
First-Order Loop Formulas for Normal Logic Programs ∗

Yin Chen
South China Normal University

Guangzhou, P.R.China

Fangzhen Lin
Hong Kong University of
Science and Technology

Hong Kong

Yisong Wang
Guizhou University
Guiyang, P.R.China

Mingyi Zhang
Guizhou Academy of Sciences

Guiyang, P.R.China

Abstract

In this paper we extend Lin and Zhao’s notions of loops and
loop formulas to normal logic programs that may contain
variables. Under our definition, a loop formula of such a
logic program is a first-order sentence. We show that together
with Clark’s completion, our notion of first-order loop for-
mulas captures the answer set semantics on the instantiation-
basis: for any finite set F of ground facts about the exten-
sional relations of a program P, the answer sets of the ground
program obtained by instantiating P using F are exactly the
models of the propositional theory obtained by instantiating
using F the first order theory consisting of the loop formu-
las of P and Clark’s completion of the union of P and F. We
also prove a theorem about how to check whether a normal
logic program with variables has only a finite number of non-
equivalent first-order loops.

Introduction
For a propositional normal logic program, Lin and Zhao
(2004) showed that by adding what they called loop formu-
las to Clark’s completion (Clark 1978), one obtains a one
to one correspondence between the models of the resulting
propositional theory and the answer sets of the logic pro-
gram. There are several reasons why one wants to extend
this result to the first-order case. For one, Clark’s com-
pletion was originally defined to be a first-order theory on
a set of rules with variables. More importantly, in answer
set programming (ASP) applications (c.f. (Niemelä 1999;
Marek & Truszczynski 1999; Lifschitz 1999; Nogueira et
al. 2001; Baral 2003; Erdem et al. 2003; Eiter et al. 2004)),
a logic program typically has two parts: a set of general
rules with variables that encodes general knowledge about
the application domain, and a set of facts that encodes the
specific problem instance of the application domain and is
used to ground the variables in the set of general rules. This
means that when applying a logic program with variables
to two problem instances, we have to compute the loops
and loop formulas of two different propositional logic pro-
grams separately although these two programs, being ob-
tained from grounding the same logic program on differ-
ent domains, have basically the same structure thus should

∗Authors’ names are listed according to the alphabetical order.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

have the same kinds of loops and loop formulas. By defin-
ing loops and loop formulas directly on logic programs with
variables, we can hopefully avoid this problem of having to
compute similar loops and loop formulas every time a pro-
gram is grounded on a domain. Thus extending loop for-
mulas in logic programming to first-order case is not only
theoretically interesting, but may also be of practical rele-
vance.

Specifically, in this paper, we propose notions of first-
order loops and loop formulas so that for any set P of rules
with variables and any set F of ground facts about the exten-
sional relations of P , the answer sets of the logic program
obtained from grounding P using F will correspond to the
propositional models of the theory obtained by instantiating
COMP (P ∪ F) ∪ LF (P) on D, where COMP (P ∪ F) is
the completion of P ∪ F , LF (P) the set of loop formulas
of P , D the set of constants in P and F , and an extensional
relation is one that does not occur in the heads of any rules.

This paper is organized as follows. In the next section,
we first define some basic notions such as the instantiations
(groundings) of a first-order theory and a set of rules on a
given finite domain. We then define the notions of positive
dependency graph, loops, and loop formulas of a finite logic
program with variables. We then prove some properties of
our notions. Besides the correctness result as stated above,
we also show some results about when a program has only
a finite number of non-equivalent loops. Perhaps not sur-
prisingly, given a finite set P of first-order rules, while the
completion of P is a finite first-order theory, the set of loop
formulas of P may be an infinite set of first-order formulas
because there may be an infinite number of non-equivalent
loops. Thus it is important to know whether a given pro-
gram has only a finite number of non-equivalent loops. As
we shall see, surprisingly perhaps, there is an algorithm for
checking this.

Logical preliminaries

We assume a first-order language with equality but without
proper functions. In the following, we shall call a formula of
the form t = t′ an equality atom, and by an atom we mean an
atomic formula in the language that is not an equality atom.

Instantiating sentences on a finite domain
Given a first-order sentence ϕ, and a finite set D of con-
stants, we define the instantiation of ϕ on D, written ϕ|D,
to be a propositional formula defined inductively as follows:
• if ϕ does not have quantifications, then ϕ|D is the result

of replacing d = d by true and d1 = d2 by false in ϕ,
where d is any constant, and d1 and d2 are any two distinct
constants.

• ∃x.ϕ|D is (
∨

d∈D ϕ(x/d))|D, where ϕ(x/d) is obtained
from ϕ by replacing in it every free occurrence of x by d;
• (ϕ1 ∨ ϕ2)|D = ϕ1|D ∨ ϕ2|D;
• (¬ϕ)|D = ¬(ϕ|D).
Other connectives such as ∧ and the universal quantifica-
tion ∀ are treated as shorthands as usual. Notice that when
instantiating a first-order sentence on a finite domain, we
make unique names assumptions. So the instantiation of
a = a is true, the instantiation of a = b is false, and the
instantiation of ∀x.p(x) ≡ x = a on {a, b} is equivalent to
p(a) ∧ ¬p(b).

Now if T is a first-order theory (i.e. a set of first-order
sentences) and D a finite set of constants, then we define the
instantiation of T on D, written T |D, to be the set of the
instantiations of the sentences in T on D.

In the following, we identify a propositional model of a
propositional theory with the set of atoms true in the model.
Given a first-order structure M with domain D, we define
IM to be following set:

{p(~t) | ~t ∈ pM},
where pM is the interpretation of p in M . Symmetrically,
given a set I of atoms, and a set D of constants, we define a
first-order structure MD

I as follows:

• The domain of MD
I is D, and each constant in D is

mapped to itself.

• For each predicate p, ~t ∈ pMD
I iff p(~t) ∈ I .

Clearly, if I is a set of ground atoms that mention only con-
stants from D, then IMD

I
= I .

Proposition 1 Suppose ϕ is a first-order sentence, and D a
finite domain that include all constants in ϕ. If I is a propo-
sitional model ofϕ|D, thenMD

I is a model ofϕ. Conversely,
if M is a model of ϕ whose domain is D and it maps each
constant in D to itself, then IM is a propositional model of
ϕ|D.

Proof: We show that more generally, if D is a finite set that
includes all of the constants in ϕ, and I a set of atoms such
that

I ⊆ {p(d1, ..., dk) | p a predicate and d1, ..., dk ∈ D},
then for any variable assignment σ, any formula ψ that men-
tions constants only in D, MD

I , σ |= ψ iff I |= (ψσ)|D,
where ψσ is the result of replacing every free variable in ψ
by its value in σ. We prove this by induction.
• MD

I , σ |= t1 = t2 iff t1σ = t2σ (since all constants in t1
and t2 are in D, thus mapped to themselves) iff
[(t1 = t2)σ]|D is true.

• MD
I , σ |= p(~t) iff ~tσ ∈ pMD

I iff p(~t)σ ∈ I iff
[p(~t)σ]|D ∈ I .

• MD
I , σ |= ∃x.ψ iff for some σ′ that differs from σ only

on x, we have that MD
I , σ

′ |= ψ
iff for some σ′ that differs from σ only on x, we have that
(ψσ′)|D is true in I (by the inductive assumption)
iff for some d ∈ D, ((ψ(x/d))σ)|D is true in I
iff

∨
d∈D((ψ(x/d))σ)|D is true in I

iff [(
∨

d∈D ψ(x/d))σ]|D is true in I
iff [(∃xψ)σ]|D is true in I .

• The cases for ∀xψ, ¬ψ and ψ1 ∨ ψ2 are similar.

Similarly, we can show that if D is a finite set that
includes all constants in ϕ, and M a first-order structure
whose domain is D and such that it maps a constant in D to
itself, then for any variable assignment σ, any formula ψ,
M,σ |= ψ iff IM |= (ψσ)|D.

The following is the key result about our notion of instan-
tiation.

Proposition 2 For any sentences ϕ and ψ, and any domain
D that includes the constants in ϕ and ψ, if ϕ and ψ are
logically equivalent in first-order logic (with equality), then
the instantiations of ϕ and ψ on D are logically equivalent
in propositional logic.

Proof: Suppose I satisfies ϕ|D, then MD
I is a model of

ϕ. So MD
I is a model of ψ. Thus IMD

I
satisfies ψ|D. But

IMD
I

= I . So I satisfies ψ|D as well.

Notice that it is crucial for D to include all constants in
ϕ and ψ. For instance, ∃x(x = a) is logically equivalent to
true, but ∃x(x = a)|{b} is false.

Instantiating logic programs on a finite domain
A (first-order normal) logic program P is a set of (first-order
normal) rules of the form:

h← Body (1)

where h is an atom, and Body is a set of atoms, equality
atoms, and expressions of the form notA, where A is either
an atom or an equality atom. In the following, we use t 6= t′

as a shorthand for not t = t′. (However, as usual, when
t 6= t′ occurs in a formula, it stands for ¬t = t′.)

According to this definition, a logic program can contain
an infinite number of rules. However, in this paper, we con-
sider only finite logic programs because Clark’s completion
may not be well-defined for an infinite set of rules. So in the
following, unless otherwise specified, a logic program will
be assumed to be finite.

In this paper, the semantics of a logic program with vari-
ables will be defined according to the answer set semantics
(Gelfond & Lifschitz 1991) of propositional logic programs
by grounding the first-order program on a domain.

Let r be a rule, we shall denote by V ar(r) the set of vari-
ables occurring in r, and Const(r) the set of constants oc-
curring in r. We call a variable x ∈ V ar(r) a local variable
of r if it does not occur in the head of the rule. Similarly,

given a set P of rules, we shall denote by V ar(P) the set of
variables in P , and Const(P) the set of constants in P .

Given a set V of variables, and a set D of constants, a
variable assignment of V on D is a mapping from V to D.
If r is a rule, and σ a variable assignment, then rσ is the
result of replacing the variables in r by their values in σ.

Let r be a rule and D a set of constants. We define the
instantiation of r on D, written r|D, to be the set of ground
rules obtained from

R = {rσ | σ is a variable assignment of V ar(r) on D}

by the following two transformations:
• if a rule in R contains either a = b for some distinct con-

stants a and b or a 6= a for some constant a, then delete
this rule;

• delete a = a and a 6= b for all constants a and b in the
bodies of the remaining rules.

For instance, if r is the rule

p(x)← q(x, y), x = a, x 6= y,

then its instantiation on {a, b}, r|{a, b}, is

{p(a)← q(a, b)}.

The instantiation of a program P on D, written P |D, is
then the union of the instantiations of all the rules in P on
D.

Normal forms and program completions
Let r be a rule of the form (1), and suppose that h is p(~t)
for some predicate p and tuple ~t of terms. If ~x is a tuple of
variables not in r, and matches p’s arity (so that p(~x) is well-
formed), then the normal form of r on ~x is the following
rule:

p(~x)← ~x = ~t ∪Body,
where (x1, ..., xk) = (t1, ..., tk) is the set:

{x1 = t1, ..., xk = tk}.

For instance, the normal form of the following rule

p(x, z)← q(x, y), x 6= y

on (u, v) is

p(u, v)← x = u, z = v, q(x, y), x 6= y

Notice that if none of the variables in ~x occur in a rule r,
then all variables in r become local variables in the normal
form of r on ~x.

Using this notion of normal forms, we can define the
completion of a predicate p under a program P , written
COMP (p, P), to be the following formula:

∀~x.p(~x) ≡
∨

1≤i≤k

∃~yiB̂odyi,

where
• ~x is a tuple of distinct variables that are not in P , and

matches p’s arity;

• (p(~x) ← Body1), · · · , (p(~x) ← Bodyk) are the normal
forms on ~x of all the rules in P whose heads mention the
predicate p;

• for each 1 ≤ i ≤ k, ~yi is the tuple of local variables in the
rule (p(~x)← Bodyi), i.e., they occur in Bodyi but not in
~x;

• B̂odyi in the formula stands for the conjunction of all el-
ements in Bodyi with “not ” replaced by logical negation
“¬”.

In particular, if a predicate p(~x) does not occur in the head
of any rule in P , then its completion under P is equivalent
to ∀~x¬p(~x).

Now given a program P , we define the completion of P
to be the set of the completions of all predicates in P .

Positive dependency graphs, loops, and loop
formulas

As usual, a binding is an expression of the form x/t, where
x is a variable, and t a term. A substitution is a set of bind-
ings containing at most one binding for each variable. In the
following, if ϕ is a first-order formula, and θ a substitution,
we denote by ϕθ the result of replacing every free variable
in ϕ according to θ. In particular, a variable assignment can
be considered a substitution, and if ∃~xϕ is a sentence, then
(∃~xϕ)|D is equivalent to the disjunction of the sentences in
the set

{(ϕσ)|D | σ is a variable assignment of ~x on D},

and (∀~xϕ)|D is equivalent to the conjunction of the sen-
tences in the set

{(ϕσ)|D | σ is a variable assignment of ~x on D}.

Let P be a program. The (first-order) positive dependency
graph of P , written GP , is the infinite graph (V,E), where
V is the set of atoms that do not mention any constants other
than those in P , and for anyA,A′ ∈ V , (A,A′) ∈ E if there
is a rule (1) in P and a substitution θ such that hθ = A and
bθ = A′ for some b ∈ Body.

A finite non-empty subset L of V is called a (first-order)
loop of P if there is a non-zero length cycle that goes
through only and all the nodes in L. This is the same as
saying that for any A and A′ in L, there is a non-zero length
path from A to A′ in the subgraph of GP induced by L.

It is easy to see that if the given logic program P does not
contain any variables, then the above definitions of positive
dependency graph and loops are the same as those in (Lin &
Zhao 2004).

Example 1 The following are some examples that illustrate
our notion of loops.

• Let P1 = {p(x) ← p(x)}. The vertices in P1’s positive
dependency graph are atoms of the form p(ξ), where ξ is
a variable, and there is an arc from p(ξ) to p(ξ). Thus the
loops of the program are singletons of the form {p(ξ)},
where ξ is a variable.

• Let P2 be the following program:

{(p(x)← q(x)), (q(y)← p(y)),
(p(x)← r(x)), (q(y)← not s(y))}.

The vertices in P2’s positive dependency graph are atoms
of the forms p(ξ), q(ξ), s(ξ) or r(ξ), where ξ is a variable,
and there is an arc from p(ξ) to q(ξ) and vice versa, and
there is an arc from p(ξ) to r(ξ). Thus the loops of the
program are sets of atoms of the form {p(ξ), q(ξ)}, where
ξ is a variable.

• Let P3 = {p(x) ← p(y)}. The vertices in P3’s positive
dependency graph are atoms of the form p(ξ), where ξ
is a variable, and for any variables ξ and ζ, there is an
arc from p(ξ) to p(ζ). Thus any non-empty finite set of
vertices is a loop. In terms of loops, this program has
the same structure as Niemelä’s program for Hamiltonian
Circuit problem (Niemelä 1999).
• Let P4 = {p(x, y) ← p(a, b)}, where a and b are con-

stants. The vertices in P4’s positive dependency graph are
atoms of the form p(ξ, ζ), where ξ and ζ are either a, b,
or variables. There is an arc from p(ξ1, ζ1) to p(ξ2, ζ2) iff
ξ2 = a and ζ2 = b. So the only loop of P4 is {p(a, b)}.
To define loop formulas, we follow Lee (2005), define the

external support formula of an atom in a loop first. Given a
loop L of a program P , an atom p(~t), the external support
formula of of p(~t) w.r.t. L, written ES(p(~t), L, P), is the
following formula:

∨
1≤i≤k

∃~yi

B̂odyiθ ∧
∧

q(~u)∈Bodyiθ

q(~v)∈L

~u 6= ~v

 ,
where
• (p(~x) ← Body1), · · · , (p(~x) ← Bodyk) are the normal

forms on ~x of the rules in P whose heads mention the
predicate p;

• ~x is a tuple of distinct variables that are not in P , and if
~t = (t1, ..., tn) and ~x = (x1, ..., xn), then

θ = {x1/t1, ..., xn/tn}

(so that ~xθ = ~t);
• for each 1 ≤ i ≤ k, ~yi is the tuple of local variables

in p(~x) ← Bodyi. We assume that ~yi ∩ V ar(L) = ∅,
by renaming local variables in Bodyi if necessary, where
V ar(L) is the set of variables in L. In other words, if a
rule has a local variable that is also in the loop, then we
have to rename the local variable in the rule.

Notice that the only free variables in the formula
ES(p(~t), L, P) are those in ~t. The choice of the variables
in ~x is not material.

The (first-order) loop formula of L in P , written
LF (L,P), is then the following formula:

∀~x

[∨
A∈L

A ⊃
∨

A∈L

ES(A,L, P)

]
, (2)

where ~x is the tuple of variables in L.

Example 2 We continue with the logic programs in Exam-
ple 1.
• Consider P1 = {p(x)← p(x)}, and the loop {p(z)}. The

normal form of the rule on y is p(y) ← y = x, p(x). So
the external support formula of p(z) w.r.t. this loop is

∃x.z = x ∧ p(x) ∧ x 6= z

which is equivalent to false. Thus the loop formula for
this loop is equivalent to ∀x¬p(x). The loop formulas of
the other loops like {p(x)} is equivalent to this formula
as well.

• Consider

P2 = {(p(x)← q(x)), (q(y)← p(y)),
(p(x)← r(x)), (q(y)← not s(y))}.

and the loop {p(x), q(x)}. To compute the external sup-
port formula of p(x), we first normalize all the rules about
p on a new variable, say z:

p(z)← z = x, q(x),
p(z)← z = x, r(x).

Since x is a local variable in the above rules, and it occurs
in the loop, we replace it by another variable, say x1:

p(z)← z = x1, q(x1),
p(z)← z = x1, r(x1).

Thus the external support formula of p(x) is

∃x1(x = x1 ∧ q(x1) ∧ x 6= x1) ∨ ∃x1(x = x1 ∧ r(x)),
which is equivalent to r(x). Similarly, the external sup-
port formula of q(x) is equivalent to ¬s(x). Thus the loop
formula of this loop is equivalent to

∀x.(p(x) ∨ q(x)) ⊃ (r(x) ∨ ¬s(x)).
It can be seen that the loop formulas of all loops in P2 are
equivalent to this sentence.

• Consider P3 = {p(x) ← p(y)}, and the loop
{p(x1), · · · , p(xk)}. The external support formula for
each p(xi) is equivalent to

∃y.p(y) ∧
∧

1≤i≤k

xi 6= y.

Thus the loop formula of this loop is equivalent to

∀x1, ..., xk.
∨

1≤i≤k

p(xi) ⊃ ∃y.p(y) ∧
∧

1≤i≤k

xi 6= y.

Main theorem
In the following, we call a predicate in a program exten-
sional if it does not occur in the head of any rule in the
program, and the other predicates in the program are called
intensional.
Theorem 1 Let P be a finite set of rules, and F a finite set
of ground facts about the extensional relations. LetD be the
set of constants in P ∪ F . A set M of ground facts is an
answer set of (P |D) ∪ F iff M is a propositional model of
(COMP (P ∪F)∪LF (P))|D, where COMP (P ∪F) is the
completion of P ∪F and LF (P) the set of the loop formulas
of P .

Proof: See the next section.

Notice that COMP (P ∪ F) is actually the union of two
sets: the set of the completions of the intensional predicates
of P under P and the set of the completions of the exten-
sional predicates of P under F . The first set can be com-
puted before we are given the actual problem instance F .

We have defined a loop to be a set of vertices such that
there is a non-zero length cycle that goes through all and
only the vertices in the set. We can generalize this notion
of loops by allowing zero length cycle, like what is done in
(Lee & Lin 2006) and (Lee 2005). This will make every
singleton set of nodes to be a loop, and the loop formulas of
these singleton sets will correspond to Clark’s completion.
Under this more general notion of loops, Theorem 1 can be
restated as follows:

Let P be a finite set of rules, and F a finite set of ground
facts about the extensional relations. Let D be the set
of constants in P ∪ F . A set M of ground facts is an
answer set of (P |D)∪F iffM is a propositional model
of (P̂ ∪ F ∪ LF ′(P))|D, where LF ′(P) is the set of
the loop formulas for the (generalized) loops in P , and
P̂ is the set of sentences obtained from P by replacing
each rule (F ← B) in it by the sentence ∀~x.B̂ ⊃ F ,
where ~x is the tuple of variables in the rule.

Example 3 The following are some examples that illustrate
the theorem.
• Consider P2 from Examples 1 and 2.

Suppose F = {r(a), s(b)}. Then D = {a, b}. By nor-
malizing all rules on z, it is easy to see that the completion
of P2 ∪ F is equivalent to
∀z.p(z) ≡ ∃x(z = x ∧ q(x)) ∨ ∃x(z = x ∧ r(x)),
∀z.q(z) ≡ ∃y(z = y ∧ p(y)) ∨ ∃y(z = y ∧ ¬s(y)),
∀z.r(z) ≡ z = a, ∀z.s(z) ≡ z = b,

which is equivalent to
∀z.p(z) ≡ q(z) ∨ r(z), ∀z.q(z) ≡ p(z) ∨ ¬s(z)),
∀z.r(z) ≡ z = a, ∀z.s(z) ≡ z = b.

Thus by Proposition 2, COMP (P2 ∪ F)|D is equivalent
to the set of the following set of sentences:

p(a) ∧ q(a) ∧ p(b) ≡ q(b),
r(a) ∧ ¬r(b) ∧ ¬s(a) ∧ s(b).

As we have shown in Example 2, the loop formulas of all
the loops are equivalent to

∀x.(p(x) ∨ q(x)) ⊃ (r(x) ∨ ¬s(x)).
Thus LF (P2)|D is equivalent to ¬p(b)∧¬q(b). Thus the
only propositional model ofCOMP (P2∪F)∪LF (P2)|D
is {p(a), q(a), r(a), s(b)}.
Now the instantiation of the program P2 ∪F on {a, b} is:

p(a)← q(a). p(b)← q(b). p(a)← r(a).
p(b)← r(b). q(a)← p(a). q(b)← p(b).
q(a)← not s(a). q(b)← not s(b).

There is a unique answer set of this program, which is the
same as the propositional model given above.

• Consider the program P5 that contains the following
rules:

p(x)← p(y)
p(x)← q(x, y), x 6= y.

This program adds one more rule about p to the program
P3 in Examples 1 and 2. The loops of the program are the
same as those of P3, and of the form {p(ξ1), ..., p(ξk)}.
The loop formulas are equivalent to the following sen-
tence:

∀x1, ..., xk.
∨

1≤i≤k

p(xi) ⊃

[∃y.p(y) ∧
∧

1≤i≤k

xi 6= y] ∨ [
∨

1≤i≤k

∃y.q(xi, y) ∧ xi 6= y].

Now let F = {q(a, b)}. Then D = {a, b}. If k = 1, then
the instantiation of the above sentence is equivalent to

(p(a) ⊃ p(b) ∨ q(a, b)) ∧ (p(b) ⊃ p(a) ∨ q(b, a)). (3)

For k ≥ 2, the instantiations of the above sentences are
all equivalent to the conjunction of (3) and the following
sentence:

(p(a) ∨ p(b)) ⊃ (q(a, b) ∨ q(b, a)).

Now for the completion of P5 ∪ F , by normalizing all
rules on u, v, we see that it is equivalent to

∀u.p(u) ≡ ∃x, y.(u = x ∧ p(y)) ∨
∃x, y.(u = x ∧ q(x, y) ∧ x 6= y),

∀u, v.q(u, v) ≡ (u = a ∧ v = b).

Thus COMP (P5 ∪ F)|D is equivalent to

q(a, b) ∧ ¬q(a, a) ∧ ¬q(b, a) ∧ ¬q(b, b) ∧ p(a) ∧ p(b).

Notice that this formula implies LF (P5)|D, so the latter
is not needed for this example. Now the instantiation of
the program P5 ∪ F on {a, b} is:

p(a)← p(a). p(a)← p(b). p(b)← p(a). p(b)← p(b).
p(a)← q(a, b). p(b)← q(b, a). q(a, b).

The unique answer set of this program is the same as the
model of COMP (P5 ∪ F)|D.

Proof of the main theorem
The proof of Theorem 1 is tedious, but the basic idea is sim-
ple. Instead of P |D, we use an equivalent logic program
Peq|D as defined below. The main task is then to show that
there is a one-to-one correspondence between the loops of
Peq|D and the instantiations of the first-order loops of P ,
and that this correspondence works between the loop for-
mulas of Peq|D and the instantiations of the first-order loop
formulas of P .

Notice that the instantiation of a program on a finite do-
main, P |D, eliminates all equality atoms. While doing this,
it also delete rules whose bodies have an equality literal that
is false. Thus the ground loops of P |D and the instantiations
of the first-order loops of P on D may not be in one-to-one

correspondence. So to faithfully preserve the loops of P , we
introduce Peq as defined below.

Let P be a program. Without loss of generality, suppose
that P does not mention eq as a binary predicate. Let Peq

be the program obtained from P by replacing t = t′ in it by
eq(t, t′). Notice that t 6= t′ will be replaced by not eq(t, t′)
as the former is a shorthand for not t = t′.

Proposition 3 For any finite domain D such that
Const(P) ⊆ D, a set M of atoms occurring in P |D
is an answer set of P |D iff M ∪ EQD is an answer set of
Peq|D ∪ EQD, where EQD = {eq(d, d) | d ∈ D}.
Proof: Since eq does not occur in the head of any rule
in Peq|D, (Peq|D)∪EQD is equivalent to (P |D)∪EQD.

So P |D and Peq ∪ EQD are essentially the same. But
the latter is a more faithful way to ground P on D in the
sense that it will not lose any loops of P . For instance,
{p(x), p(y)} is a loop of program

P = {p(x)← p(y), x 6= x},

but for any D, P |D is the empty program, and thus has no
loop. But Peq|D has the same loops as those of P . Our next
proposition shows that this is true in general.

Proposition 4 Let P be a finite set of rules and D a finite set
of constants containingConst(P). IfGL is a loop of Peq|D
then for some loop L of P , and some variable assignment θ
on D, GL = Lθ. Conversely, if L is a loop of P , and θ is a
variable assignment on D, then Lθ is a loop of Peq|D.

Proof: Let G0 be the positive dependency graph of the
propositional program Peq|D, and G1 the positive depen-
dency graph of P .

Let A and B be two atoms in Peq|D that do not mention
eq. Let d1, ..., dk be the constants in A and B that are not
in Const(P), and A′ and B′ the results of replacing each di

by xi in A and B, respectively. Then we have that

(A,B) is an arc in G0

iff
There is a rule A← B,Body in Peq|D
iff
There is a rule α ← β, body in Peq and a variable assign-
ment σ such that A = ασ and B = βσ
iff
There is a rule α ← β, body′ in P (since α and β do not
mention eq) and a variable assignment σ such that A = ασ
and B = βσ
iff
There is a rule α← β, body′ in P and a variable assignment
σ′ such that A′ = ασ′ and B′ = βσ′. (σ′ can be obtained
from σ by replacing every x/di(1 ≤ i ≤ k) in σ with x/xi.)
iff
(A′, B′) is an arc in G1.

Now if GL is a loop of Peq|D, then there is a cycle
(A1, ..., An, An+1), where An+1 = A1, in G0 such that
GL = {A1, ..., An}. Thus for each 1 ≤ i ≤ n, Ai does
not mention eq and (Ai, Ai+1) is an arc in G0. Thus for
each 1 ≤ i ≤ n, (A′

i, A
′
i+1) is an arc in G1, where A′

i’s are
defined as above. Thus {A′

1, ..., A
′
n} is a loop of P .

Conversely, suppose L is a loop of P , and θ a vari-
able assignment of V ar(L) on D. Then there is a cycle
(α1, ..., αn, αn+1 = α1) in G1 such that L = {α1, ..., αn}.
Thus for each 1 ≤ i ≤ n, (αi, αi+1) is an arc in G1. Thus
for each 1 ≤ i ≤ n, (αiθ, αi+1θ) is an arc in G0 (the fact
that each αiθ is a node in G0 follows from the assumption
that Const(P) ⊆ D). Thus Lθ = {α1θ, ..., αnθ} is a loop
of Peq|D.

In the following, if P is a ground logic program, L a set of
atoms in P , and A an atom in L, then we define the ground
support formula of A w.r.t. L, written GES(A,L, P), to be
the following formula ∨

1≤i≤k,Bi∩L=∅

B̂i

where (A ← B1), ..., (A ← Bk) are the rules in P whose
heads are A. Now if L is a loop of the ground program P ,
then the following formula, written GLF (L,P),∨

A∈L

A ⊃
∨

A∈L

GES(A,L, P)

is equivalent to the loop formula of L as defined in (Lin
& Zhao 2004). In the following, we call GLF (L,P) the
ground loop formula of L in P .
Lemma 1 Let P be a program, L be a loop of Peq and D
be a finite set of constants containing Const(P). Then, for
any an atom A in L and any substitution θ of V ar(L) on D,
we have

GES(Aθ,Lθ, Peq|D) ≡ ES(A,L, Peq)θ|D.

Proof: Let A = p(~t). Without loss of generality, we as-
sume that there is only one rule in P whose head mentions
p: p(~w) ← B, and does not contain variables in L (by re-
naming variables in the rule if necessary). Suppose that ~x is
a tuple of variables not in P and L, and we normalize this
rule on ~x: p(~x)← B ∪ {~x = ~w}. GES(Aθ,Lθ, Peq|D) is∨

~wσ=~tθ,Beqσ∩Lθ=∅

B̂eqσ, (4)

where σ ranges over all variable assignments on D, and Beq

is the result of replacing equality in B by eq.
ES(A,L, Peq) is

(∃~y)(B̂eq ∧ ~t = ~w ∧
∧

q(~u)∈Beq
q(~v)∈L

~u 6= ~v),

where ~y is the tuple of variables in B and ~w. Since none of
the variables in B and ~w occur in L, and θ is a substitution
of variables in L, so ES(A,L, Peq)θ is

(∃~y)(B̂eq ∧ ~tθ = ~w ∧
∧

q(~u)∈Beq
q(~v)∈L

~u 6= ~vθ).

Thus ES(A,L, Peq)θ|D is equivalent to∨
σ

B̂eqσ, (5)

where σ ranges over variable assignments on D such that

• ~tθ and ~wσ are the same
• for every atom q(~v) ∈ L and every atom q(~u) ∈ Beq, ~uσ

and ~vθ are not the same, that is Lθ ∩Beqσ = ∅.
Thus (4) and (5) are the same, and this proves the proposi-
tion.

Proposition 5 Let P be a program and D be a finite set
of constants containing Const(P). Then LF (Peq)|D and
GLF (Peq|D) are logically equivalent, where for any pro-
gram Q, GLF (Q) is the set of ground loop formulas of Q.

Proof: LF (Peq)|D is

{LF (L,Peq)|D | L is a loop of Peq}.

For each loop L of Peq, LF (L,Peq) is

∀~x

[∨
A∈L

A ⊃
∨

A∈L

ES(A,L, Peq)

]
.

ThusLF (L,Peq)|D is equivalent to the set of following sen-
tences: [∨

A∈L

A ⊃
∨

A∈L

ES(A,L, Peq)

]
σ|D,

where σ is a variable assignment of ~x on D. The above
sentence is equivalent to[∨

A∈L

Aσ ⊃
∨

A∈L

ES(A,L, Peq)σ

]
|D,

which is equivalent to the following sentence as for each
A ∈ L, Aσ is a ground atom,∨

A∈L

Aσ ⊃
∨

A∈L

(ES(A,L, Peq)σ|D),

which, by Lemma 1, is equivalent to∨
A∈L

Aσ ⊃
∨

A∈L

GES(Aσ,Lσ, Peq|D),

which is equivalent to

[
∨

B∈Lσ

B ⊃
∨

B∈Lσ

GES(B,Lσ, Peq|D),

which is GLP (Lσ, Peq|D). Thus by Proposition 4,
LF (Peq)|D is equivalent to GLF (Peq|D).

In the following, if P is a ground logic program, then we
denote byGCOMP (a, P) the ground completion of an atom
a in P .

Proposition 6 Let P be a program, and D a finite set of con-
stants containing Const(P). For each predicate p in P ,
COMP (p, Peq)|D is equivalent to

{GCOMP (p(~x)σ, Peq|D) |
σ is a variable assignment of ~x on D}.

Proof: Again without loss of generality, we assume that
p(~w) ← B is the only rule in P with p in its head, and
~x is a tuple of variables not in P . Then COMP (p, Peq) is
equivalent to

∀~xp(~x) ≡ ∃~yB̂eq ∧ ~x = ~w,

where ~y is the tuple of variables in B and ~w. So
COMP (p, Peq)|D is equivalent to the conjunction of the fol-
lowing sentences:

p(~x)σ ≡ (∃~yB̂eq ∧ ~xσ = ~w)|D,
where σ is a variable assignment on D, which is equivalent
to

p(~x)σ ≡
∨

~xσ=~wτ

B̂eqτ,

where τ ranges over all variable assignments of ~x on D,
which is exactly GCOMP (p(~x)σ, Peq|D).

Finally, we can prove the main theorem:

Theorem 1 Let P be a finite set of rules, and F a finite set
of ground facts about the extensional relations. LetD be the
set of constants in P ∪ F . A set M of ground facts is an
answer set of (P |D) ∪ F iff M is a propositional model of
(COMP (P ∪F)∪LF (P))|D, where COMP (P ∪F) is the
completion of P ∪F and LF (P) the set of the loop formulas
of P .

Proof: In the following, we denote byGCOMP1(Q) the set
of ground completions of the atoms not mentioning “eq” in
Q:

GCOMP1(Q) = {GCOMP (A,Q)|A does not mention eq}.
Similarly, we let

COMP1(Q) = {COMP (p,Q) | p is not eq}.
We also let

IU(D) = {eq(d, d)|d ∈ D} ∪
{¬eq(d, d′)|d and d′ are two distinct constants of D}.

M is an answer set of (P |D) ∪ F
iff
M is an answer set of (P ∪ F)|D
iff
M ∪EQD is an answer set of (P ∪F)eq|D∪EQD (Propo-
sition 3)
iff
M ∪ EQD is a propositional model of

GCOMP ((P∪F)eq|D∪EQD)∪GLF ((P∪F)eq|D∪EQD)

(Theorem 1 of (Lin & Zhao 2004))
iff
M ∪ EQD is a propositional model of

GCOMP1((P∪F)eq|D)∪IU(D)∪GLF (Peq|D∪F∪EQD)

(COMP (eq, Peq ∪ F ∪ EQD) is equivalent to IU(D))
iff
M ∪ EQD is a propositional model of

GCOMP1((P ∪ F)eq|D) ∪ IU(D) ∪GLF (Peq|D)

iff
M ∪ EQD is a propositional model of

COMP1((P ∪ F)eq)|D ∪ IU(D) ∪ LF (Peq)|D
(by Proposition 6 and Proposition 5)
iff
M ∪ EQD is a propositional model of

[COMP1((P ∪ F)eq) ∪
{∀x, y(eq(x, y) ≡ x = y)} ∪ LF (Peq)]|D

iff
M ∪ EQD is a propositional model of

[COMP (P ∪ F) ∪
{∀x, y(eq(x, y) ≡ x = y)} ∪ LF (P)]|D

(by Proposition 2 and that in first-order logic,

{∀x, y(eq(x, y) ≡ x = y)} |=
COMP (p,Qeq) ≡ COMP (p,Q),

for any program Q and predicate p in Q, and

{∀x, y(eq(x, y) ≡ x = y)} |= LF (L,Qeq) ≡ LF (L,Q),

for any loop L)
iff
M ∪ EQD is a propositional model of

[COMP (P∪F)∪LF (P)]|D∪{∀x, y(eq(x, y) ≡ x = y)}|D
iff
M ∪ EQD is a propositional model of

[COMP (P ∪ F) ∪ LF (P)]|D ∪ IU(D)

iff
M is a propositional model of

[COMP (P ∪ F) ∪ LF (P)]|D
asM and [COMP (P∪F)∪LF (P)]|D do not mention eq.

Some properties of loops and loop formulas
It is clear from the definition that if L is a loop of P , and θ
is a substitution such that Const(θ) ⊆ Const(P), then Lθ
is also a loop of P , where Const(θ) is the set of constants
occurring in θ. Thus if P has a loop that contains a variable,
then P has an infinite number of loops. But as we have seen
from the examples many of these loops are “equivalent” in
the sense that their loop formulas are logically equivalent in
first-order logic. This motivates our following definition.

Let L1 and L2 be two sets of atoms. We say L1 sub-
sumes L2 if there is substitution θ such that L1θ = L2.
We say that L1 and L2 are equivalent if they subsume each
other. For instance, {p(x)} and {p(y)} are equivalent. The
set {p(x1), p(x2)} subsumes {p(x)}, but not the other way
around. If L1 subsumes L2, then the loop formula of L1 also
entails the loop formula of L2.
Proposition 7 Let L1 be a loop of P , and L2 a set of atoms
such that Const(L2) ⊆ Const(P). If L1 subsumes L2,
then L2 is also a loop of P . Furthermore,

|= LF (L1, P) ⊃ LF (L2, P).

Proof: Let θ be a substitution of V ar(L1) such that
L1θ = L2. Since L1 is a loop, there is a cycle
A1, ..., An, An+1 = A1 in GP , the dependency graph of
P , such that L1 = {A1, ..., An}. By the definition of
GP , A1θ, ..., Anθ,An+1θ is also a cycle of GP . Thus
L2 = {A1θ, ..., Anθ} is also a loop of P .

Now LF (L1, P) is ∀~ξΦ(~ξ), where ~ξ is the tuple of vari-
ables in L1, and Φ(~ξ) is[∨

A∈L1

A ⊃
∨

A∈L1

ES(A,L1, P)

]
. (6)

We show that LF (L2, P) is equivalent to ∀~ζΦ(~ξ)θ, where ~ζ
is the tuple of variables in L2 = L1θ, i.e. ~ξθ.

Notice that LF (L2, P) is

∀~ζ

[∨
A∈L1

Aθ ⊃
∨

A∈L1

ES(Aθ,L1θ, P)

]
. (7)

Thus it is enough to show that, for any p(~t) ∈ L1,
ES(p(~t), L1, P)θ ≡ ES(p(~t)θ, L1θ, P). That is

∨
1≤i≤k

∃~yi

B̂iδ1 ∧
∧

q(~u)∈Biδ1
q(~v)∈L1

~u 6= ~v

 θ

≡
∨

1≤i≤k

∃~yi

B̂iδ2 ∧
∧

q(~u)∈Biδ2
q(~v)∈L1θ

~u 6= ~v


where
• ~x is a tuple of distinct variables that are not in P , and

(p(~x)← B1), · · · , (p(~x)← Bk)

are the normal forms on ~x of all the rules in P whose
heads mention the predicate p.

• Let ~t = (t1, ..., tn) and ~x = (x1, ..., xn). Then
δ1 = {x1/t1, ..., xn/tn} (so that ~xδ1 = ~t), and similarly
for δ2. So p(~x)δ1 = p(~t) and p(~x)δ2 = p(~t)θ.

• For each 1 ≤ i ≤ k, ~yi is the tuple of local variables
in p(~x) ← Bi. We assume that ~yi ∩ V ar(L1) = ∅, by
renaming local variables in Bi if necessary. For the same
reason, we also assume that ~yi ∩ V ar(L2) = ∅.

The equivalence follows because

∨
1≤i≤k

∃~yi

B̂iδ1 ∧
∧

q(~u)∈Biδ1
q(~v)∈L1

~u 6= ~v

 θ

≡
∨

1≤i≤k

∃~yi

B̂iδ1θ ∧
∧

q(~u)∈Biδ1
q(~v)∈L1

~uθ 6= ~vθ

 ,
B̂iδ1θ is the same as B̂iδ2 and

∧
q(~u)∈Biδ1

q(~v)∈L1

~uθ 6= ~vθ is the

same as
∧

q(~u)∈Biδ2
q(~v)∈L1θ

~u 6= ~v.

Given a program P , a set ∆ of loops of P is said to be
complete if for any loop L of P , there is a loop L′ ∈ ∆
such that L′ subsumes L. Thus by Proposition 7, if ∆ is
a complete set of loops of P , then the set of loop formulas
of the loops in ∆ is logically equivalent to the set of the
loop formulas of all the loops of P . Of special interests are
programs that have finite complete sets of loops. For the
programs in Example 1, {{p(x)}} is a complete set of loops
for P1, {{p(x), q(x)}} is a complete set of loops for P2. But
P3 has no finite complete set of loops. One of its complete
sets of loops is {{p(x1)}, · · · , {p(x1), · · · , p(xk)}, · · ·}.

An interesting question then is how to decide whether a
program has a finite complete set of loops. The following
theorem answers this question.

Theorem 2 Let P be a finite logic program, and

D = {c1, c2} ∪ Const(P),

where c1 and c2 are two new constants not in P . The follow-
ing five assertions are equivalent:

1. P has a finite complete set of loops.
2. There is a natural number N such that, for any loop L of
P , the size of V ar(L) is smaller than N .

3. For any loop L of P , and any atoms A1 and A2 in L,
V ar(A1) = V ar(A2).

4. For any loop L of Peq|D, there are no two atoms A1 and
A2 in L such that either A1 mentions c1 but A2 does not
or A1 mentions c2 but A2 does not.

5. For any maximal loop (w.r.t. to subset ordering) L of
Peq|D, there are no two atoms A1 and A2 in L such that
either A1 mentions c1 but A2 does not or A1 mentions c2
but A2 does not.

Proof: “1 ⇐ 2”: Let ∆ be the set of loops of P that
mention only variables in V = {x1, ..., xN}. Clearly, ∆ is
finite. We show that it is complete. Let L be any loop of
P . Let L′ be obtained from L by replacing in it variables
in V ar(L) \ V by distinct variables in V \ V ar(L) - this is
possible asLmentions at mostN variables. ClearlyL′ ∈ ∆,
and subsumes L.

“2⇐ 3”: P is a finite program, so there are at most finite
predicates occurring in it. Let N be the maximum arity of
all the predicates in P . For any loop L in P , the number of
variables in L is at most N .

“3 ⇐ 4”: Suppose otherwise, and L is a loop of P
such that there are two atoms A1 and A2 in L such that
V ar(A1) 6= V ar(A2). Without loss of generality, let x be
a variable in A1 and not in A2. Let θ be the substitution
{x/c1} ∪ {x′/c2 | x′ ∈ V ar(L) \ {x}}. Then Lθ is a loop
of Peq|D. Moreover, we can see A1θ mentions c1 and A2θ
does not, and A1θ and A2θ are two atoms in Lθ, which is a
contradiction.

“4 ⇐ 1”: Let ∆ = {L1, ..., Ln} be a finite complete set
of loops of P . For every Li ∈ ∆, V ar(Li) is finite since
Li is finite. Now letN = max{|V ar(L1)|, ..., |V ar(Ln)|}.
For any loop L of P , there is a loop L∗ ∈ ∆ such that L∗
subsumes L, and consequently,

|V ar(L)| ≤ |V ar(L∗)| ≤ N.

Now suppose condition 4 does not hold, and let
L = {A1, A2, . . . , An} be a ground loop such that, without
loss of generality, c1 occurs in A1 and not in A2. Let x
and y be two new variables not in L, and for each i, A′

i be
obtained from Ai by replacing c1 with x and c2 with y. Let
L[1] = {A′

1, A
′
2, . . . , A

′
n}. Clearly, A′

1 mentions x but A′
2

does not. But by Proposition 4 (more precisely as shown in
the proof of this proposition), L[1] is loop of P .

From loop L[1], we can construct another loop L[2] of P
as following. Let δ = {x/x∗} be a substitution, where x∗ is
variable not mentioned in L[1]. Then L[1]δ is also a loop of
P . Notice that A′

2 does not mention x, so A′
2 = A′

2δ, thus
A′

2 ∈ L[1]∩L[1]δ. Let L[2] = L[1]∪L[1]δ, then L[2] is also a
loop of P as the union of any two loops that have a common
element is also a loop. Clearly,

|V ar(L[2])| = |V ar(L[1])|+ 1.

This procedure can be iterated, and for any L[i], we can
construct a loop L[i+1] such that

|V ar(L[i+1])| = |V ar(L[i])|+ 1.
So, for any given nature number N∗, we can construct a
loop L∗ of P such that |V ar(L∗)| > N∗, a contradiction
with condition 1.

Finally, “4 ⇔ 5” as Peq|D is a finite program, thus for
any loop of this program, there is a maximal one containing
it.

Notice that for the purpose of computing loops, EQD is
not needed: Peq|D and Peq|D ∪EQD have the same loops.
Notice also that since P is a finite set of rules, the set D is
finite, thus Peq|D in the theorem is also finite. In this case,
since Peq|D has no variables, its loops cannot have variables
either. In fact, for Peq|D, the definition of loops given here
is the same as that in the propositional case given in (Lin &
Zhao 2004). In particular, the set of loops of Peq|D is finite.
From Theorem 2.5, we have the following proposition:
Proposition 8 Let P be a finite program, M the number
of rules in P , N the maximum length of the rules in P ,
n the number of predicates (including equality) in P , k
the maximum arity of the predicates (counting equality) in
P , and c the number of constants in P . Then there is a
O(MNn2(c+ 2)2k) algorithm for checking whether P has
a finite complete set of loops.
Proof: n(c + 2)k is the maximum number of atoms in
Peq|D, n2(c + 2)2k the maximum number of arcs in the
dependency graph of Peq|D, O(MNn2(c + 2)2k) the
worst case time for constructing the graph, and there is a
linear time algorithm in the size of the dependency graph
of Peq|D for computing all maximal loops of the program.

The exact complexity of deciding whether P has a finite
complete set of loops is an open question.

Recall that a variable in a rule is said to be a local one if it
occurs in the body of the rule but not in the head. A variable
of a program is said to be a local one if it is a local variable
in one of the rules in the program. From Theorem 2, we can
easily prove the following result.

Proposition 9 If P does not have any local variables, then
P has a finite complete set of loops.

Proof: If P has no local variables in any of its rules, then
by the definition of dependency graph GP , if there is an arc
from A to B in GP , then V ar(A) = V ar(B). The result
then follows from the definition of the loop and Theorem 2.

For instance, programs P1 and P2 in Example 1 do not
have any local variables.

Concluding remarks
We have proposed notions of loops and loop formulas for
normal logic programs with variables. Our main result is
Theorem 1, which basically says that for a logic program
with variables, we can first compute a first-order theory con-
sisting of its completion and loop formulas so that when
given a finite domain, the instantiation of the first-order the-
ory on this domain yields a propositional theory whose mod-
els are the same as the answer sets of the ground logic pro-
gram obtained from instantiating the first-order logic pro-
gram.

This means that in principle, we can pre-compute the
completion and loop formulas of a logic program with vari-
ables before we know the actual problem domain, and once
the domain is known, all that is needed is to instantiate the
first-order theory on the domain to yield a set of clauses to
be given to a SAT solver. It is likely that for logic programs
that have finite complete sets of loops, pre-computing all the
loops is more efficient than ASSAT-like strategies that have
to compute loop formulas on each ground program, espe-
cially when the performance is averaged over a large number
of domains. However, for logic programs such as Niemelä’s
program for Hamiltonian Circuit problem (Niemelä 1999)
that do not have a finite complete set of loops, it is not clear
whether pre-computing first-order loops will be more effec-
tive computationally. To answer this question, an empirical
study is needed.

Another future work is that as we have mentioned, in this
paper, the semantics of logic programs with variables are
defined according to the propositional answer set semantics
of the the grounded programs. In other words, variables in
programs are just place-holders, and rules with variables are
schemas. In this sense, the logic programs considered in
this paper are not truly first-order. Recently, Lifschitz1 intro-
duced a semantics of logic programs with variables that does
not depend on grounding. Also the formulation of answer
set semantics for normal logic programs in circumscription
(Lin 1991) can be applied to programs with variables as
well. How the notions of loops and loop formulas proposed
in this paper relate to these semantics of logic programs with
variables is an open question that is worth studying.

Acknowledgments
Yisong Wang and Mingyi Zhang were partially supported
by the Natural Science Foundation of China under grant

1Invited talk at ASP’05, Bath, UK, July 2005.

NSFC 60573009 and the stadholder foundation of Guizhou
Province under grant 2005(212).

References
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logics and Databases. New York: Plenum
Press. 293–322.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Trans. Comput.
Log. 5(2) 206–263.
Erdem, E.; Lifschitz, V.; Nakhleh, L.; and Ringe, D. 2003.
Reconstructing the evolutionary history of indo-european
languages using answer set programming. In Proceedings
of PADL 2003, 160–176.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Lee, J., and Lin, F. 2006. Loop formulas for circumscrip-
tion. Artificial Intelligence 170(2):160–185.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Proceedings of IJCAI-05, 503–508.
Lifschitz, V. 1999. Action languages, answer sets and plan-
ning. In The Logic Programming Paradigm: A 25-Year
Perspective. K.R. Apt, V.W. Marek, M. Truszczynski, D.S.
Warren, eds, Springer-Verlag.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer
sets of a logic program by sat solvers. Artificial Intelligence
157(1-2):115–137.
Lin, F. 1991. A Study of Nonmonotonic Reasoning. Depart-
ment of Computer Science, Stanford University, Stanford,
CA: PhD thesis.
Marek, V. W., and Truszczynski, M. 1999. Stable logic pro-
gramming - an alternative logic programming paradigm. In
The Logic Programming Paradigm: A 25-Year Perspective.
K.R. Apt, V.W. Marek, M. Truszczynski, D.S. Warren, eds,
Springer-Verlag.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Ann. Math.
and AI 25(3-4):241–273.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An A-Prolog decision support system
for the space shuttle. In Proceedings of PADL 2001, 169–
183.

