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Abstract—Docked bike systems have been widely deployed in
many cities around the world. To the service provider, predicting
the demand and supply of bikes at any station is crucial to
offering the best service quality. The docked bike prediction
problem is highly challenging because of the complicated joint
spatial-temporal (ST) dependency as bikes are picked up and
dropped off, the so-called “flows”, between stations. Prior works
often considered the spatial and temporal dependencies sepa-
rately using sequential network models, and based on locality
assumptions. Without sufficiently capturing the joint spatial and
temporal features, these approaches are not optimal for attaining
the best prediction accuracy.

We propose STGNN-DJD, a novel data-driven Spatial-
Temporal Graph Neural Network to solve the bike demand
and supply prediction problem by unifiedly embedding the
Dynamic and Joint ST Dependency in two novel ST graphs.
Given station locations and historical rental data on bike flow
over the past time slots 0 to t − 1, we seek to predict online
the bike demand and supply at any station at time t. To extract
joint spatial-temporal dependency, STGNN-DJD employs a graph
generator to construct, at the beginning of time t, two graphs
that embed the flow relationships between stations at various
time slots (flow-convoluted graph) and dynamic demand-supply
pattern correlation between stations (pattern correlation graph),
respectively. Given the two spatial-temporal graphs, STGNN-DJD
subsequently employs a graph neural network with novel flow-
based and attention-based aggregators to generate embedding
of each station for docked bike prediction. We have conducted
extensive experiments on two large bike-sharing datasets. Our re-
sults confirm the effectiveness of STGNN-DJD as compared with
other state-of-the-art approaches, with significant improvement
on RMSE and MAE (by 20%−50%). We also provide a case study
on dynamic dependencies between stations and demonstrate that
the locality assumption does not always hold for a docked bike
system.

Index Terms—bike demand and supply prediction; spatial-
temporal data prediction; spatial-temporal graph neural net-
work.

I. INTRODUCTION

Dock-based bike sharing, widely deployed in many cities

such as Chicago, Los Angeles, London and Shanghai, offers

a cost-effective means for last-mile solutions, promotes a

healthy lifestyle, and eases the growing traffic congestion

and environmental concerns. The global bike-sharing service

market is estimated to grow to over 13.7 billion U.S. dollars

by 2026 from 3.3 billion U.S. dollars in 2020 [1].

A dock-based bike-sharing system consists of fixed stations

distributed around the city. A user can pick up a bike at any

station, and end the ride by returning the rented bike to any

station in the city. To the service provider, bike shortage at a

station means revenue loss. On the other hand, due to finite

docking capacity at a station, bike over-supply at one station

means that users have to return their bikes to some other

stations, leading to inconvenience and reduction in service

quality. It is hence in the provider’s interest to predict the

demand and supply of docked bikes at stations (so that bikes

can be dispatched in advance to meet the demand and supply).

Such docked bike prediction also has immense value in bike

lane planning [2] and route recommendation [3].

In this work, we consider predicting docked bikes, i.e. their

demand and supply, at any station from a service provider

point of view. Time is slotted, with a certain slot duration of,

say, 10 to 20 minutes. Historical customer rental data for bike

pickup time (demand) and drop-off time (supply) between any

pair of stations, the so-called “flow” between the stations, are

available over the past t slots labelled as 0, 1, 2 . . . , t−1 (e.g.,

t = 500 or 1,000). With the data, the provider would like to

make online predictions of docked bikes at any station for the

next slot, i.e., at time t.

Predicting bike demand and supply at a station is a chal-

lenging problem due to complicated joint spatial-temporal

dependency between stations. This is because the supply of

a station is related to the bike demand of another station with

some temporal lag due to the travel time between stations.

Moreover, stations with similar demand-supply patterns are

significantly correlated. For example, close stations may have

similar patterns because of the locality effect, and stations near

two schools located in different part of the city may also share

similar patterns because the schools have similar operating

hours. Such correlation between stations may be time-varying,

which means that the correlation between stations could differ

greatly based on different temporal signatures. To achieve

high prediction accuracy, the model needs to appropriately

capture the joint spatial-temporal dependency between stations
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regarding their flow relationship and demand-supply patterns.

Although many works have attempted to capture spatial and

temporal dependencies to predict docked bike demand and

supply, most considers them separately with independent mod-

ules [4]–[7]. Regarding spatial dependency, prior formulations,

no matters whether based on non-overlapping grids or spatial

graphs to model station locations, often apply convolution

approaches to address it. For temporal dependency, they use

Recurrent Neural Networks (RNNs) and its variants such

as Long Short Term Memory (LSTM) and Gated Recurrent

Unit (GRU). While commendable, these works consider the

two dependencies sequentially in a decoupled manner, hence

failing to capture the joint spatial-temporal nature, which is

reflected in the real-world settings.

Moreover, existing approaches often solely assume a lo-

cality effect in their study (i.e., local dependency) by over-

looking the dependency on distant stations (i.e., global de-

pendency) [8]–[11]. While these approaches are applicable

in some settings, they may not work well for the bike-

sharing case where users are not likely to bike between two

nearby stations, and two remote stations may have similar

demand-supply patterns (for example the two schools example

mentioned earlier). Our empirical evaluations in Section VIII

also present counter intuitive results regarding the locality

effect. In reality, a better approach is to learn the relationship

between distance and dependency in a data-driven manner

instead of relying on prior assumptions.

To solve the aforementioned problems, we propose

STGNN-DJD, a novel, effective, and data-driven Spatial-

Temporal Graph Neural Network to capture the Dynamic

and Joint spatial-temporal Dependency between stations for

demand and supply prediction at any docking station. Given

historical data on flow between stations up to time t − 1,

STGNN-DJD predicts the docked bikes at any station at time

t.

Our solution first uses flow convolution to extract spatial-

temporal features for any individual station, and generates two

novel and effective graphs to encode the dependency between

stations in terms of inter-station direct flow, as well as the

correlation of their flow time-series. After that, it employs two

novel aggregators to capture the dynamic and joint spatial-

temporal dependency in the flow-convoluted graph and the

pattern correlation graph, without assuming any relationship

between distance and traffic. As both spatial and temporal

information is encoded by the unified graph structure, our

solution captures the spatial and temporal dependency jointly

rather than independently. To summarize, we make the follow-

ing contributions in this paper:

• A generator to construct time-dependent graphs encoding

the dynamic and joint spatial-temporal dependency: With

a novel graph generator, STGNN-DJD first constructs two

graphs which embed the spatial and temporal information

between stations. These spatial-temporal graphs, with

stations as nodes, are generated at the beginning of time

slot t so as to make prediction at the slot. The first one is

called the flow-convoluted graph (FCG), which captures

the features of bike exchanges between stations. The

second one is called the pattern correlation graph (PCG),

which accounts for pattern correlation between stations

by relating the features of demand and supply patterns at

each station with the other (there may not be physical bike

flows between the two stations). FCG and PCG co-exist

to solve both the local and global dependency between

stations. In both graphs, the node features and edges are

time-varying, generated by the data of the past t slots, in

order to encode the dynamic spatial-temporal dependency

between stations.

• A graph neural network with novel aggregators to process

spatial-temporal graphs for prediction: We propose a

novel spatial-temporal graph neural network (GNN) to

process FCG and PCG. In particular, we design a flow-

based aggregator to learn the dependency in FCG, and

propose a data-driven attention-based aggregator to learn

inter-station dependency in PCG without assuming any

relationship between distance and traffic. The learned

representation of stations is then fed into a demand-

supply neural network predictor for prediction.

• Extensive experiments and a case study to validate

the effectiveness of STGNN-DJD: We evaluate the per-

formance of STGNN-DJD using two large-scale bike-

sharing datasets collected in Chicago and Los Angeles.

Our results demonstrate the effectiveness of STGNN-

DJD to capture jointly spatial-temporal dependency for

accurate prediction on docked bikes. STGNN-DJD sig-

nificantly outperforms the state-of-the-art models (by

20% − 50% on RMSE and MAE). We also conduct

a case study on the relationship between inter-station

dependency and distance. The study shows that close

stations do not always mean higher dependency than

distant ones, and vice versa, and distant stations may have

high impact on bike demand and supply prediction.

The remainder of this paper is organized as follows. We

present related works in Section II, followed by our problem

formulation and system overview in Section III. We present

the spatial-temporal graph generation in Section IV. Then

we introduce the spatial-temporal dependency learning and

demand-supply predictor in Sections V and VI, respectively.

We present experimental settings and results in Section VII,

and a case study in Section VIII. We conclude in Section IX.

II. RELATED WORKS

Bike-sharing plays an important role in public transportation

systems, and predicting demand and supply for bike-sharing

systems has hence attracted much attention in recent years.

Depending on the spatial granularity of the prediction task,

bike demand and supply prediction can be separated into three

levels: cluster-based, grid-based, and station-based.

Cluster-based works group neighboring stations into a few

clusters based on geographical locations, historical transition

or usage patterns, and then predict the demand and supply

for each cluster [12], [13]. In particular, a multi-similarity-

based inference model with a Gradient Boosting Regression
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Tree (GBRT) is used for prediction in the work [12], while

Monte Carlo simulation is adopted in WCN-MC [13]. As for

grid-based works, they divide a city map into equal-sized and

non-overlapping grids, and the traffic (e.g., bike demand) of

each grid is predicted [8], [9], [14]–[16]. A city map with

grids is seen as an image with pixels, and convolution neural

networks are used in these works to capture the correlations

among grids for prediction. While impressive, both cluster-

based and grid-based works can hardly be extended to the

scenario of demand and supply prediction for docked bike

stations because the docking stations are not uniformly dis-

tributed in the grids of a city.

In contrast to the cluster-based and grid-based approaches,

station-based approaches predict the demand and supply for

individual stations. Earlier works employ traditional time

series analysis approaches, such as ARIMA and its variants

to predict bike demand [17], [18]. However, these approaches

solely consider the temporal dependency on historical data, but

ignore the importance of dependency among stations, which

we believe is an essential aspect of bike-sharing systems.

Some works employ machine learning algorithms to predict

the demand and supply based on manually defined features.

They first extract features from historical flow data and other

external data such as POIs and weather, and then predict the

demand and supply using machine learning algorithms, such

as linear regression [19], K-Nearest-Neighbor regression [20],

Support Vector Machine [21], and Bayesian model [22].

Nevertheless, these works highly rely on manually defined

features, and they cannot capture the joint spatial-temporal

dependency among stations.

In recent years, deep learning has seen rapid develop-

ment [23] and it has been applied to capture the spatial

and temporal dependencies between stations to predict the

demand and supply of bike stations. Most of them consider

the spatial and temporal dependencies separately. In terms of

spatial dependency, some recent works started to use graph

structures to embed the spatial dependency between stations

and learn latent representation for stations using graph neural

networks, such as graph convolution networks [24] and graph

attention networks [25]. Most of these works assume that

spatially closer stations have similar demand-supply patterns

and have stronger dependency than distant stations. They

construct the graphs based on the distance of stations or road

networks [5]–[7], [10], [11], [26]–[29]. However, these works

are inclined to capture influence from nearby stations but

overlook those distant stations. Other works use Transformer

with self-attention [30] to capture the dependency among

stations [31]–[33]. Nevertheless, they do not consider the

flow relationships between stations, which we believe is a

significant indicator of inter-station dependency but is not

well considered in these works. Compared with existing works

on spatial dependency modelling, STGNN-DJD considers de-

pendency between stations regarding flow relationships and

demand-supply correlations. It generates a flow-convoluted

graph to embed the flow features between stations and a

demand-supply correlation graph to embed the demand-supply

pattern correlations between stations. In particular, STGNN-

DJD employs a data-driven attention approach to learn the de-

pendency between stations, without assuming any relationship

between distance and traffic.

Another important aspect for docked bike prediction is the

temporal dependency. Flow between stations highly depends

on the time-of-the-day and the-day-of-the-week due to human

periodic mobility behavior [34], [35]. To this end, most

existing works employ RNNs and their variants such as LSTM

and GRU to consider the temporal dependency [4], [14], [26],

[36]–[39]. However, RNN-based approaches are difficult to

capture the dependency between distant positions in a se-

quence due to the vanishing or exploding gradient problem. To

address these issues, we propose a flow convolution approach

based on the 1× 1 convolution kernel. The 1× 1 convolution

kernel has been used for cross channel pooling in Network-

in-Network [40] and dimension reduction in GoogLeNet [41].

Compared with RNN-based models, our flow convolution

approach is effective for capturing long-term dependency.

While commendable, the existing works separately consid-

ered spatial and temporal dependency in a decoupled manner,

and they failed to capture the joint spatial-temporal depen-

dency among stations. On the other hand, considering the spa-

tial and temporal dependencies in a joint manner has attracted

much attention in recent years. Similar to STSGCN [42], our

proposed STGNN-DJD generates spatial-temporal graphs to

embed both spatial and temporal information in the unified

structure so that it can capture the joint spatial-temporal depen-

dency between stations for prediction. Nevertheless, STSGCN

focuses on capturing the locality spatial-temporal correlation

while STGNN-DJD has the capacity to consider both locality

and global spatial-temporal dependency.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

A. Problem Formulation

In a bike-sharing system, a trip record is denoted as

{rid, so, sd, ts, te}, which contains the following information:

(1) a trip ID rid, (2) an origin station so, (3) a destination

station sd, (4) a start time ts, and (5) an end time te.

Let S = {s1, s2, . . . , sn} be the set of bike stations in a

city, where si = (loni, lati) is a station whose longitude and

latitude are (loni, lati). Users can borrow or return bikes at

any station in the city.

To describe the traffic between stations at a time slot t,

let It ∈ R
n×n and Ot ∈ R

n×n be the inflow and outflow

matrices, where n is the number of stations. Iti,j ∈ It is the

number of bikes borrowed from station sj and returned to si
at time t, where t is the returning time. Ot

i,j ∈ Ot refers to the

number of bike checked out from station si at t and returned to

station sj , where t is the checkout time. Correspondingly, each

row in the inflow and outflow matrices represents a station’s

inflow from and outflow to other stations at a time slot t,

denoted as Iti ∈ R
1×n and Ot

i ∈ R
1×n, respectively. Consider

that a user borrows a bike from a station si at ti and returns

it to station sj at tj . Then Oti
i,j and I

tj
j,i will be both increased

by 1.
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Based on the above definitions, the docked bike demand

and supply prediction problem is formulated as below:

Definition 1: (Docked bike demand and supply prediction

problem) Given a set of bike stations S, and the historical

inflow and outflow matrices until time t−1, {I0, ..., It−1} and

{O0, ..., Ot−1}, we would like to predict the bike demand xt
i

and supply yti for any individual station si at the time slot t,

where xt
i =

∑n

j=0 O
t
i,j and yti =

∑n

j=0 I
t
i,j .

B. STGNN-DJD Overview

Figure 1 overviews the process of STGNN-DJD, which

consists of the following three essential components:

• Spatial-temporal graph generation: Given the historical

flow data between stations until t − 1, STGNN-DJD

generates two spatial-temporal graphs, namely the flow-

convoluted graph and the pattern correlation graph, to

represent the spatial-temporal dependency between sta-

tions in terms of their flow dependency and demand-

supply pattern correlation respectively. To this end,

STGNN-DJD first uses a flow convolution to learn time-

dependent spatial-temporal features for stations from their

historical flow data. Based on the station features, it

generates a flow-convoluted graph, in which edges are

generated according to the flow convolution result. How-

ever, stations with similar patterns may not have physical

flow between them. To address the issue, STGNN-DJD

employs an attention mechanism to generate a pattern

correlation graph, which accounts for pattern correlation

between stations by relating the features of demand and

supply patterns at each station with the other.

• Spatial-temporal dependency learning: Based on the gen-

erated spatial-temporal graphs, STGNN-DJD uses a graph

neural network to learn spatial-temporal embedding for

each node (i.e., station) by aggregating information from

other nodes in the graphs. The spatial-temporal depen-

dencies between stations are captured via the aggrega-

tion process of GNNs. Because flow between stations

explictly indicates their dependency level, STGNN-DJD

employs a flow-based aggregator to measure the depen-

dency in terms of flow in the flow-convoluted graph.

For dependency learning in the pattern correlation graph,

STGNN-DJD uses a data-driven attention-based aggrega-

tor to automatically learn the dependency, without any

assumptions of the relationship between distance and

dependency. Moreover, a multi-head attention mechanism

is used in the pattern correlation graph to improve the

generalization of the model and capture various depen-

dencies.

• Demand-supply predictor: Given the spatial-temporal em-

bedding of stations, STGNN-DJD simultaneously pre-

dicts bike demand and supply of any individual station

at time t using fully connected neural networks.

The details of each component will be elaborated in Sections

IV, V, and VI, respectively.

IV. SPATIAL-TEMPORAL GRAPH GENERATION

Graph generation is fundamental to the success of a GNN-

based model. If the generated graph cannot effectively capture

the relationships between nodes (i.e., stations in our work), it

may degrade the prediction performance [7], [36].

In this work, we consider the spatial-temporal dependen-

cies between stations in terms of their flow dependency and

demand-supply pattern correlation. To this end, we propose a

graph generator to construct a flow-convoluted graph (FCG)

and a pattern correlation graph (PCG) encoding the dynamic

and joint spatial-temporal dependency in this section. First, we

propose a flow convolution approach to learn spatial-temporal

features for each node from its historical flow data (Section

IV-A). Subsequently, we introduce the edge generation for

FCG and PCG in Section IV-B.

A. Node Feature Learning

Historical flow data reveal the spatial-temporal dependency

over time. Intuitively, bike demand and supply are affected

by the most recent past time slots’ flow, termed as short-

term dependency. Meanwhile, the demand and supply have a

significant daily periodic dependency (long-term dependency),

as usually seen in the time series data with periodic movement.

Inspired by the success of 1×1 convolution in fusing infor-

mation from different channels in computer vision tasks [40],

we propose a flow convolution approach with 1×1 convolution

kernels to capture dependency from different time slots. As

shown in Figure 2, stations’ inflow from or outflow to other

stations at different time slots is represented as tensors with

multiple channels. Then we use 1 × 1 convolution kernels to

capture short-term and long-term dependency from different

channels.

We use the inflow and outflow matrices in the past k

time slots to capture the short-term dependency, namely

{It−k, . . . It−2, It−1} and {Ot−k, . . . Ot−2, Ot−1}. We first

concatenate them along the temporal dimension respectively,

to obtain two tensors I
S ∈ R

k×n×n and O
S ∈ R

k×n×n. For

each station, its inflow/outflow over time can be seen as a 1×n

matrix with k channels, where n is the number of stations.

We apply 1 × 1 convolution kernels on their inflow/outflow

matrices to integrate the flow information at different time

slots, and obtain their short-term temporal embedding:

Î
S = σ1(W1 ∗ I

S + b1), (1)

Ô
S = σ1(W2 ∗O

S + b2), (2)

where W1 ∈ R
1×k, W2 ∈ R

1×k, b1 ∈ R
n×n and b2 ∈ R

n×n

are learnable parameters, ∗ represents the convolution operator,

and σ1(·) is the ReLU activation function. Î
S ∈ R

n×n and

Ô
S ∈ R

n×n are the inflow and outflow short-term embedding

respectively.

To consider the long-term dependency, the inflow and

outflow matrices of the same time slot in the past d

days are used: I
L = {It−d×day, . . . It−1×day} and O

L =
{Ot−d×day, . . . Ot−1×day}, where I

L ∈ R
d×n×n and O

L ∈
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Fig. 1. Overview of STGNN-DJD.

Fig. 2. Illustration of flow convolution. We apply 1 × 1 convolution kernel
on the historical inflow/outflow data, and fuse the short-term and long-term
dependency using an attentive aggregator. We consider the last k time slots
(same day) for short-term dependency, and the last d days (same time-of-day)
for long-term dependency.

R
d×n×n denote the inflow and outflow matrices in the past

d days. The long-term temporal dependency is then captured

using the 1× 1 convolution kernel:

Î
L = σ1(W3 ∗ I

L + b3), (3)

Ô
L = σ1(W4 ∗O

L + b4), (4)

where W3 ∈ R
1×k, W4 ∈ R

1×k, b3 ∈ R
n×n and b4 ∈ R

n×n

are learnable parameters, and σ1(·) is the ReLU activation

function. Î
L ∈ R

n×n and Ô
L ∈ R

n×n are the inflow and

outflow long-term temporal embedding respectively.

The short-term and long-term dependency are not always

equal for stations. Thus, we propose an attentive aggregation

approach to fuse the short-term and long-term dependency,

respectively.

We define the temporal inflow matrix:

Î = βS
I · ÎS + βL

I Î
L. (5)

(a) (b)

Fig. 3. Illustration of dependencies between stations: (a) Flow between
stations indicates their dependency. In this example, s1 depends more on
s4 than s2 and s3 because there exists more flow from s4 to s1 than from
s2 and s3. (b) Stations with similar patterns are likely to be significantly
correlated. For example, stations near two schools (no matter near or distant)
may have similar demand and supply patterns because the schools have similar
operating hours.

βS
I and βL

I are computed by

βS
I =

exp(W5 · Î
S)

exp(W5 · ÎS) + exp(W5 · ÎL)
, (6)

and

βL
I =

exp(W5 · Î
L)

exp(W5 · ÎS) + exp(W5 · ÎL)
, (7)

where W5 ∈ R
n×n are learnable parameters.

Similarly, we have the temporal outflow matrix as follows:

Ô = βS
O · ÔS + βL

OÔ
L, (8)

where βS
O and βL

O are computed similar to Equations 6 and 7,

with learnable parameters W6 ∈ R
n×n.

To fuse the various temporal dependencies and jointly con-

sider the inflow and outflow information, we concatenate the

above temporal embedding of inflow and outflow as follows:

T = (Î||Ô) ·W7 (9)

where W7 ∈ R
2n×n are learnable parameters, and || denotes

the concatenation operation. The learned embedding T ∈
R

n×n is used as node features for stations, where Ti ∈ R
1×n

is the feature of station si. Note that T is dynamic over time.
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B. Flow and Pattern Edge Generations

Edges in a graph reflect the relationships between stations,

and the edge weight can be used to indicate their dependency.

We consider the flow dependency between stations in FCG,

and apply an attention mechanism to emphasize the depen-

dency between stations in terms of demand-supply pattern

correlation.

1) Flow edge generation: The flow between stations pro-

vides plenty of information to generate the graph. If the flow

between two stations is large, the two stations would highly

depend on each other regarding their dynamic flow. We present

an example in Figure 3(a). The flow from s4 to s1 (O4,1 = 30)

is larger than that from s2 (O2,1 = 10) and s3 (O3,1 = 20),

indicating that s1 depends more on s4 than s2 and s3. Based on

this intuition, we generate the FCG to embed the dependency

between stations.

We generate a flow-convoluted graph based on Î (Equation

5) and Ô (Equation 8). We generate a edge from sj to si if

Îi,j > 0 or Ôj,i > 0.

A formal definition of the flow-convoluted graph is as

follows:

Definition 2: (Flow-convoluted graph (FCG)) A flow-

convoluted graph at time t is represented as G
f
t = (Nt,Et

f ),
where a node N

t
i = (si,T

t
i) denotes a station si with spatial-

temporal feature T
t
i at time t, and E

t
f (i, j) is the edge weight

between nodes si and sj at t:

E
t
f (i, j) =

T
t
i,j

∑

k∈S Tt
i,k

, (10)

where S is a set of bike stations.

FCG is dynamic over time, and it describes both spatial

and temporal information in a graph. It can hence denote the

time-varying spatial-temporal dependency between stations in

terms of their flow.

2) Pattern edge generation: Stations with similar patterns

are inclined to be significantly correlated. As we show in

Figure 3(b), stations near a school may have similar demand-

supply patterns due to the locality effect (e.g., s1 and s2).

Moreover, stations near two remote schools may also share

similar demand-supply patterns (e.g., s1 and s3) because

schools may have similar operating hours. Unlike most works

which only consider the former case (i.e., the locality effect),

we propose a data driven approach to generate a pattern

correlation graph to consider both cases.

Given the node features of stations, we first compute the

attention coefficient e(i, j) of two stations si and sj as follows:

e(i, j) = σ2([Ti ·W8||Tj ·W8]·W9), (11)

where W8 ∈ R
n×n and W9 ∈ R

2n×1 are learnable param-

eters, and σ2(·) is the activation function. Following a prior

work [11], we also use the ELU activation function as σ2(·)
in our work.

Afterwards, the attention coefficient e(i, j) is passed

through a normalized softmax function to get the attention

score:

α(i, j) = softmax(e(i, j)) =
exp(e(i, j))

∑n

u=1 exp(e(i, u))
. (12)

Based on the node features and the attention scores, we

define the pattern correlation graph as:

Definition 3: (Pattern correlation graph (PCG)) A pattern

correlation graph at time t is represented as G
l
t = (Nt,Et

l),
where node N

t
i = (si,T

t
i) is a station si with spatial-temporal

feature T
t
i at time t, and E

t
l(i, j) is the edge weight for si and

sj which is calculated using the attention mechanism.

To summarize, the FCG and PCG consider the spatial-

temporal dependency from different views. The pattern cor-

relation graph captures the station dependency according to

the correlation of their patterns, while FCG is from the view

of flow dependency. Both graphs are time-dependent, and they

embed the dynamic spatial-temporal dependency in a unified

graph structure.

V. SPATIAL-TEMPORAL DEPENDENCY LEARNING

Based on the generated spatial-temporal graphs in Section

IV, we propose a graph neural network to learn the node

embedding from the generated spatial-temporal graphs. We

first introduce the framework of the proposed graph neural

network in Section V-A. Afterwards, we propose a flow-based

aggregator to learn the dependency for the flow-convoluted

graph (Section V-B), followed by an attention-based aggrega-

tor for the pattern correlation graph (Section V-C).

A. Learning framework

A graph neural network (GNN) learns the latent repre-

sentation of nodes by aggregating information from their

neighboring nodes in a graph. Thus, the dependency between

stations is considered via the aggregation. We propose using

an multi-layer structure to iteratively learn the dependency so

that the influence of non-neighboring nodes can be propagated

via the edges in the graph.

We use F 0 to denote the initial node features in the graph,

where F 0
i = Ti, and Ti is defined in Equation 9. Given a

station si and its neighboring nodes’ features, the node feature

F k
i of si is updated as

F k
i = σ(W k ·Aggr({F k−1

i }∪{F k−1
j , ∀sj ∈ N (si)})), (13)

where N (si) denotes the neighbouring stations of si in the

graph, Aggr(·) is the aggregator to aggregate the node fea-

tures from one’s neighbouring nodes, and W k are learnable

parameters.

We illustrate the algorithm in Algorithm 1. Given a graph

structure, node feature, activation function σ, aggregator

Aggr(·), and the number of layer K, our proposed GNN

learns the embedding for each node. It first initializes the node

embedding (Line 3). Then, it iteratively updates the embedding

of all nodes (Lines 4 - 8). In each round, it updates the node

embedding by aggregating the embedding of its neighbouring
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Algorithm 1: STGNN-DJD.

1 Input: Graph G = (V,E); node features

{Ti, ∀si ∈ S}; activation function σ; aggregator

Aggr(·); number of layer K.

2 Output:Embedding of nodes F.

3 F 0
i = Ti, ∀si ∈ S;

4 foreach k ∈ {1, 2, ...K} do

5 foreach si ∈ S do

6 F k
i = σ(W k ·Aggr({F k−1

i } ∪ {F k−1
j , ∀sj ∈

N (si)})),
7 end

8 end

9 F = F k;

10 return F;

nodes and itself in the last round using Equation 13 (Line

6). Finally, the node embeddings are derived from the feature

embeddings in the last layer (i.e., F k). Also, mean or max

pooling are the most common aggregation functions used in

GNN. However, such a general aggregation function might

not be suitable for capturing the characteristics of bike-sharing

data. Thus, we propose customized aggregation functions for

the flow convoluted and pattern correlation graphs, in Sections

V-B and V-C, respectively.

B. Flow-based Aggregator for the Flow-convoluted Graph

Since larger flow between stations indicates stronger de-

pendency between them, we propose the flow aggregator as

follows:

Aggr({F k−1
i } ∪ {F k−1

j , ∀sj ∈ N (si)}) =
∑

wi,uF
k−1
u ,

(14)

where F k−1
u ∈ {F k−1

i } ∪ {F k−1
j , ∀sj ∈ N (si)}, and the

weight wi,u is calculated according to Equation 10. The

flow-based aggregator is supposed to outperform conventional

aggregators (e.g., mean or max pooling) because it leverages

the characteristic of flow information. We use F
f
i to denote the

final embedding of station si in the flow-convoluted graph.

As the inflow embedding is time-dependent, the weights of

stations hence vary over time. Consequently, the dynamic de-

pendency in terms of flow between stations could be captured.

C. Attention-based Aggregator for the pattern correlation

graph

The attention mechanism is a data-driven approach to learn

the dependency between any two objects, without making any

assumption. Thus, we propose an attention-based aggregator

to learn the node embedding in the pattern correlation graph,

in which the dependency between nodes is calculated by the

attention mechanism. We extend Equations 11 and 12 to a

multi-layer network. Given the embedding of two stations

F k−1
i and F k−1

j , their attention coefficient ek(i, j) is then

computed as follows:

ek(i, j) = σ2([F
k−1
i ·W8||F

k−1
j ·W8]·W9), (15)

where W8 ∈ R
n×n and W9 ∈ R

2n×1 are learnable parameters,

and σ2(·) is the activation function. The attention score for the

k−layer is calculated as

αk(i, j) = softmax(ek(i, j)) =
exp(ek(i, j))

∑n

u=1 exp(e
k(i, u))

. (16)

Based on that, the embedding of stations F k in the pattern

correlation graph is updated as

F k = σ2(α
k · φF k−1), (17)

where αk ∈ R
n×n is the attention coefficient matrix for bike

stations in Equation 16, σ2 is the ELU activation function, and

φ ∈ R
n×n are learnable parameters.

To improve the generalization of the model and to capture

various dependencies, we use multiple (i.e., m) attention

heads in the model; we compute multiple attention coefficient

matrices using different φ, and then concatenate the results,

as explained in Equation 18:

F k = (||mu=1σ2(α
(k,u) · φuF

k−1)) ·W10, (18)

where W10 ∈ R
(m×n)×n are learnable parameters, and ||mu=1

denotes the concatenation operation to the m embedding

matrices. We use F
p
i to denote the final embedding of station si

in the pattern correlation graph. All in all, to jointly consider

both dependencies from the flow-convoluted graph and the

pattern correlation graph for a station, we concatenate its flow-

convoluted graph embedding F
f
i and pattern correlation graph

embedding F
p
i :

Fi = F
f
i ||F

p
i , (19)

where || is the concatenating operation, and Fi is the spatial-

temporal embedding for a station si. Fi jointly considers the

spatial-temporal dependency in the flow-convoluted graph and

the pattern correlation graph.

VI. DEMAND AND SUPPLY PREDICTOR

Given the spatial-temporal embedding F
t
i of a station si at

time t, we feed it to a fully connected neural network to predict

the demand and supply of any station si at time t, i.e.,

(x̂t
i, ŷ

t
i) = F

t
i ·W11, (20)

where x̂t
i and ŷti are the prediction results of bike demand and

supply for si at t respectively, and W11 ∈ R
n×2 are learnable

parameters.

We jointly predict the bike demand and supply for any

individual stations, and utilize the following loss function for

model training:

L =

√

√

√

√

1

n

n
∑

i=1

(xt
i − x̂t

i)
2 +

1

n

n
∑

i=1

(yti − ŷti)
2, (21)

where xt
i and yti is the ground-truth of si’s demand and supply

at t, and n is the number of stations.
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VII. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we first discuss the datasets (Sec-

tion VII-A), baseline approaches and evaluation metrics (Sec-

tion VII-B), and hyperparameter settings in our experiments

(Section VII-C). Then, we compare the performance of

STGNN-DJD with the state-of-the-art approaches in two sce-

narios: (1) overall performance using whole day data (Sec-

tion VII-D), and (2) performance at morning rush hours,

i.e., 07:00 am to 10:00 am, and evening rush hours, i.e.,

05:00 pm to 08:00 pm. (Section VII-E). After that, we

evaluate the effectiveness of each component of STGNN-

DJD (Section VII-F). Finally, we study the performance of

using different aggregators in Section VII-G and the impact of

hyperparameters in Section VII-H, followed by the discussion

of prediction efficiency in Section VII-I.

A. Datasets

We conduct experiments on two real-world bike-sharing

system datasets collected from Chicago and Los Angeles to

evaluate the performance of our proposed approaches. The

description of the two datasets used in our experiments is as

follows:

• Chicago. The Chicago dataset1 was collected from 571

bike stations in the city of Chicago, over nine months

from April 1st, 2018 to December 31st, 2018.

• Los Angeles. The Los Angeles (LA) dataset2 was col-

lected from 83 bike stations in the city of Los Angeles

over 15 months from October 1st, 2017 to December

31st, 2018.

In both datasets, each trip has the attributes of trip ID, bike

ID, start time, end time, origin station ID, destination station

ID, original station name, destination station name, etc. We use

the same data process approaches following a prior work [11].

For each dataset, we performed data cleansing to filter out

data with abnormal trip times (e.g., negative or more than 24

hours) or missing origin/destination stations. After filtering,

the Chicago dataset contained 3, 152, 651 trips and the LA

dataset contained 323, 645 trips.

The time interval was set as 15 minutes in our experiments.

Thus, there were 96 intervals per day for both datasets. We

grouped the data by stations and time slots to obtain the

demand and supply for each station and the flow information

between stations. We chose the data of the first 70% of days

in each dataset as the training data, the following 10% of

days as the validation data, and the remaining data as the

testing data. We used the Min-Max normalization to rescale

the range of demand and supply in [0, 1]. After prediction,

we recovered the results for evaluation. In the experiments,

when we calculate the RMSE and MAE of our model and the

baseline approaches, we exclude the results of those stations

which had no demand or supply. Such is a common practice

used in industry and many prior works [8], [9].

1https://www.divvybikes.com/
2https://bikeshare.metro.net/about/data/

B. Baseline Approaches and Evaluation Metric

We compare STGNN-DJD with the following state-of-the-

art models:

• HA: Historical Average [43] uses the average of a sta-

tion’s historical demand/supply at the same interval as the

prediction result.

• ARIMA: The Auto-Regressive Integrated Moving Aver-

age is a widely used time series prediction model. The

size of the sliding window is set as 12 in our experiments.

• XGBoost [44]: It is a powerful approach for building

supervised regression models. Historical demand and

supply at the last k time slots on the same day and the

same time slot in the last d days are used as features.

• MLP: Multi-layer perceptron which consists of a three-

layer fully-connected neural network is used for predic-

tion.

• LSTM: Long short-term memory is designed to model

temporal dependency for prediction.

• RNN [37]: Recurrent neural networks are used for pre-

diction.

• GCNN [45]: The conventional graph convolutional neural

network is proposed in the work to predict the demand

and supply of each bike station. It only considers the link

correlations between stations.

• MGNN [36]: Multi-Graph Neural Networks are proposed

in the work for station-based demand and supply predic-

tion. They consider correlations between stations without

graph attention.

• ASTGCN [5]: It models three temporal properties of

traffic flows independently, i.e., recent, daily-periodic

and weekly-periodic dependency. It mainly focuses on

dependency between nearby stations.

• STSGCN [42]: It captures the complex localized spatial-

temporal correlations using a synchronous graph convo-

lution network.

• GBikes [11]: A spatial-temporal graph attention convolu-

tional neural network is proposed in the work. It assumed

that closer stations would have more dependency than

distant stations, and used a predefined metric to measure

the dependency in terms of distance.

As CNN-based approaches focus on coarse-grained predic-

tion for areas and can hardly extended to docked bike demand

and supply prediction, we do not include them (such as [8],

[9], [15]) as comparison baseline approaches.

We use RMSE (root mean square error) and MAE (mean

absolute error) as the metrics to evaluate the prediction perfor-

mance of the above baseline models and STGNN-DJD, which

are defined as follows:

RMSE =

√

∑n

i=1(xi − x̂i)2 +
∑n

i=1(yi − ŷi)2

2n
, (22)

and

MAE =

∑n

i=1(xi − x̂i) +
∑n

i=1(yi − ŷi)

2n
, (23)
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where x̂t
i and ŷti are the prediction results of si’s demand and

supply, xi and yi is the ground-truth, and n is the number of

stations.

C. Hyperparameter Settings

We set the hyperparameters based on the performance of

the validation dataset. For temporal information, we use the

flow data at the previous 96 time slots (k = 96) for short-term

temporal dependency consideration while we use that at the

same time slot in the previous 7 days (d = 7) to consider

the long-term dependency. The number of layers for FCG and

PCG is set as 2 and 3, respectively. The number of attention

heads is set as 4. The batch size in our experiments is set as

32. The learning rate is set as 0.01 and the dropout rate is set

as 0.2. Adam optimizer is used for model training [46]. Our

model is trained and tested on a machine with an NVIDIA

RTX2080 Ti GPU.

D. Comparisons with baselines

We compare the performance of our proposed STGNN-DJD

with the state-of-the-art approaches. The overall performances

on the two datasets are presented in Table I. As presented in

the table, our proposed approach STGNN-DJD significantly

outperforms all state-of-the-art approaches on the two datasets

in terms of RMSE and MAE.

In particular, traditional time series approaches (namely HA,

ARIMA, XGBoost, and MLP) yield poor performances in

the experiments compared with the other approaches because

they only consider temporal dependency and fail to take

the spatial dependency between stations into account. LSTM

and RNN have similar performance to the above traditional

approaches since they also solely model the temporal de-

pendency on the historical demand and supply. Furthermore,

we compare STGNN-DJD with some recent deep learning-

based approaches (namely GCNN, MGNN, ASTGCN, STS-

GCN, and GBike). All of these approaches have significant

improvement over traditional time series approaches and con-

ventional RNN and LSTM, which illustrates the importance

of capturing the spatial dependency between stations and

the effectiveness of GCN for modeling spatial dependency.

ASTGCN, STSGCN and GBike have further improvement

than GCNN and MGNN. The reason could be that STSGCN

considers the synchronous spatial-temporal correlation, and

both ASTGCN and GBike incorporate GCN with attention

mechanisms to consider dependency between stations, which

effectively captures correlations between nodes in a graph.

However, all ASTGCN, STSGCN, and GBike are inclined to

focus on dependency from nearby stations. Consequently, they

cannot sufficiently consider the dependency on distant stations,

limiting its performance on prediction.

Compared to the state-of-the-art approaches, STGNN-DJD

jointly considers spatial and temporal dependency using novel

spatial-temporal graphs and well-designed graph neural net-

works. The flow-convoluted graph and pattern correlation

graph capture both local and global spatial-temporal dependen-
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Fig. 4. Comparison with variants of STGNN-DJD.

cies between stations. Therefore, it achieves the best overall

performance.

E. Rush Hours

Bike demand and supply prediction play more crucial roles

at rush hours for the bike-sharing system. Thus, we further

evaluate the performance of STGNN-DJD, and some base-

line approaches (GCNN, MGNN, ASTGCN, STSGCN and

GBikes) at rush hours. Here, we only compare the performance

of STGNN-DJD with some deep learning-based approaches

since they have much better overall performance than others.

The rush hours are selected as 07:00 am - 10:00 am and 05:00

pm - 08:00 pm.

The results are shown in Table II. STGNN-DJD outperforms

all state-of-the-art approaches at rush hours in the morning and

afternoon. The improvement at rush hours is more significant

than in Table I. The reason could be that there are more

bike trips during the rush hours, and they provide more flow

information between stations. The significant improvement at

rush hours indicates the effectiveness of our graph convolution

approach on the flow-convoluted graph for capturing spatial

dependency.

F. Design Variations of STGNN-DJD

There are three fundamental components in STGNN-DJD

to capture spatial-temporal dependency between stations: flow

convolution for node feature extraction, flow-based aggrega-

tion on the flow-convoluted graph, and attention aggregation

on the pattern correlation graph. To evaluate the effectiveness

of each component, we compare STGNN-DJD with the fol-

lowing variants:

• No Flow Convolution (FC): We skip the flow convolution,

and the node features are seen as learnable parameters.

• No Flow-convoluted Graph (FCG): We take away the

flow-convoluted graph. Only the pattern correlation graph

is used to represent the relations between stations.

• No Pattern Correlation graph (PCG): We do not consider

the dependency in terms of demand-supply patterns, and

only use the flow-convoluted graph to capture depen-

dency.

We use RMSE and MAE as metrics to evaluate the per-

formance of variants on the two datasets. The comparison

results are presented in Figures 4(a) (RMSE) and 4(b) (MAE).

As shown in the figures, removing any components of the
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TABLE I
COMPARISON WITH SOTA.

Method
Chicago Los Angeles

RMSE MAE RMSE MAE

HA 3.81 3.09 3.52 3.32
ARIMA 3.58 2.85 3.17 2.73
XGBoost 3.23 2.87 3.16 2.51

MLP 5.51±1.84 5.04±1.37 3.43±0.75 2.98±1.03
RNN 4.27±1.42 3.93±1.12 3.77±1.15 3.16±0.81

LSTM 3.84±1.83 3.27±1.21 3.05±0.63 2.91±0.87
GCNN 2.17±0.43 1.93±0.23 2.05±0.41 1.86±0.25
MGNN 2.24±0.52 2.08±0.31 1.99±0.44 1.81±0.34

ASTGCN 1.28±0.34 1.20±0.24 1.42±0.29 1.29±0.31
STSGCN 1.24±0.28 1.17±0.31 1.38±0.34 1.25±0.35

GBike 1.72±0.47 1.44±0.37 1.52±0.42 1.38±0.33
STGNN-DJD 1.18±0.37 1.10±0.43 1.33±0.52 1.21±0.40

TABLE II
PERFORMANCE AT RUSH HOURS.

Method
Chicago Los Angeles

RMSE MAE RMSE MAE

Morning

GCNN 2.31±0.61 2.07±0.41 2.27±0.83 2.01±0.47
MGNN 2.29±0.86 2.08±0.67 2.12±0.88 1.94±0.56

ASTGCN 1.18±0.36 0.94±0.32 1.39±0.31 1.15±0.27
STSGCN 1.16±0.39 1.01±0.43 1.24±0.36 1.13±0.41

GBike 1.87±0.62 1.64±0.43 1.55±0.85 1.29±0.72
STGNN-DJD 0.73±0.43 0.82±0.28 0.90±0.08 0.88±0.06

Evening

GCNN 3.18±0.60 2.96±0.52 3.15±0.56 2.92±0.53
MGNN 2.96±0.62 2.67±0.54 2.31±0.66 2.18±0.61

ASTGCN 2.37±0.42 2.04±0.33 1.48±0.34 1.17±0.21
STSGCN 2.28±0.39 1.98±0.43 1.52±0.41 1.21±0.37

GBike 2.53±0.61 2.25±0.63 1.73±0.79 1.58±0.62
STGNN-DJD 1.92±0.26 1.46±0.37 1.12±0.29 1.05±0.23
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Fig. 5. Comparison of different aggregators in the flow-convoluted graph.

proposed solution results in inferior performance. Since in-

corporating graph neural networks with flow convolution

makes spatial-temporal dependency be jointly learned, the

performance of our solution without flow convolution drops

significantly, indicating the importance of considering the

spatial-temporal node features and the effectiveness of our

proposed flow convolution approach. The significant perfor-

mance degradation in No flow-convoluted graph and No

pattern correlation graph shows that our proposed graph neural

networks effectively capture inter-station dependency.

G. Aggregator Study

To capture the spatial-temporal dependency between sta-

tions, we designed the flow-based aggregator for the flow-

convoluted graph and the attention-based aggregator for the
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Fig. 6. Comparison of different aggregators in the pattern correlation graph.

pattern correlation graph. In our experiments, we compare the

performance of our proposed aggregators with two widely used

aggregators [47] to evalute their effectiveness:

• Mean Aggregator: It takes the element-wise mean of the

node embedding of one’s neighboring nodes and itself.

• Max Aggregator: We feed the embedding of one’s neigh-

boring nodes and itself into a fully-connected neural

network independently, and apply an element-wise max-

pooling operation to aggregate information.

We first use the above two aggregators to replace the flow-

based aggregator. The results of RMSE and MAE on the

Chicago dataset and the Los Angeles dataset are presented in

Figures 5(a) and 5(b). The flow-based aggregator outperforms

the other two aggregators on both datasets. In particular, the
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Fig. 7. Impact of head number m on the performance.
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Fig. 8. Impact of FCG layer number on the performance.

difference is more significant on the Chicago dataset. The

reason is that the flow-based aggregator relies on the flow

between stations, and there are more trips in the Chicago

datasets than in the Los Angeles dataset. The results illustrate

the effectiveness of the proposed flow-based aggregator.

Then, we replace the attention-aggregator with the mean

aggregator and max aggregator. We present the comparison

results in Figures 6(a) and 6(b). The performance of the

attention aggregator is superior to that of others in terms of

RMSE and MAE, which demonstrates the effectiveness of our

proposed attention-based aggregator.

H. Hyperparameters

Since a multi-head attention mechanism is used to capture

the station patterns for the pattern correlation graph, we

evaluate the impact of the head number m on the RMSE and

MAE. The results of RMSE and MAE versus head number m

are presented in Figures 7(a) and 7(b), respectively. As shown

in Figure 7(a), as the head number m increases, the RMSE on

the two datasets declines, illustrating that multi-head attention

could capture various dependencies and improve the prediction
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Fig. 9. Impact of PCG layer number on the performance.

(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 10. Visualization of dependency of a station from/to the 10 nearest
stations from 7:00 am to 10:00 am using an existing approach. The x-axis is
the 10 nearest stations, ordered by distance and the y-axis is the time slots
from 7:00 am to 10:00 am. A darker color represents higher dependency.

performance. The improvement is not significant when m > 4.

The reason could be that each head focuses on different parts

of the input data. When the heads are many, some of them may

focus on the same pattern. Thus, the improvement diminishes

when m becomes large (e.g., m > 4 in our experiment).

Similar results of MAE can be observed in Figure 7(b). Thus,

we have m = 4 as the default parameter in our experiments.

Furthermore, we evaluate the impact of the layer number for

FCG and PCG on the RMSE and MAPE. The results of RMSE

and MAE versus FCG layer number are presented in Figures

8(a) and 8(b). Our model achieves the best performance when

the FCG layer number is 2. The RMSE and MAPE versus

PCG layer number in Figures 9(a) and 9(b) reveals that our

model has the best performance when the PCG layer number

is 3. The results indicate that stacking layers for graph neural

network can enlarge its receptive field and hence improve

its performance, but too many layers may introduce more

learnable parameters and lead to difficulty in model training.

I. Prediction Efficiency

Our model is trained offline, and it does not need to be

retrained for online prediction. The average prediction time

for all stations in LA and Chicago datasets at a time slot is

around 0.014 seconds and 0.038 seconds. Such prediction time

is much lower than the duration of a time slot, demonstrating

that our model can be applied in real world application.

VIII. CASE STUDY

In this section, we study the dependency between stations

via some visualization results. Firstly, we show that existing

works fail to consider the dependency between distant stations.

Then, we demonstrate that the dependency between a pair

of stations varies over time, and the dependencies vary for

different pairs of stations, even at a single time slot. After

that, we discuss the relationship of the dependency between

stations and their distance.

When considering the dependency between stations, prior

works usually assumed the locality effect, i.e., strong depen-

dency for close stations, while neglecting the dependency for

the distant ones. We visualize the dependency between the

Wabash Ave & Grand Ave station in Chicago and its ten
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(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 11. Visualization of dependency of a station from/to the 10 nearest
stations from 7:00 am to 10:00 am. The x-axis is the 10 nearest stations,
ordered by distance and the y-axis is the time slots from 7:00 am to 10:00
am. A darker color represents higher dependency.

(a) Dependency from one station to
others.

(b) Dependency from others to one
station.

Fig. 12. Visualization of dependency of a station from/to the 10 nearest
stations from 03:00 pm to 06:00 pm. The x-axis is the 10 nearest stations,
ordered by distance and the y-axis is the time slots from 03:00 pm to 06:00
pm. A darker color represents higher dependency.

nearest stations (from 07:00 am to 10:00 am) using an existing

approach [11] in Figure 10. A dark color indicates prominent

dependency. As shown in the figure, the prior approach

assumes that closer stations always have higher dependency

than distant stations. We argue that this assumption may not

be valid for docked bike systems. We will demonstrate that

dependency may not be strong for close stations, while that

of distant ones may not be negligible.

Recall that we use an attention mechanism to capture

dependency between stations in the pattern correlation graph,

in which the dependency between stations is represented as

their attention scores. We first calculate the attention scores

between a bike station and its ten nearest stations from 07:00

am to 10:00 am and from 03:00 pm to 06:00 pm. Then

we visualize their dependencies at different time slots. The

duration of a time slot is 15 minutes following the previous

experiments.

We present the visualization result of the Wabash Ave &

Grand Ave station in Chicago using our approach in Figures

11 and 12, in which the x-axis is the ten nearest stations,

ordered by distance, and the y-axis is the 12 time slots (i.e.,

7:00 am to 10:00 am in Figure 11 and 03:00 pm to 06:00

pm in Figure 12). In Figures 11(a) and 12(a), a cell (xi, yj)
indicates the influence from the target station to the i-th station

at the j-th time slots, while a cell (xi, yj) in Figures 11(b) and

12(b) represents the influence from the i-th station to the target

station. A dark color represents prominent dependency.

As shown in Figure 11(a), the color of cells in the same

column (i.e., cells with the same xi) are different, indicating

that the influence from one station to another varies over time.

Moreover, the color of cells in the same row (i.e., cells with the

same yi) are also different, illustrating that the influence from

one station to other stations is different even at the same time.

A similar observation can be found in Figures 12(a), 11(b),

and 12(b). The results demonstrate that our proposed model

could capture the dynamic dependency between different pairs

of stations and at different time slots.

Furthermore, contrary to the assumption that has been made

in prior works, the dependency between two stations does

not monotonically decrease based on the stations’ distance.

As shown in Figure 11(a), the color of the grid at position

(9, 11), which is the 10th nearest station at the 11th time slot,

is darker than the grid at position (0, 11), which is the closest

station at the 11th time slot. This finding indicates that even

though distance is an essential aspect of spatial dependency,

the dependency between stations might not always be inverse

proportional to their distance. Similar findings can also be

observed in Figures 12(a), 11(b), and 12(b). The visualization

results confirms that the locality assumption does not always

hold for a docked bike system and our approach is effective

to capture both local and global dependency.

IX. CONCLUSION AND FUTURE WORKS

We propose STGNN-DJD, a spatial-temporal graph neural

network to solve the docked bike demand and supply predic-

tion. It employs novel spatial-temporal graphs and an effective

graph neural netowrk to consider the joint spatial-temporal

dependency between stations regarding their flow relationships

and demand-supply patterns. Unlike prior works which con-

sider the spatial and temporal dependencies sequentially in a

decoupled manner, STGNN-DJD achieves lower RMSE and

MAE results compared to the baselines in two real-world

datasets because of the joint spatial-temporal modeling and

customized aggregation functions. We have also provided a

case study to demonstrate the importance of considering both

local and global dependencies between stations. Moreover, we

also show that the dependency between stations varies over

time and the dependency are various for different pairs of

stations at a single time slot.

We discuss below the possible future directions of the

work. One is to extend STGNN-DJD for multi-step pre-

diction. A simple way to extend our approach for multiple

slot prediction is replacing the model output {Ot, It} as

{Ot, · · ·Ot+k, It, · · · , It+k} in both training and prediction

phases. We will study as a future work more sophisticated

approaches for multi-step prediction considering dynamic and

joint spatial-temporal dependency. Another direction is to

design efficient prediction models for both training and predic-

tion phases, and provide detailed experimental comparison.
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