The Pre-Image Problem in Kernel Methods

James Kwok

Ivor Tsang

Department of Computer Science Hong Kong University of Science and Technology Hong Kong

Outline

- Introduction
- Proposed Method
- Experimental Results
- Conclusion

Kernel Principal Component Analysis

- Kernel PCA: linear PCA in the feature space
- Given $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, construct $\mathbf{K} = [K_{ij}]$
- K = UΛU' (assume that {φ(x₁),..., φ(x_N)} has been centered)
 U = [α₁,..., α_N] with α_i = [α_{i1},..., α_{iN}]'
 Λ = diag(λ₁,..., λ_N)
- kth orthonormal eigenvector: $\mathbf{V}_k = \sum_{i=1}^N (\alpha_{ki}/\sqrt{\lambda_k})\varphi(\mathbf{x}_i)$
- Projection of $\varphi(\mathbf{x})$ onto \mathbf{V}_k : $\beta_k = \varphi(\mathbf{x})' \mathbf{V}_k$
- Projection $P\varphi(\mathbf{x})$ of $\varphi(\mathbf{x})$: $P\varphi(\mathbf{x}) = \sum_{k=1}^{K} \beta_k \mathbf{V}_k$

The Pre-Image Problem

• Given noisy x, can we recover an $\hat{\mathbf{x}}$ such that $\varphi(\hat{\mathbf{x}}) = P\varphi(\mathbf{x})$?

- Non-trivial as φ is not invertible in general
- Moreover, the exact pre-image may not exist
- Only an approximate solution can be obtained

Solution of Mika et al. (NIPS11)

- Minimize the feature-space distance $\| \varphi(\hat{\mathbf{x}}) P \varphi(\mathbf{x}) \|$
 - nonlinear optimization
 - iteration scheme for Gaussian kernels $k(\mathbf{x}, \mathbf{y}) = \exp(\|\mathbf{x} \mathbf{y}\|^2/c)$:

$$\hat{\mathbf{x}}_{t+1} = \frac{\sum_{i=1}^{N} \gamma_i \exp(-\|\hat{\mathbf{x}}_t - \mathbf{x}_i\|^2 / c) \mathbf{x}_i}{\sum_{i=1}^{N} \gamma_i \exp(-\|\hat{\mathbf{x}}_t - \mathbf{x}_i\|^2 / c)}, \quad \gamma_i = \sum_{k=1}^{K} \beta_k \alpha_{ki}$$

- Problems:
 - numerical instability
 - local minimum

- Neighbors are most important in determining the location
 - find the distances between $P \varphi(\mathbf{x})$ and its neighboring $\varphi(\mathbf{x}_i)$'s
- Obtain the corresponding input-space distances
- Use these distances to constrain the location of the pre-image

Input- and Feature-Space Distances

• Feature-space distance between $P\varphi(\mathbf{x})$ and its neighbor $\varphi(\mathbf{x}_i)$

$$\tilde{d}^{2}(P\varphi(\mathbf{x}),\varphi(\mathbf{x}_{i})) = \|P\varphi(\mathbf{x}) - \varphi(\mathbf{x}_{i})\|^{2}$$
$$= \|P\varphi(\mathbf{x})\|^{2} + \|\varphi(\mathbf{x}_{i})\|^{2} - 2P\varphi(\mathbf{x})'\varphi(\mathbf{x}_{i})$$

- recall that
$$P\varphi(\mathbf{x}) = \sum_{k=1}^{K} \beta_k \mathbf{V}_k$$

- $d^2(P\varphi(\mathbf{x}), \varphi(\mathbf{x}_i))$ can be computed based on K
- Obtain the corresponding input-space distance d_{ij}

From \tilde{d}_{ij} to d_{ij}

• Isotropic kernels: $k(\mathbf{x}_i, \mathbf{x}_j) = \kappa(\|\mathbf{x}_i - \mathbf{x}_j\|^2)$

$$\tilde{d}_{ij}^2 = k(\mathbf{x}_i, \mathbf{x}_i) + k(\mathbf{x}_j, \mathbf{x}_j) - 2k(\mathbf{x}_i, \mathbf{x}_j)$$
$$= K_{ii} + K_{jj} - 2\kappa(\|\mathbf{x}_i - \mathbf{x}_j\|^2)$$
$$= K_{ii} + K_{jj} - 2\kappa(d_{ij}^2)$$

$$\kappa(d_{ij}^2) = \frac{1}{2}(K_{ii} + K_{jj} - \tilde{d}_{ij}^2)$$

- typically, κ is invertible
- example: Gaussian kernel $\kappa(z) = \exp(-\beta z)$

$$d_{ij}^2 = -\frac{1}{\beta} \log(\frac{1}{2}(K_{ii} + K_{jj} - \tilde{d}_{ij}^2))$$

• Dot product kernels: $k(\mathbf{x}_i, \mathbf{x}_j) = \kappa(\mathbf{x}'_i \mathbf{x}_j)$

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \kappa(\mathbf{x}'_i \mathbf{x}_j) = \kappa(s_{ij})$$

- κ is often invertible
- example: polynomial kernel $\kappa(z)=z^p$

$$s_{ij} = K_{ij}^{\frac{1}{p}}$$
 when p is odd

- corresponding input-space distance: $d_{ij}^2 = s_{ii}^2 + s_{jj}^2 - 2s_{ij}$

Back to Input Space

- Assume that the pre-image $\hat{\mathbf{x}}$ is in the span of the \mathbf{x}_i 's
 - Mika et al. also obtains the same assumption
- Maintain the distances between $\hat{\mathbf{x}}$ and its neighbors (in the least-square sense)
 - similar to the ideas in classical scaling and metric multidimensional scaling (MDS)
 - reduces to finding the least-square solution for a system of linear equations

Details

- After kernel PCA, we obtain $P \varphi(\mathbf{x})$
- Identify the n neighbors ($\varphi(\mathbf{x}_1), \ldots, \varphi(\mathbf{x}_n)$) of $P\varphi(\mathbf{x})$
 - $\mathbf{X}_{d \times n} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$ (input space)
 - assume that they span a q-dimensional space (rank(\mathbf{X}) = q)
- Obtain the desired input-space distances between the unknown pre-image and these neighbors

$$- \mathbf{d}^2 = [d^2(\mathbf{x}, \mathbf{x}_1), d^2(\mathbf{x}, \mathbf{x}_2), \dots, d^2(\mathbf{x}, \mathbf{x}_n)]'$$

- Obtain a basis for these centered neighbors
 - center these neighbors: $\mathbf{H}\mathbf{X}'$
 - H is the centering matrix $\mathbf{I} \frac{1}{n}\mathbf{11'}$

- use SVD on $(\mathbf{H}\mathbf{X}')':~\mathbf{X}\mathbf{H}=\mathbf{U}\boldsymbol{\Lambda}\mathbf{V}'=\mathbf{U}\mathbf{Z}$
 - $\mathbf{U}_{d \times q} = [\mathbf{e}_1, \dots, \mathbf{e}_q]$ (\mathbf{e}_i 's orthonormal)
 - $\mathbf{Z}_{q \times n} = [\mathbf{z}_1, \dots, \mathbf{z}_n]$ (\mathbf{z}_i is the projections of \mathbf{x}_i onto \mathbf{e}_j 's)
- distances of \mathbf{x}_i 's to the centroid: $\mathbf{d}_0^2 = [\|\mathbf{z}_1\|^2, \dots, \|\mathbf{z}_n\|^2]'$
- embed the desired pre-image $\hat{\mathbf{x}}$ in the span of these neighbors $d^2(\hat{\mathbf{x}}, \mathbf{x}_i) \simeq d_i^2, \quad i = 1, \dots, n.$
 - if exact pre-image exists, distances exactly preserved
 - least-square solution

$$\hat{\mathbf{z}} = -\frac{1}{2} \mathbf{\Lambda}^{-1} \mathbf{V}' (\mathbf{d}^2 - \mathbf{d}_0^2)$$

- expressed in terms of the coordinate system defined by the \mathbf{e}_j 's
- transform back to the original coordinate system in the input space

$$\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}} + \bar{\mathbf{x}}$$

Experiment: Pre-Images in Kernel PCA

- images from USPS dataset, 100 test images
- ten neighbors are used in locating the pre-image
- Gaussian noise ($\sigma^2 = 0.25, 0.3, 0.4, 0.5$)
- similar results on salt-and-pepper noise

 noisy image; (300 training images) Mika *et al.*; proposed method; (60 training images) Mika et al.; proposed method

number of	σ^2	SNR		
training images		noisy images	our method	Mika <i>et al.</i>
300	0.25	2.32	6.36	5.90
	0.3	1.72	6.24	5.60
	0.4	0.91	5.89	5.17
	0.5	0.32	5.58	4.86
60	0.25	2.32	4.64	4.50
	0.3	1.72	4.56	4.39
	0.4	0.90	4.41	4.19
	0.5	0.35	4.29	4.06

Experiment on Polynomial Kernel (Order=3)

- Mika *et al.*
 - we derive a similar iteration scheme as for Gaussian kernels
 - however, the iteration does not converge
- Proposed method
 - Noisy image; 300 training images; 60 training images

number of training images	σ^2	SNR from our method
300	0.25	5.39
	0.3	5.08
	0.4	4.61
	0.5	4.24
60	0.25	4.33
	0.3	4.09
	0.4	3.74
	0.5	3.50

Pre-Images in Kernel *k*-**Means Clustering**

- Kernelized version of k-means clustering
 - 3000 images randomly selected from the USPS data set
 - -k = 10 (number of digits)
 - Gaussian kernel
- Use the proposed method to find pre-images of cluster centroids
- For comparison, also obtain cluster centroids by averaging in the input space over all patterns belonging to the same cluster

Results

• Input space averaging

• Proposed method

- yields centroids that are visually more appealing

Conclusion

- Finding the pre-image of a feature vector in the kernel-induced feature space
- Advantages:
 - non-iterative
 - involves only linear algebra
 - does not suffer from numerical instabilities or the local minimum problem
- Can be applied equally well to both isotropic kernels and dot product kernels
- Experimental results show significant improvements over the traditional method

Future Directions

- Can be applied to other kernel applications that also require computation of the pre-images
- Extension to other classes of kernels
 - only addressed isotropic kernels and dot product kernels in this paper
 - kernel dependency estimation: pre-images for structured objects