition
obtains the optimal ⇢⇤, which yields the smallest value and
thus fastest convergence. Interestingly, this ⇢⇤ is the same as
that of its batch counterpart (Theorem 7 in [Nishihara et al.,
2015]). In other words, the optimal ⇢⇤ is not affected by the
stochastic approximation.
Proposition 3. The smallest is obtained when ⇢ = ⇢⇤ ⌘
q

Lf�f

�

max

(AA

T
)�

min

(AA

T
)

.

3.2 General Convex Problems
In this section, we consider (general) convex problems, and
only Assumptions 1, 2 are needed. The procedure (Algo-
rithm 2) differs slightly from Algorithm 1 in the initialization
of each stage (steps 2, 5, 12) and the final output (step 14).

As expected, with a weaker form of convexity, the con-
vergence rate of Algorithm 2 is no longer linear. Following
[Ouyang et al., 2013; Suzuki, 2013; Zhong and Kwok, 2014],
we consider the convergence of R(x̄, ȳ) + ⇣kAx̄+Bȳ � ck,
where ⇣ > 0 and kAx̄+ Bȳ � ck measures the feasibility of
the ADMM solution. The following Theorem shows that Al-
gorithm 2 has O(1/s) convergence. Since both R(x̄, ȳ) and
kAx̄+Bȳ� ck are always nonnegative, obviously each term
individually also has O(1/s) convergence.

Theorem 2. Choose 0 < ⌘ < min

n

1

Lf
, 1

8L

max

�(b)

o

. Then,

E(R(x̄, ȳ) + ⇣kAx̄+Bȳ � ck)

 4L
max

⌘�(b)(m+1)

(1�8L
max

⌘�(b))ms

�

f(x̂
0

)�f(x⇤)�rf(x⇤)
T

(x̂
0

�x⇤)
�

+

1

2⌘

kx̂
0

� x⇤k2
G+⌘⇢A

T
A

+ ⇢
⇣

kû
0

� u⇤k2 + ⇣

2

⇢

2

⌘

(1� 8L
max

⌘�(b))ms
. (14)

The following Corollary obtains a sublinear convergence
rate for the batch case (b = n). This is similar to that of

Algorithm 2 SVRG-ADMM for general convex problems.
1: Input: m, ⌘, ⇢ > 0.
2: initialize x̃

0

= x̂
0

, ŷ
0

and û
0

;
3: for s = 1, 2, . . . do
4: x̃ = x̃

s�1

;
5: x

0

= x̂
s�1

; y
0

= ŷ
s�1

; u
0

= û
s�1

;
6: z̃ =

1

n

P

n

i=1

rf
i

(x̃);
7: for t = 1, 2, . . . ,m do
8: y

t

 argmin

y

g(y)+ ⇢

2

kAx
t�1

+By�c+u
t�1

k2;
9: x

t

 argmin

x

ˆrf(x
t�1

)

Tx+

⇢

2

kAx+By
t

� c+

u
t�1

k2 + kx�xt�1

k2

G
2⌘

;
10: u

t

 u
t�1

+Ax
t

+By
t

� c;
11: end for
12: x̃

s

=

1

m

P

m

t=1

x
t

; ỹ
s

=

1

m

P

m

t=1

y
t

; x̂
s

= x
m

; ŷ
s

=

y
m

; û
s

= u
m

;
13: end for
14: Output: x̄ =

1

s

P

s

i=1

x̃
i

, ȳ =

1

s

P

s

i=1

ỹ
s

.

Remark 1 in [Ouyang et al., 2013]. However, here we allow
a general G while they require G = I .
Corollary 2. In batch learning, R(x̄, ȳ)+⇣kAx̄+bȳ�ck

1

2⌘ms

kx̃
0

� x⇤k2
G+⌘⇢A

T
A

+

⇢

ms

⇣

kũ
0

� u⇤k2 + ⇣

2

⇢

2

⌘

.

3.3 Comparison with SCAS-ADMM
The recently proposed SCAS-ADMM [Zhao et al., 2015]
is a more rudimentary integration of SVRG and ADMM.
The main difference with our method is that SCAS-ADMM
moves the updates of y and u outside the inner for loop. As
such, the inner for loop focuses only on updating x, and is
the same as using a one-stage SVRG to solve for an inexact x
solution in (5). Variables y and u are not updated until the x
subproblem has been approximately solved (after running m
updates of x).

In contrast, we replace the x subproblem in (5) with its
first-order stochastic approximation, and then update y and u
in every iteration as x. This difference is analogous to that
between the Jacobi iteration and Gauss-Seidel iteration. The
use of first-order stochastic approximation has also shown
clear speed advantage in other stochastic ADMM algorithms
[Ouyang et al., 2013; Suzuki, 2013; Zhong and Kwok, 2014;
Suzuki, 2014], and is especially desirable on big data sets.

As a result, the convergence rates of SCAS-ADMM are in-
ferior to those of SVRG-ADMM. On strongly convex prob-
lems, SVRG-ADMM attains a linear convergence rate, while
SCAS-ADMM only has O(1/s) convergence. On general
convex problems, both SVRG-ADMM and SCAS-ADMM
have a convergence rate of O(1/s). However, SCAS-ADMM
requires the stepsize to be gradually reduced as O(1/s�),
where � > 1. This defeats the original purpose of using
SVRG-based algorithms (e.g., SVRG-ADMM), which aims
at using a constant learning rate for faster convergence [John-
son and Zhang, 2013]. Moreover, (14) shows that our rate
consists of three components, which converge as O(1/s),
O(1/(ms)) and O(1/(ms)), respectively. On the other hand,
while the sublinear convergence bound in SCAS-ADMM also
has three similar components, they all converge as O(1/s).

2410

Table 1: Convergence rates and space requirements of various stochastic ADMM algorithms, including stochastic ADMM
(STOC-ADMM) [Ouyang et al., 2013], online proximal gradient descent ADMM (OPG-ADMM) [Suzuki, 2013], regular-
ized dual averaging ADMM (RDA-ADMM) [Suzuki, 2013], stochastic averaged gradient ADMM (SAG-ADMM) [Zhong and
Kwok, 2014], stochastic dual coordinate ascent ADMM (SDCA-ADMM) [Suzuki, 2014], scalable stochastic ADMM (SCAS-
ADMM) [Zhao et al., 2015], and the proposed SVRG-ADMM. Here, d, ˜d are dimensionalities of x and y in (3).

general convex strongly convex space requirement
STOC-ADMM O(1/

p
T) O(log T/T) O(d ˜d+ d2)

OPG-ADMM O(1/
p
T) O(log T/T) O(d ˜d)

RDA-ADMM O(1/
p
T) O(log T/T) O(d ˜d)

SAG-ADMM O(1/T) unknown O(d ˜d+ nd)

SDCA-ADMM unknown linear rate O(d ˜d+ n)

SCAS-ADMM O(1/T) O(1/T) O(d ˜d)

SVRG-ADMM O(1/T) linear rate O(d ˜d)

To make the cost of full gradient computation less pro-
nounced, a natural choice for m is m = O(n) [Johnson and
Zhang, 2013]. Hence, SCAS-ADMM can be much slower
than SVRG-ADMM when n is large.

3.4 Space Requirement
The space requirements of Algorithms 1 and 2 mainly come
from step 12. For simplicity, we consider B = �I and c = 0,
which are assumed in [Suzuki, 2013; 2014]. Moreover, we
assume that the storage of the n old gradients can be reduced
to the storage of n scalars, which is often the case in many
machine learning models [Johnson and Zhang, 2013].

A summary of the space requirements and convergence
rates for various stochastic ADMM algorithms is shown in
Table 1. As can be seen, among those with variance reduc-
tion, the space requirements of SCAS-ADMM and SVRG-
ADMM are independent of the sample size n. However, as
discussed in the previous section, SVRG-ADMM has much
faster convergence rates than SCAS-ADMM on both strongly
convex and general convex problems.

4 Experiments
4.1 Graph-Guided Fused Lasso
We perform experiments on the generalized lasso model
P

n

i=1

`
i

(x) + kAxk
1

, where `
i

is the logistic loss on sam-
ple i, and A is a matrix encoding the feature sparsity pattern.
Here, we use graph-guided fused lasso [Kim et al., 2009] and
set A = [G; I], where G is the sparsity pattern of the graph
obtained by sparse inverse covariance estimation [Friedman
et al., 2008]. For the ADMM formulation, we introduce an
additional variable y and the constraint Ax = y. Experiments
are performed on four benchmark data sets1 (Table 2). We use
a mini-batch size of b = 100 on protein and covertype; and
b = 500 on mnist8m and dna. Experiments are performed on
a PC with Intel i7-3770 3.4GHz CPU and 32GB RAM,

1Downloaded from http://www.csie.ntu.edu.tw/⇠cjlin/
libsvmtools/datasets/, http://osmot.cs.cornell.edu/kddcup/datasets.
html, and http://largescale.ml.tu-berlin.de/instructions/.

Table 2: Data sets for graph-guided fused lasso.

#training #test dimensionality
protein 72,876 72,875 74

covertype 290,506 290,506 54
mnist8m 1,404,756 351,189 784

dna 2,400,000 600,000 800

All methods listed in Table 1 are compared and in Mat-
lab. The proposed SVRG-ADMM uses the linearized up-
date in (12) and m = 2n/b. For further speedup, we simply
use the last iterates in each stage (x

m

, y
m

, u
m

) as x̃
s

, ỹ
s

, ũ
s

in step 12 of Algorithms 1 and 2. Both SAG-ADMM and
SVRG-ADMM are initialized by running OPG-ADMM for
n/b iterations.2 For SVRG-ADMM, since the learning rate
in (12) is effectively ⌘/�, we set � = 1 and only tune ⌘. All
parameters are tuned as in [Zhong and Kwok, 2014]. Each
stochastic algorithm is run on a small training subset for a
few data passes (or stages). The parameter setting with the
smallest training objective is then chosen. To ensure that
the ADMM constraint is satisfied, we report the performance
based on (x

t

, Ax
t

). Results are averaged over five repetitions.
Figure 1 shows the objective values and testing losses ver-

sus CPU time. SAG-ADMM cannot be run on mnist8m and
dna because of its large memory requirement (storing the
weights already takes 8.2GB for mnist8m, and 14.3GB for
dna). As can be seen, stochastic ADMM methods with vari-
ance reduction (SVRG-ADMM, SAG-ADMM and SDCA-
ADMM) have fast convergence, while those that do not
use variance reduction are much slower. SVRG-ADMM,
SAG-ADMM and SDCA-ADMM have comparable speeds,
but SVRG-ADMM requires much less storage (see also Ta-
ble 1). On the medium-sized protein and covertype, SCAS-
ADMM has comparable performance with the other stochas-
tic ADMM variants using variance reduction. However, it
becomes much slower on the larger minist8m and dna, which
is consistent with the analysis in Section 3.3.

2This extra CPU time is counted towards the first stages of SAG-
ADMM and SVRG-ADMM.

2411

CPU time (s)
0 5 10 15

ob
je

ct
ive

 m
in

us
 b

es
t

10-8

10-6

10-4

10-2

100

CPU time (s)
0 10 20 30 40 50

ob
je

ct
ive

 m
in

us
 b

es
t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

CPU time (s)
0 50 100 150 200

ob
je

ct
ive

 m
in

us
 b

es
t

10-5

10-4

10-3

10-2

10-1

100

CPU time (s)
0 50 100 150 200 250 300

ob
je

ct
ive

 m
in

us
 b

es
t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

CPU time (s)
0 5 10 15

te
st

 lo
ss

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a) protein
CPU time (s)

0 10 20 30 40 50

te
st

 lo
ss

0.5125

0.513

0.5135

0.514

0.5145

(b) covertype
CPU time (s)

0 50 100 150 200

te
st

 lo
ss

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(c) mnist8m
CPU time (s)

0 50 100 150 200 250 300

te
st

 lo
ss

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

(d) dna

Figure 1: Performance vs CPU time (in sec) on graph-guided fused lasso (Top: objective value; Bottom: testing loss).

4.2 Multitask Learning
When there are a large number of outputs, the much smaller
space requirement of SVRG-ADMM is clearly advantageous.
In this section, experiments are performed on an 1000-class
ImageNet data set [Russakovsky et al., 2015]. We use
1,281,167 images for training, and 50, 000 images for test-
ing. 4096 features are extracted from the last fully connected
layer of the convolutional net VGG-16 [Simonyan and Zisser-
man, 2014]. The multitask learning problem is formulated as:
min

X

P

N

i=1

`
i

(X)+�
1

kXk
1

+�
2

kXk⇤, where X 2 Rd⇥N

is the parameter matrix, N is the number of tasks, d is the fea-
ture dimensionality, `

i

is the multinomial logistic loss on the
ith task, and k · k⇤ is the nuclear norm. To solve this problem
using ADMM, we introduce an additional variable X 0 with
the constraint X 0

= X . On setting A = [I; I], the regularizer
is then g(AX) = g([X;X 0

]) = �
1

kXk
1

+ �
2

kX 0k⇤. We set
�
1

= 10

�5, �
2

= 10

�4, and use a mini-batch size b = 500.
SAG-ADMM requires 38.2TB for storing the weights, and
SDCA-ADMM 9.6GB for the dual variables, while SVRG-
ADMM requires 62.5MB for storing x̃ and the full gradient.

Figure 2 shows the objective value and testing error ver-
sus time. SVRG-ADMM converges rapidly to a good solu-
tion. The other non-variance-reduced stochastic ADMM al-
gorithms are very aggressive initially, but quickly get much
slower. SCAS-ADMM is again slow on this large data set.

CPU time (minutes)
0 50 100 150 200 250 300

ob
je

ct
ive

 m
in

us
 b

es
t

10-2

10-1

100

STOC-ADMM
OPG-ADMM
RDA-ADMM
SCAS-ADMM
SVRG-ADMM

(a) objective.
CPU time (minutes)

0 50 100 150 200 250 300

te
st

 e
rro

r (
%

)

30

31

32

33

34

35
STOC-ADMM
OPG-ADMM
RDA-ADMM
SCAS-ADMM
SVRG-ADMM

(b) testing error (%).

Figure 2: Performance vs CPU time (in min) on ImageNet.

4.3 Varying ⇢

Finally, we perform experiments on total-variation (TV) re-
gression [Boyd et al., 2011] to demonstrate the effect of
⇢. Samples z

i

’s are generated with i.i.d. components from
the standard normal distribution. Each z

i

is then normal-
ized to kz

i

k = 1. The parameter x is generated accord-
ing to http://www.stanford.edu/⇠boyd/papers/admm/. The output
o
i

is obtained by adding standard Gaussian noise to xT z
i

.
Given n samples {(z

1

, o
1

), . . . , (z
n

, o
n

)}, TV regression is
formulated as: min

x

1

2n

P

n

i=1

ko
i

�xT z
i

k2+�kAxk
1

, where
A

ij

= 1 if i = j; �1 if j = i+ 1; and 0 otherwise.
We set n = 100, 000, d = 500, � = 0.1/

p
n, and a mini-

batch size b = 100. Figure 3 shows the objective value and
testing loss versus CPU time, with different ⇢’s. As can be
seen, ⇢⇤ in Proposition 3 outperforms the other choices of ⇢.

CPU time (s)
0 2 4 6 8 10

ob
jec

tiv
e

m
inu

s b
es

t

10-10

10-8

10-6

10-4

10-2

100

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = ρ∗

(a) objective.
CPU time (s)

0 2 4 6 8 10

te
st

los
s

0.4984

0.4985

0.4986

0.4987

0.4988

0.4989

0.499

0.4991

0.4992
ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = ρ∗

(b) testing loss.

Figure 3: Performance of SVRG-ADMM at different ⇢’s.

5 Conclusion
This paper proposed a non-trivial integration of SVRG and
ADMM. Its theoretical convergence rates are as fast as ex-
isting variance-reduced stochastic ADMM algorithms, but its
storage requirement is much lower, even independent of the
sample size. Experimental results demonstrate its benefits
over other stochastic ADMM methods.

2412

Acknowledgments
This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 614513).

References
[Bottou, 2004] L. Bottou. Stochastic learning. In Advanced

Lectures on Machine Learning, pages 146–168. Springer
Verlag, 2004.

[Boyd et al., 2011] S. Boyd, N. Parikh, E. Chu, B. Peleato,
and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipli-
ers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[Defazio et al., 2014] A. Defazio, F. Bach, and S. Lacoste-
Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives.
In Advances in Neural Information Processing Systems,
pages 2116–2124, 2014.

[Deng and Yin, 2015] W. Deng and W. Yin. On the global
and linear convergence of the generalized alternating di-
rection method of multipliers. Journal of Scientific Com-
puting, pages 1–28, 2015.

[Friedman et al., 2008] J. Friedman, T. Hastie, and R. Tib-
shirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

[Ghadimi et al., 2015] E. Ghadimi, A. Teixeira, I. Shames,
and M. Johansson. Optimal parameter selection for
the alternating direction method of multipliers (ADMM):
Quadratic problems. IEEE Transactions on Automatic
Control, 60(3):644–658, 2015.

[Giselsson and Boyd, 2014] P. Giselsson and S. Boyd. Di-
agonal scaling in Douglas-Rachford splitting and ADMM.
In Proceedings of the 53rd IEEE Conference on Decision
and Control, 2014.

[Golub and Van Loan, 2012] G.H. Golub and C.F. Van Loan.
Matrix Computations. JHU Press, 2012.

[He and Yuan, 2012] B. He and X. Yuan. On the O(1/n)
convergence rate of the Douglas-Rachford alternating di-
rection method. SIAM Journal on Numerical Analysis,
50(2):700–709, 2012.

[Jacob et al., 2009] L. Jacob, G. Obozinski, and J.-P. Vert.
Group lasso with overlap and graph lasso. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pages 433–440, 2009.

[Johnson and Zhang, 2013] R. Johnson and T. Zhang. Accel-
erating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Pro-
cessing Systems, pages 315–323, 2013.

[Kim et al., 2009] S. Kim, K. A. Sohn, and E. P. Xing. A
multivariate regression approach to association analysis of
a quantitative trait network. Bioinformatics, 25(12):i204–
i212, 2009.

[Nishihara et al., 2015] R. Nishihara, L. Lessard, B. Recht,
A. Packard, and M. I. Jordan. A general analysis of the
convergence of ADMM. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages 343–
352, 2015.

[Ouyang et al., 2013] H. Ouyang, N. He, L. Tran, and
A. Gray. Stochastic alternating direction method of mul-
tipliers. In Proceedings of the 30th International Confer-
ence on Machine Learning, pages 80–88, 2013.

[Parikh and Boyd, 2014] Neal Parikh and Stephen Boyd.
Proximal algorithms. Foundations and Trends in Opti-
mization, 1(3):127–239, 2014.

[Roux et al., 2012] N.L. Roux, M. Schmidt, and F.R. Bach.
A stochastic gradient method with an exponential conver-
gence rate for finite training sets. In Advances in Neural
Information Processing Systems, pages 2663–2671, 2012.

[Russakovsky et al., 2015] O. Russakovsky, J. Deng, H. Su,
J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and Li F.-F. Im-
agenet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 115(3):211–252, 2015.

[Shalev-Shwartz and Zhang, 2013] S. Shalev-Shwartz and
T. Zhang. Stochastic dual coordinate ascent methods for
regularized loss. Journal of Machine Learning Research,
14(1):567–599, 2013.

[Simonyan and Zisserman, 2014] K. Simonyan and A. Zis-
serman. Very deep convolutional networks for large-scale
image recognition. Technical Report arXiv:1409.1556,
2014.

[Suzuki, 2013] T. Suzuki. Dual averaging and proximal gra-
dient descent for online alternating direction multiplier
method. In Proceedings of the 30th International Con-
ference on Machine Learning, pages 392–400, 2013.

[Suzuki, 2014] T. Suzuki. Stochastic dual coordinate ascent
with alternating direction method of multipliers. In Pro-
ceedings of the 31st International Conference on Machine
Learning, pages 736–744, 2014.

[Wang and Banerjee, 2012] H. Wang and A. Banerjee. On-
line alternating direction method. In Proceedings of
the 29th International Conference on Machine Learning,
pages 1119–1126, 2012.

[Xiao and Zhang, 2014] L. Xiao and T. Zhang. A proximal
stochastic gradient method with progressive variance re-
duction. SIAM Journal on Optimization, 24(4), 2014.

[Zhang et al., 2011] X. Zhang, M. Burger, and S. Osher. A
unified primal-dual algorithm framework based on Breg-
man iteration. Journal of Scientific Computing, 46(1):20–
46, 2011.

[Zhao et al., 2015] S. Y. Zhao, W. J. Li, and Z. H. Zhou.
Scalable stochastic alternating direction method of mul-
tipliers. Technical Report arXiv:1502.03529, 2015.

[Zhong and Kwok, 2014] W. Zhong and J. Kwok. Fast
stochastic alternating direction method of multipliers. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pages 46–54, 2014.

2413

