
Lecture 2:
Maximum Contiguous Subarray Problem

� Reference: Chapter 8 in Programming Pearls,
(2nd ed) by Jon Bentley.

� History: 1-D version of a a 2-D pattern recog-
nition problem.

� Clean way to illustrate basic algorithm design

– A
� �������

brute force algorithm

– A
� ���
	��

algorithm that reuses data.

– A
� ��� ��������

divide-and-conquer algorithm

– A
� �����

algorithm by revisualizing the prob-
lem

� Cost of algorithm will be number of primitive
operations, e.g., comparisons and arithmetic
operations, that it uses.

1

ACME CORP – PROFIT HISTORY
Year 1 2 3 4 5 6 7 8 9
Profit M$ -3 2 1 -4 5 2 -1 3 -1

Betweeen years 5 and 8 ACME earned��� ��� ��� � 	

Million Dollars

This is the MAXIMUM amount that ACME earned
in any contiguous span of years.

Examples:
Between years 1 and 9 ACME earned� ��� ��� ��� �� ��� ��� ��� ��� ��	

M$
and between years 2 and 6��� ��� �� ��� � 	 �

M$.

The Maximum Contiguous Subarray Problem
is to find the span of years in which ACME earned
the most, e.g.,

� ����� �
.

2

FORMAL DEFINITION

Input: An array of reals � � ��������� �	�

The value of subarray � ��
 �������� is

� �
 �� � 	 ������� � ��� � �

The Maximum Contiguous subarray problem
is to find
��

such that� �
�� �� � � � � �
�� �� � � � � �
 �� � �

Output:
� �
 �� � s.t.

� �
 � �� � � � � �
 � �� � � � � �
 �� � �

Note: Can modify the problem so it returns indices �! #"%$'& .

3

� ��� � �
Solution: Brute Force

Idea: Calculate the value of
� �
 �� � for each pair

��
and return the maximum value.

VMAX
	 � � � � �

For
 	 �
to

�
For

 	
 to
�

�
calculate

� �
 �� �� 	 � �

For
� 	
 to

� 	 � � � � � � �

If
� �

VMAX then
VMAX

	 � �
�

Return(VMAX);

4

� ��� 	 �
solution: Reuse data

Idea: We don’t need to calculate each
� �
 �� � from

“scratch” but can exploit the fact that

� �
 �� � 	 ��� ��� � � � � 	 � �
 �� � � � � � � ��	�

VMAX
	 � � � � �

For
 	 �
to

�
� � 	 � �

For
 	
 to

�
�
calculate

� �
 �� �� 	 � � � � �� �

If
� �

VMAX then
VMAX

	 � �
�

Return(VMAX);

5

� ��� ��������
solution: Divide-and-Conquer

Idea: Set � 	 � � � � � ��� ���
.

Note that the MCS must be one of
� ���
	 The MCS in � � ������� � � �
� � 	 	 The MCS in � ��� � ������� � � �
� � 	 The MCS that contains both
� ��� �

and � ��� � ���	�
Equivalently, � 	 � �� � 	 �

A_1 = MCS on left containing A[M]

A= A_1 U A_2

A_1 A_2

A_2 = MCS on right containing A[M+1]

M+1M

S_1 S_2

6

Example:

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

��� 	 � � � �'� and � 	 	 � ����� � � �	�
� � 	 � � � � � ��� and � 	 	 � ��� � ��� � �

� 	 � � � � 	 	 � ��� ��� � � ��� � ��� �
Since

� ������� � ��� � 	
 � � �	����� � � 	 � 	

and
� �	�
��� � � � 	 � �

the solution to the problem is � �

7

Finding � 	 The conquer stage

M+1

A_2

i

A_1

jM

� � is in the form � ��
 ����� � � 	
there are only � such sequences, so, � � the max-
imum valued such one, can be found in � � � � 	

� � � �
time.

Similarly, � 	 is in the form � ��� � � �������� 	
there are only

� � � such sequences, so, � 	
the maximum valued such one, can be found in

� � � � � � 	 � � � �
time.

� 	 � � � � 	 can therefore be found in � � � �
time.

8

The Full Divide-and-Conquer Algorithm

Input: � ��
 �������� with
�� ��

� � � � � �
 �� �
1. If
 	�	

return
�
 �� �

2. Else
3. Find � � � � � �
 � � ��� �	 � �

;
4. Find � � � � � � � ��� �	 � � � �� �

;
5. Find MCS that contains

both � � � ��� �	 ���
and � � � ��� �	 � � ���

;
6. Return Maximum of the three sequences found

Let � � � �
be time needed to run

� � � � � �
 �
 � � � � � �
Step (1) requires � � � �

time.
Steps (3) and (4) each require � � � � � �

time.
Step (5) requires � � � �

time.
Step (6) requires � � � �

time

Then � � � � 	 � � � �
and

for
� � � � � � � � 	 � � � � � � � � � � � �

� � � � � 	 � � � � � � � �

9

Review of Analysis of a D-and-C Algorithm

Note: For more details see CLRS, chapter 3.

To simplify the analysis, we assume that
�

is a
power of 2.
� In the DC algorithm, Steps 5 and 6 together

requires � �����
operations.

� Hence, � ����� � � � ���
	
� � � �

. Repeating this
recurrence gives

� ����� � � �
�� �
�
�� � � �

� � �� � �
�� �
� 	
�� � � �

�
	
 � � �

	 � 	 �
�� �
� 	
�� � ��� �

� � 	 �� � �
�� �
� �
�� � � �

� 	
	
 � ��� �

	 � � �
�� �
� �
�� � ��� �

� � � �
	 �� �

�� �
�

�� � ��� �
Set

� 	 ���� 	 � , so that
� 	 �

. With this sub-
stitution, we have

� � ��� � � � � � � � � ���� 	 ��� � � 	 � ��� ���� 	 ��� �

10

The � � ���
algorithm

0

1

2

3

−1

−2

−3

−2
3

1

−3

2

−4 3

−1

4

−2T[i]

i

 0 1 2 3 4 5 6 7 8 9 10
� ��
 � -2 3 1 -3 2 -4 3 -1 4 -2
� �
 � 0 -2 1 2 -1 1 -3 0 -1 3 1

Define � �
 � 	 � � ��� � � � � �	�
Then

� �
 �� � 	 � � � ��� � � � � 	 � � � � � �
 � � � �

In particular, for fixed

we can find maximal
� �
 �� �

by finding
��
with minimal value of � �
 � � � �

11

Idea behind the algorithm

1. Suppose we’ve already seen

� � ��� � � � �'� ������� � � � ��� �
Let

�
be the value of MCS in � � � �������� � ��� �

Let ������� be the minimum � �
 � value so far.

2. After seeing � � �� calculate

� � � 	 � � � � � � � � �� ��
possible

	 � � � � � �����
	

maximum value for a
� �
 �� � �

3. Update Information:

If � � ��� ������� then
� ����� 	 � � � �

If
� � �

possible then� 	 �
possible

12

The actual � �����
algorithm

� 	 � � ��� � � 	 � � ���
� ����� 	 � ��� � ��� � � �

For
 	 �

to
�

� � 	 � � � � �� � update � � �
If � � � ����� � �

If
�

possible
� �

then
� 	 � � � ����� �

If � � � �����
then ������� 	 � �

�

Return(
�

);

This algorithm implements exactly the ideas on
the previous page so it returns the corect answer.
Furthermore, since it does only � � � �

work for each� � �� , it runs in � � � �
time.

13

Review

In this lecture we saw 4 different algorithms for
solving the maximum contiguous subarray prob-
lem. They were
� A

� �������
brute force algorithm

� A
� ��� 	 �

algorithm that reuses data.
� A

� ��� � � ���
divide-and-conquer algorithm

� A
� �����

algorithm by revisualizing the prob-
lem

After completing this class you should be capable
of finding the first three algorithms by yourself.
Deriving those algorithms only require standard
algorithmic design tools and approaches.

Tools for deriving the fourth, � �����
time, algo-

rithm can’t really be taught in a short class. That
derivation requires both cleverness and a mindset
that can usually only be developed through prac-
tice.

14

