
Applying Neighborhood Consistency for Fast Clustering and
Kernel Density Estimation

Kai Zhang † Ming Tang∗ James T. Kwok†

† Department of Computer Science, Hong Kong ∗ NLPR, Institute of Automation, Chinese
University of Science and Technology, Kowloon Academy of Sciences, Beijing, 100080

Hong Kong. {twinsen, jamesk}@cs.ust.hk tangm@nlpr.ia.ac.cn

Abstract

Nearest neighborhood consistency is an important con-
cept in statistical pattern recognition, which underlies the
well-known k-nearest neighbor method. In this paper, we
combine this idea with kernel density estimation based clus-
tering, and derive the fast mean shift algorithm (FMS). FMS
greatly reduces the complexity of feature space analysis, re-
sulting satisfactory precision of classification. More impor-
tantly, we show that with FMS algorithm, we are in fact
relying on a conceptually novel approach of density esti-
mation, the fast kernel density estimation (FKDE) for clus-
tering. The FKDE combines smooth and non-smooth esti-
mators and thus inherits advantages from both. Asymptotic
analysis reveals the approximation of the FKDE to standard
kernel density estimator. Data clustering and image seg-
mentation experiments demonstrate the efficiency of FMS.

1. Introduction

In many computer vision problems, the analysis of the
feature space that exhibits complex multimodal structures
is realized through nonparametric kernel estimation tech-
niques. Among them, the mean shift iterative procedure of
mode seeking is a highly successful one. It was originally
developed by Fukunaga and Hostetler [8] based on kernel
density gradient estimation, and later applied to many com-
puter vision tasks such as tracking [2, 15, 11], image seg-
mentation [4, 5], information fusion [1], clustering and clas-
sification [9, 3], and video processing [6].

A brief introduction of the mean shift algorithm is
presented as follows. Given a set of data points
{xi | i = 1, 2, . . . , N} in the d-dimensional feature space,
the kernel density estimator with symmetric kernel function

K(·) and fixed bandwidth h can be written as [13]

fK(x) =
1
N

N∑
i=1

1
hd

k

(∥∥∥∥x − xi

h

∥∥∥∥
2
)

, (1)

where k(·) is the profile of kernel K such that K(x) =
ck(‖x‖2), and c is a normalization constant. When the
derivative of k(·) exists, g(·) = −k′(·) can be used as a pro-
file to define a new kernel G(x) such that G(x) = c′g(‖x‖2)
with normalization constant c′. Take the gradient of (1), we
can obtain

m(x) = C
∇̂fK(x)

f̂G(x)
, (2)

where

m(x) =

∑N
i=1

1
hd+2 xig

(∥∥ x−xi

h

∥∥2
)

∑N
i=1

1
hd+2 g

(∥∥ x−xi

h

∥∥2
) − x (3)

is called the mean shift vector, and C is a constant. From
(2), we can see that m(x) points towards the steepest ascent
direction of the density function f̂K(x), therefore the mean
shift iteration

x(k+1) = x(k) + m(x(k)), k = 1, 2, . . . (4)

is a hill climbing process to the nearest maximum of f̂K(x).
Although mean shift algorithm has been applied exten-

sively in computer vision, the complexity O(N2) [3] is
high when large data sets are involved, and various meth-
ods have been proposed to speed up the algorithm. One
category is aimed at improving the efficiency of the most
expensive operation in mean shift, i.e., finding the nearest
neighbors of a point. kD-tree is a popularly adopted struc-
ture to achieve this goal. In [9], a different technique called
locality-sensitive hashing (LSH) is employed for approxi-
mate neighborhood searching in variable bandwidth mean

shift. The optimal parameters of LSH are determined by a
pilot learning procedure.

The other category focuses on applying function expan-
sion techniques. For instance, the fast Gauss transform
(FGT) [10] has been introduced for efficient modelling of
the color distribution of homogeneous regions in object
tracking [7]. In [14], an improved fast Gauss transform
(IFGT) is proposed to accelerate the calculation of the mean
shift vector (3) in higher dimensionality.

In this paper, we adopt the idea of “nearest neighbor con-
sistency” in mean shift, and develop a fast mean shift (FMS)
algorithm that significantly reduces the complexity of fea-
ture space analysis. The FMS algorithm is presented in
section 2, and the resultant “fast kernel density estimation”
(FKDE) is discussed in section 3. In section 4, asymptotic
analysis of the FKDE demonstrates its approximation to
common kernel density estimators. Section 5 gives cluster-
ing and image segmentation results using FMS algorithm.
And conclusions are made in section 6.

2. Fast Mean Shift Algorithm

Nearest neighbor consistency is an important concept in
statistical pattern recognition. Given a training set with
known class labels, the nearest neighbor rule determines the
class label of a point according to the label of its nearest
neighbor. But due to the lack of labelled samples, it is not
easy to apply the neighborhood consistency to completely
unsupervised environments. In this section, we adopt the
nearest neighbor rule to mean shift, an unsupervised clus-
tering method introduced in section 1, and derive the fast
mean shift (FMS) algorithm that significantly accelerates
the feature space analysis.

2.1. Apply Neighborhood Consistency in Mean Shift

Usually, the mean shift vector m(x) is calculated using
the whole data set, as shown in (3). Inspired by the neigh-
borhood consistency, however, we can simplify the calcula-
tion of m(x) as

m(x) =

∑m
j=1

∑
xi∈Sj

xig
(∥∥ x−xi

h

∥∥2
)

∑m
j=1

∑
xi∈Sj

g
(∥∥ x−xi

h

∥∥2
) − x

�
∑m

j=1 njcjg

(∥∥∥ x−cj

h

∥∥∥2
)

∑m
j=1 njg

(∥∥∥ x−cj

h

∥∥∥2
) − x (5)

= mF (x).

where the original data set {xi | i = 1, 2, . . . , N} is de-
composed into a number of “local subsets”, S1, S2, . . . , Sm,

each with size nj and center cj = 1
nj

∑
xi∈Sj

xi. mF (x)
is called the “fast mean shift vector”. The approximation
in (5) reveals two basic elements of the fast mean shift al-
gorithm (FMS). First, the samples of each local subset Sj

are treated as a whole in describing the density distribution.
Second, the samples of each Sj are assumed to come from
the same class (neighborhood consistency), hence only the
representative (cj) needs to be labelled for each Sj . The
complete FMS algorithm is described as follows:

Fast Mean Shift algorithm (FMS)

I. PARTITION
Divide {xi | i = 1, 2, . . . , N} into m local subsets Sj(j =
1, 2, . . . ,m), each with size nj and center cj . Let C =
{cj | j = 1, 2, . . . ,m} be the cluster centers.

1. Initialize C by randomly selecting a sample as c1. Let
C = {c1}. Then, at the ith iteration, i = 1, 2, . . . , N ,
do the following.

2. Calculate the distances between xi and cj’s, (cj ∈ C).
Once if ‖xi − cj‖ ≤ r, assign xi to Sj , let i = i + 1,
and go to the next iteration.

3. If ‖xi − cj‖ > r for all cj ∈ C, add xi to C as a new
subset center, and assign xi to this new subset. Let
i = i + 1 and go to the next iteration.

4. On termination, count nj , the number of samples in
Sj , and update each cj ∈ C as cj = 1

nj

∑
xi∈Sj

.

II. CLUSTERING.
Run the mean shift iterative procedure in (4) on C, and de-
termine the class assignments of xi’s according to the con-
vergent result of cj’s.

1. For each cj , start the iteration

c(k+1)
j =

∑m
p=1 np · cp · g(‖ c(k)

j −cp

h
‖2)∑m

p=1 np · g(‖ c(k)
j −cp

h
‖2)

with c(0)
j = cj . Record the convergent point as µC

j .

2. For ∀µC
a ,∀µC

b , (1 ≤ a, b ≤ m,a �= b), if ‖µC
a −µC

b ‖ ≤
ε, then assign elements of Sa and Sb to the same class,
or else Sa and Sb belong to different classes.

Note that the volume of the local subsets Sj’s created
in the PARTITION step in the d-dimensional feature space
will never exceed the volume of the d-dimensional hyper-
cube with edge 2r. Unlike some clustering-orientated al-
gorithms, most of which are based on the minimization of
certain objective function, the PARTITION step here is not
aimed at clustering, but rather to find a simplified descrip-
tion of the original sample set by partitioning. Moreover,

2

0
50

100
150

200
250

0

50

100

150

200
0

50

100

150

200

0
50

100
150

200
250

0

50

100

150

200
0

20

40

60

80

100

120

140

160

180

0
50

100
150

200
250

0

50

100

150

200
0

20

40

60

80

100

120

140

160

180

0
50

100
150

200
250

0

50

100

150

200
0

20

40

60

80

100

120

140

160

180

(a) (b) (c) (d)

Figure 1. PARTITION of the “squirrel” sample set under different parameters. See text for details.

140
160

180
200

220
240

100

120

140

160

180
100

110

120

130

140

150

160

170

180

140
160

180
200

220
240

100

120

140

160

180
100

110

120

130

140

150

160

170

180

140
160

180
200

220
240

100

120

140

160

180
100

110

120

130

140

150

160

170

180

140
160

180
200

220
240

100

120

140

160

180
100

110

120

130

140

150

160

170

180

(a) (b) (c) (d)

Figure 2. Comparison of the convergent routes of Mean Shift and FMS iterations. See text for details.

the number of local sets, m, is automatically determined by
the PARTITION parameter r, and is therefore totally data-
driven.

Figures 1 and 2 give some examples of the FMS proce-
dures. Figure 1(a) plots the sample set of the “squirrel” im-
age (Fig.6, the 3rd one of the leftmost column) in the L*u*v
feature space. Using the PARTITION procedure with dif-
ferent parameters (r = 4, 8, 12), we obtain different clus-
ter center sets (C1, C2, C3) in Figures 1(b)–(d). Starting
from point (240, 180, 180), convergent routes of the stan-
dard mean shift are shown in Figures 2(a)–(d) in dots; and
the convergent routes of FMS (on C1, C2, and C3) are plot-
ted in circles in Figures 2(b)–(d). The Gaussian kernel with
bandwidth h = 20 is always used. Note that even though C
is sparse due to the coarse PARTITION procedure, the con-
vergent route of FMS still approximates that of the standard
mean shift very well.

2.2. Approximation Error of the mean shift vector

In this subsection, we will study a sufficient condition on
the error between mF (x) in (5) and m(x) in (3), and show
that it is related to the PARTITION parameter r.

Given a d-dimensional data set, define the basic partition
that divides the feature space into a number of equal-sized
hypercubes with edge rR, where rR is the resolution, i.e.,
the minimum non-zero distance between two samples on
the coordinate axis. Let f(x), x ∈ R

d, be the underlying
true density. f(x) is proportional to the number of samples
falling in the small hypercube centered at x. Then, the mean

shift vector m(x) can be regarded as a numerical solution to

I =

∫
Rd yf(y)g(‖ x−y

h ‖2)dy∫
Rd f(y)g(‖ x−y

h ‖2)dy
− x

by using the rectangular method on the basic partition.
Similarly, the “fast mean shift vector” mF (x) can also be
regarded as another numerical solution of I on a coarser
partition, whose bin-width is bounded by 2r (r is the PAR-
TITION parameter). Suppose ‖m(x) − I‖ < ε1, and
‖mF (x) − I‖ < ε2, then ‖m(x) − mF (x)‖ < ε1 + ε2. Ac-
tually, ε1 and ε2 are associated with rR and r, respectively.
Because the numerator and denominator of I are both inte-
grals, their numerical approximation errors using the rectan-
gular method are O(q′′(ξ)b2) in univariate case, where q(·)
is the integration function and b is the bin-width. Similar
conclusion can also be drawn in multivariate case. There-
fore, the smaller the rR and r, the smaller the numerical
integration error of the numerator and denominator of I for
m(x) and mF (x), and hence the smaller are ε1 and ε2. Since
the basic partition (or rR) is fixed, therefore the smaller the
PARTITION parameter r, the smaller ‖m(x) − mF (x)‖.

2.3. Complexity

The PARTITION step takes O(mN) time (supremum).
However, this can be significantly reduced by using a hi-
erarchical scheme. First, use a large parameter r0 to di-
vide the original set into very few local subsets. Then,
hierarchically divide the existing local subsets by adopt-
ing the PARTITION procedure with gradually decreased
r’s, until a threshold rT is reached. In this way, the num-
ber of local subsets increases exponentially with the depth

3

of the hierarchy, and the process terminates in log m lev-
els. Therefore the complexity of PARTITION is reduced
to O(N log m), where m is the number of local subsets ul-
timately obtained. The CLUSTERING step, on the other
hand, takes O(m2) time. So the overall complexity for FMS
is O(N log m) + O(m2). Notice that m is inversely asso-
ciated with PARTITION parameter rT , and is usually much
smaller than N .

2.4. FMS with More Efficient Partitions

We use “targets” and “sources” to represent the set of
points to be classified through mean shift, and the set of
points on which the mean shift vector is calculated, re-
spectively. In FMS, both are chosen to be the same C =
{cj | j = 1, 2, . . . ,m}. Often, it is more desirable to choose
them separately, since the sources determine the underlying
density estimate of FMS, while the targets determine the
class assignment of xi’s.

Usually, to capture the important characteristics of a dis-
tribution, a more delicate partition is required to form the
sources compared with the partition for the targets. In prac-
tice, we first perform a fine hierarchical partitioning on the
original data set by using a relatively small threshold rT ,
and choose the sources as the centers cj’s of the local sub-
sets Sj(j = 1, 2, . . . ,m). Then, we fuse some of the centers
cj’s to form the targets. This fusion operation is defined as
follows. Perform mean shift on the centers cjs. After an
iteration, if two updated centers ca and cb are close enough,
then Sa and Sb are fused to form a larger local set, whose
center replaces ca and cb as a new target. The fusion opera-
tion efficiently decreases the number of targets, and conse-
quently the complexity of FMS.

3. A Novel Fast Density Estimator

The convergent terminals of the mean shift iterations are
determined by the local maxima of the estimated density (1)
[4]. This also holds for FMS. In analyzing the correspond-
ing density estimate of the FMS algorithm, we find that it’s
actually a novel density estimation technique, which we call
“fast kernel density estimation” (FKDE). The procedures
and advantages of FKDE are described as follows.

1. Divide the sample set into a number of local subsets
Sj(j = 1, 2, . . . ,m) (with PARTITION parameter r),
each with size nj and center cj . This is similar to
building a multivariate histogram of variable bin-width
bounded by 2r.

2. The FKDE at x is defined by

f̂F (x) =
1

Nhd

m∑
j=1

k

(∥∥∥∥x − cj

h

∥∥∥∥
2
)

nj , (6)

which can be regarded as the weighted sum of m ker-
nels centered at the mean of each bin in the histogram,
with bin-heights as the weights, and N =

∑m
j=1 nj .

Therefore, the histogram in step 1 is also called the
“reconstruction histogram”.

If we use the hierarchical partition scheme described in
Section 2.4 to build the “reconstruction histogram”, step 1
of the FKDE will only cost O(N log m) time. Then, we
only have to spend O(m) time to estimate the density at
each sample, and O(Nm) time altogether. In contrast, stan-
dard kernel density estimation takes O(N2) time to obtain
the estimates at all samples. This means a speedup ra-
tio of about γ = N2/(N log m + Nm) ≈ N/m is ob-
tained. In image segmentation experiments, N is usually of
104 ∼ 105 and m is of 102 ∼ 103, so the FKDE can be
hundreds of times faster.

The FKDE is illustrated in Figure 3, where a set of 1000
1-D samples is drawn from the standard normal distribution.
Figure 3(a) shows its histogram with bin-width 0.15, while
Figure 3(b) is the reconstruction histogram with a much
larger bin-width w = 0.4. When a number of Gaussian ker-
nels with bandwidth h = 0.3, centered at the mean of each
bin and weighted by the bin height, are added together (Fig-
ure 3(c)), we obtain the fast kernel density estimate f̂F (x)
(Figure 3(d)).

Figure 4 compares f̂F (x) with the standard density es-
timator f̂(x) when the bin-width of the reconstruction his-
togram w varies (both of them use the Gaussian kernel of
bandwidth h = 0.3). When w < 0.5, there is nearly no dif-
ference between f̂(x) and f̂F (x), so we only plot the result
when w = 0.5 (Figure 4(a)), where the thick green curve
is f̂(x) and the thin black curve is f̂F (x). When w = 0.6,
a slight difference occurs (Figure 4(b)). When w increases
to 0.7 and 0.9 (Figures 4(c)–(d)), f̂F (x) is significantly dif-
ferent from f̂(x). In practice, we will not use such coarse
partitions. The choice of proper partition parameter will be
discussed in section 4.

From (6) we can see that the buildup of the FKDE
novelly involves both smooth and non-smooth estimators.
The non-smooth “reconstruction histogram” first provides
a “skeletonized” view of the whole distribution, and then
smooth kernel functions are placed on the center of each bin
to further improve the estimate. By doing this, FKDE suc-
cessfully inherits advantages from both kinds of estimators.
As we know, the histogram estimator is easily constructed,
but may fail to expose the true modes of distribution due to
its non-smooth nature. And its bias is O(h), where h is the
bandwidth. Smooth kernel estimators, on the other hand,
better reveals the structure of the underlying distribution,
with a bias O(h2). Of course its computation is much more
expensive. By combining smooth and non-smooth estima-
tors, the FKDE can provide a good density estimate (whose
bias is proved to be O(h2)+O(r2) in the next section) with

4

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15

20

25

30

35

40

x

H
is

to
gr

am

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

x

R
ec

on
st

ru
ct

io
n

hi
st

og
ra

m

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

R
ec

on
st

ru
cy

io
n

hi
st

og
ra

m

x
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

F
as

t k
er

ne
l d

en
si

ty
 e

st
im

at
e

FKDE

(a) (b) (c) (d)

Figure 3. Illustration of the fast kernel density estimation (FKDE). See text for details.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

D
en

si
ty

 e
st

im
at

e

KDE
FKDE

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

D
en

si
ty

 e
st

im
at

e
KDE
FKDE

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

D
en

si
ty

 e
st

im
at

e

KDE
FKDE

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
en

si
ty

 e
st

im
at

e

x

KDE
FKDE

(a) w = 0.5. (b) w = 0.6. (c) w = 0.7. (d) w = 0.9.
Figure 4. Comparison of standard kernel density estimate (KDE) and the fast kernel density estimate (FKDE) when the bin-width w of the
reconstruction histogram varies.

much less computation compared with the smooth density
estimators.

4. Asymptotic Approximation Property of the
Fast Density Estimator

In this section, we investigate the asymptotic properties
of the FKDE f̂F (x), which provides more intuition about
the way FMS algorithm behaves. Compared with the error
analysis of the fast Gauss transform in the special case of
Gaussian kernels, our analysis is more generalized.

In estimation theory, a global discrepancy measure be-
tween the estimated and target densities is the mean inte-
grated square error (MISE), which is obtained by integrat-
ing the mean square error (MSE) over the whole domain.
The MSE is defined as:

MSE(x) = E{f̂(x) − f(x)}2

= V ar
(
f̂(x)

)
+
(
Bias

(
f̂(x)

))2

, (7)

which is decomposed into the bias and variance [13]. Next
we will show how to link the MSE of standard kernel den-
sity estimator with that of FKDE. Consider first the bias. In
standard kernel density estimation, the bias is [13]

Bias
(
f̂(x)

)
= E[f̂(x)] − f(x)

=
1

hd

∫
Rd

K
(x − y

h

)
f(y)dy − f(x). (8)

For the bias of the FKDE, notice that (6) can be written as

f̂F (x) =
1

Nhd

m∑
j=1

njK
(x − cj

h

)
=

1

Nhd

N∑
i=1

K

(
x − c(xi)

h

)
,

where c(xi) maps xi to the mean of the samples in Sj by
c(xi) = 1

nj

∑
xp∈Sj

xp, and xi ∈ Sj . Asymptotically, when
the sample size N → ∞, summation becomes integration.
So c(xi) becomes c(xi) =

∫
Ij

xf(x)dx, where Ij is the re-

gion in the feature space that surrounds Sj . Hence, c(x) is
constant for all x ∈ Ij , denoted as yj . Then the bias of

f̂F (x) can be written as

Bias
(
f̂F (x)

)
= E

[
f̂F (x)

]
−f(x)

=
1

hd

∫
Rd

K

(
x − c(y)

h

)
f(y)dy−f(x)

=
1

hd

m∑
j=1

K

(
x − yj

h

)∫
Ij

f(y)dy−f(x). (9)

The Bias(f̂F (x)) in (9) can be viewed as an approxima-
tion to Bias(f̂(x)) in (8) by replacing K(·) with discrete
values. Since f(y) is bounded, it is easy to see that∣∣∣Bias

(
f̂(x)

)
− Bias

(
f̂F (x)

)∣∣∣
=

∣∣∣∣∣
m∑

i=1

1

hd

∫
Ij

[
K
(x − y

h

)
− K

(
x − yj

h

)]
f(y)dy

∣∣∣∣∣
≤ max[f(y)]

∣∣∣∣∣
m∑

i=1

1

hd

∫
Ij

[
K
(x − y

h

)
− K

(
x − yj

h

)]
dy

∣∣∣∣∣
= ρE ,

where ρ = max[f(y)], and E is the numerical integration
error of

∫
1

hd K
(x−y

h

)
dy using rectangular method. This

means the bias of the FKDE is bounded by |Bias(f̂F (x)| ≤
|Bias(f̂(x))| + ρE . In the univariate case, E = O(r2),
where r is the PARTITION parameter, and the bias of the

5

standard kernel estimate is |Bias(f̂(x))| = O(h2) [13].
Therefore the bias of the FKDE can be ultimately obtained
as |Bias(f̂F (x))| = O(h2) + O(r2). This explains why
we should not set r too large compared with h, or else the
approximation would be poor. Similar conclusions can be
drawn on the variance of the FKDE as it can also be written
in form of integration [13].

In practice, the selection of r is a trade-off between speed
and accuracy. If r = 0, the proposed FMS/FKDE and the
original MS/KDE algorithms are identical and there is no
speedup. The larger is r, the faster is the proposed algo-
rithm and the larger is the error. But the error can be well-
controlled if r is reasonably smaller than the bandwidth
h. This guarantees that the possible negative effect of pre-
clustering (the PARTITION step) can be weakened greatly.
In experiments, we choose r to be 0.2h − 0.7h. The results
are quite satisfactory with significant speedup.

5. Experiments

We apply FMS to clustering and image segmentation.
All the codes are written in C++ and run on a 2.26GHz
Pentium-III PC. The first experiment is to cluster a synthetic
data set with 32640 3-D points (Figure 5(a)). Standard un-
supervised procedure such as ISODATA [12] will fail on
this data set. Comaniciu and Meer [3] proposed running
mean shift on a set of m randomly selected points, where
the distance between any two neighbors is at least h, and
the points should not lie in sparsely distributed regions. The
resultant complexity in the clustering step is O(mN), much
larger than our O(m2) (strictly speaking, O(msmt), where
ms and mt are number of sources and targets, respectively).

We use hierarchical PARTITION with initial r0 = 1 and
a 30% decrease of r on each level of hierarchy, until the
threshold rT = 0.15 is reached. Then, we fuse the local
set centers (Section 2.5), and obtain 710 sources and 331
targets (represented as light and dark points in Figure 5(b),
respectively). The Gaussian kernel with bandwidth h =
0.15 is used. Figure 5(c) plots the convergent targets, and
Figure 5(d) is the clustering result. Table 1 gives the run
time and error rate of the FMS clustering algorithm when
the PARTITION threshold rT varies.

We also perform segmentation through clustering in the
L*u*v color space, with the feature values normalized to
[0, 1]. Figure 6 shows the experimental results. The left-
most column is the original image, and the second col-
umn is the segmentation results by using the standard mean
shift procedure, which is time consuming. The three right-
most columns are the FMS segmentation results with differ-
ent PARTITION parameters. Both the mean shift and fast
mean shift algorithms use a Gaussian kernel with bandwidth
h = 0.08. The run time of FMS is listed in Table 2.

The improved fast Gauss transform [14], which is ap-

Figure 5. Illustration of FMS clustering.

plied to speed up the calculation of the mean shift vec-
tor, has complexity O(N log K) + O(Nrpd) + O(Nnrpd),
where N is the sample size, K is the number of partitioned
clusters, n is the maximum number of the neighbor clusters
for each target, rpd = (p+d

d), d is the dimension, and p is a
parameter for controlling the error. Clearly, FMS has lower
complexity, in the mean time, its segmentation results are
quite competitive.

6. Conclusion

In many computer vision problems with large sample
size, exploring the underlying modes of the distribution
based on the whole data set would be quite uneconomical
and unnecessary. To alleviate the heavy burden of distribu-
tion description and classification, we combine the nearest
neighbor rule with density based clustering to develop the
fast mean shift (FMS) algorithm, which significantly ac-
celerates the feature space analysis. The underlying den-
sity estimate of the FMS algorithm, FKDE, inherits advan-
tages from both smooth and non-smooth estimators, and
asymptotically approximates the standard kernel density es-
timators. Clustering and image segmentation experiments
demonstrate that FMS produces satisfactory results with
very high speed.

Acknowledgment

This work is partially funded by NSFC (Grant No.
60318003). And the first two authors gratefully acknowl-
edge the support of K. C. Wong Education Foundation,
Hong Kong.

6

original image MS segmentation FMS(rT = 0.015) FMS(rT = 0.03) FMS(rT = 0.05)

Figure 6. Comparison of mean shift (MS) and fast mean shift (FMS) Segmentation results.

Table 1. Clustering performance of FMS.
rT 0.05 0.1 0.15 0.2 0.25 0.3
error(%) 0.55 0.89 1.06 1.22 1.82 3.04
time(sec) 14.1 3.01 0.731 0.25 0.12 0.08

Table 2. Segmentation time of FMS (in sec).
image size FMS FMS FMS

(rT =0.015) (rT =0.03) (r=0.05)
house 192×255 0.971 0.25 0.08
hand 243×302 1.432 0.361 0.2
room 256×256 0.741 0.21 0.11

squirrel 209×288 1.26 0.23 0.07

References

[1] H. Chen and P. Meer. Robust fusion of uncertain infor-
mation. In Proc. Int’l Conf. Computer Vision and Pattern
Recognition, pages 16–22, 2003.

[2] R. Collins. Mean-shift blob tracking through scale space. In
Proc. Int’l Conf. Computer Vision and Pattern Recognition,
pages 234–240, 2003.

[3] D. Comaniciu and P. Meer. Distribution free decomposi-
tion of multivariate data. Pattern Analysis and Applications,
2(1):22–30, 1999.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. PAMI, 24(5):603–619, May
2002.

[5] D. Comaniciu, V. Ramesh, and P. Meer. The variable band-
width mean shift and data-driven scale selection. In Proc.
Int’l Conf. Computer Vision, pages 438–445, 2001.

[6] D. Dementhon. Spatial-temporal segmentation of video by
hierarchical mean shift analysis. In Proc. Statistical Methods
in Video Processing Workshop, 2002.

[7] A. Elgammal, R. Duraiswami, and L. Davis. Efficient non-
parametric adaptive color modeling using fast Gauss trans-
form. In Proc. Int’l Conf. Computer Vision and Pattern
Recognition, pages 563–570, 2001.

[8] K. Fukunaga and L. Hostetler. The estimation of the gradi-
ent of a density function, with applications in pattern recog-
nition. IEEE Trans. Information Theory, 21(1):32–40, Jan.
1975.

[9] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based
clustering in high dimensions: A texture classification ex-
ample. In Proc. IEEE Int’l Conf. Computer Vision, pages
456–463, 2003.

[10] L. Greengard and J. Strain. The fast Gauss transform. SIAM
J. Sci. Computing, 12(1):79–94, 1991.

[11] B. Han, D. Comaniciu, Y. Zhu, and L. Davis. Incremen-
tal density approximation and kernel-based bayesian filter-
ing for object tracking. In Proc. Int’l Conf. Computer Vision
and Pattern Recognition, pages 638–644, 2004.

[12] A. Jain and R. Dubes. Algorithms for Clustering Data. Pren-
tice Hall, Englewood Cliffs, NJ, USA, 1988.

[13] B. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

[14] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis. Im-
proved fast Gauss transform and efficient kernel density es-
timation. In Proc. Int’l Conf. Computer Vision, pages 464–
471, 2003.

[15] Z. Zivkovic and B. Kröse. An EM-like algorithm for color-
histogram-based object tracking. In Proc. Int’l Conf. Com-
puter Vision and Pattern Recognition, pages 798–803, 2004.

7

