
Lecture 15: The Floyd-Warshall
Algorithm

CLRS section 25.2

Outline of this Lecture

� Recalling the all-pairs shortest path problem.

� Recalling the previous two solutions.

� The Floyd-Warshall Algorithm.
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The All-Pairs Shortest Paths Problem

Given a weighted digraph
� � ������� 	

with a weight
function 
 � � � 

, where � is the set of real num-
bers, determine the length of the shortest path (i.e.,
distance) between all pairs of vertices in

�
. Here we

assume that there are no cycle with zero or negative
cost.
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Solutions Covered in the Previous Lecture

Solution 1: Assume no negative edges.
Run Dijkstra’s algorithm, � times, once with each
vertex as source.� � � � �����

� 		� � � � � 	 with more sophisticated data
structures.

Solution 2: Assume no negative cycles.
Dynamic programming solution, based on a nat-
ural decomposition of the problem.� � � 
 	 . � � � � �����

� 	 using “ repeated squaring”.

This lecture: Assume no negative cycles.
develop another dynamic programming algorithm, the
Floyd-Warshall algorithm, with time complexity

� � � � 	 .
Also illustrates that there can be more than one way
of developing a dynamic programming algorithm.
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Solution 3: the Input and Output Format

As in the previous dynamic programming algorithm,
we assume that the graph is represented by an � � �
matrix with the weights of the edges:


���� �
��� �� 	 if 
 � � �

 � 
 ��� 	 if 
 � �

and
� 
 ��� 	 � �

,� if 
 � �
and

� 
 ��� 	 �� �
.

Output Format: an � � � distance � � ��� ����� where� ��� is the distance from vertex 
 to
�
.
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Step 1: The Floyd-Warshall Decomposition

Definition: The vertices ��� � � � � � � � � ������� are called the
intermediate vertices of the path 	 � 
 � � � � � � � � � � ���� .

� Let
���������� be the length of the shortest path from 


to
�

such that all intermediate vertices on the path
(if any) are in set ��� ��� � � � � �����

.

���������� is set to be 
���� , i.e., no intermediate vertex.

Let � ����� be the � � � matrix
� � �������� � .

� Claim:
� � �!���� is the distance from 
 to

�
. So our aim

is to compute � � �!� .

� Subproblems: compute � ����� for
� � 	 � � �#"$"#" � � �
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Step 2: Structure of shortest paths

Observation 1:
A shortest path does not contain the same vertex twice.
Proof: A path containing the same vertex twice con-

tains a cycle. Removing cycle gives a shorter path.

Observation 2: For a shortest path from 
 to
�

such
that any intermediate vertices on the path are chosen
from the set ��� ��� � � � � � ���

, there are two possibilities:

1.
�

is not a vertex on the path,
The shortest such path has length

� ��� ��� ���� .

2.
�

is a vertex on the path.
The shortest such path has length

� ��� ��� �� � � ����� ��� �� � .
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Step 2: Structure of shortest paths

Consider a shortest path from 
 to
�

containing the
vertex

�
. It consists of a subpath from 
 to

�
and a

subpath from
�

to
�
.

Each subpath can only contain intermediate vertices
in ��� � � � � ��� � � �

, and must be as short as possible,
namely they have lengths

� ��� ��� �� � and
� ��� ��� �� � .

Hence the path has length
� ��� ��� �� � � � ��� ��� �� � .

Combining the two cases we get� �������� � � ��� � � ��� ��� ���� � � ��� ��� �� � � � ��� � � �� � � �
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Step 3: the Bottom-up Computation

� Bottom: � ����� � � 
 ��� � , the weight matrix.

� Compute � ����� from � ��� ��� � using���������� � � � � � ����� ��� ���� � ����� � � �� � � ����� ��� �� � �
for

� � � � � � � � � .
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The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall( 
 � � )�
for 
 � � to � do initialize

for
� � � to � do� � � � 
 ��� � � 
 � 
 ��� � ;

	���� � � 
 ��� � � � 
�� ;�

for
� � � to � do dynamic programming

for 
 � � to � do
for

� � � to � do
if � � ��� ��� � � 
 � � � � � ��� � � � � � ��� �
	 � ��� ��� � � 
 ��� ���� � ����� � 
 ��� � � � ��� ��� � � 
 � � � � � ��� ��� � � � ��� � ;

	��� � � 
 ��� � � �
;
�

else
� ����� � 
 ��� � � � ��� ��� � � 
 ��� � ;

return
� � � � � � � � � � � � � � � ;�
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Comments on the Floyd-Warshall Algorithm

� The algorithm’s running time is clearly � � � � 	 .

� The predecessor pointer ������� �	� ��
 � can be used
to extract the final path (see later ).

� Problem: the algorithm uses � � � � 	 space.
It is possible to reduce this down to � � � � 	 space
by keeping only one matrix instead of � .
Algorithm is on next page. Convince yourself that
it works.
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The Floyd-Warshall Algorithm: Version 2

Floyd-Warshall( 
 � � )�
for 
 � � to � do initialize

for
� � � to � do� � � 
 ��� � � 
 � 
 ��� � ;

	���� � � 
 ��� � � � 
�� ;�

for
� � � to � do dynamic programming

for 
 � � to � do
for

� � � to � do
if
� � � 
 ��� � � � � � � � � 	 � � 
 ��� � 	� � � 
 � � � � � � 
 ��� � � � � � ��� � ;

	��� � � 
 ��� � � �
;
�

return
� � � � � � � � � � � � ;�
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Extracting the Shortest Paths

The predecessor pointers ��� ��� � � ��
 � can be used to
extract the final path. The idea is as follows.

Whenever we discover that the shortest path from 

to

�
passes through an intermediate vertex

�
, we set

	���� � � 
 � � � � �
.

If the shortest path does not pass through any inter-
mediate vertex, then 	��� � � 
 ��� � � � 
�� .
To find the shortest path from 
 to

�
, we consult 	��� � � 
 ��� � .

If it is nil, then the shortest path is just the edge
� 
 ��� 	 .

Otherwise, we recursively compute the shortest path
from 
 to 	���� � � 
 � � � and the shortest path from 	���� � � 
 ��� �
to

�
.
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The Algorithm for Extracting the Shortest Paths

Path( 
 � � )�
if (	���� � � 
 ��� � � � 
�� ) single edge

output
� 
 ��� 	 ;

else compute the two parts of the path�
Path( 
 � 	���� � � 
 � � � );
Path(	� � � � 
 � � � ��� );�

�
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Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.
� � � �

Path
��� � � 	 	���� � � � � � � � �

� � ��� � � �
Path

��� ��� 	 	���� � � � ��� � � �

� � ��� � ��� � � �
Path

��� ��� 	 	���� � � � �	� � � � 
�� � 
�� 	 
� (2,5)� � � ��� � � �
Path

��� ��� 	 	���� � ��� ��� � � � 
�� � 
�� 	 
� (5,4)��� � � � �
Path

��� � � 	 	���� � ��� � � � � �

��� � � ��� � � �
Path

��� ��� 	 	���� � ��� ��� � � � 
�� � 
�� 	 
� (4,6)���� � � � �
Path

��� � � 	 	���� � ��� � � � � � 
�� � 
�� 	 
� (6,3)������ �
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