
From Answer Set Logic Programming to Circumscription via
Logic of GK

Fangzhen Lin and Yi Zhou
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

We first provide a mapping from Pearce’s equi-
librium logic and Ferraris’s general logic pro-
grams to Lin and Shoham’s logic of knowl-
edge and justified assumptions, a nonmono-
tonic modal logic that has been shown to in-
clude as special cases both Reiter’s default
logic in the propositional case and Moore’s au-
toepistemic logic. From this mapping, we ob-
tain a mapping from general logic programs
to circumscription, both in the propositional
and first-order case. Furthermore, we show
that this mapping can be used to check the
strong equivalence between two propositional
logic programs in classical logic.

1 Introduction

Answer Set Programming (ASP) is a new paradigm
of constraint-based programming based on logic pro-
gramming with answer set semantics [Niemelä, 1999;
Lifschitz, 1999; Marek and Truszczynski, 1999]. It
started out with normal logic programs, which are
programs that can have negation but not disjunction.
Driven by the need of applications, various extensions
have been proposed. These include disjunctive logic pro-
grams [Gelfond and Lifschitz, 1991; Leone et al., 2006],
nested expressions [Lifschitz et al., 1999], cardinality and
weight constraints [Niemelä; and Simons, 2000], and oth-
ers. Recently, Ferraris [2005] proposed to view formulas
in propositional logic as logic programs and showed that
they include as special cases all the above mentioned
classes of logic programs. In particular, Ferraris [2005]
provided a stable model semantics for these formulas
using a transformation similar to the original Gelfond-
Lifschitz transformation, and showed that this semantics
coincides with Pearce’s equilibrium logic [Pearce, 1997].

In this paper, we show that this general stable model
semantics can be embedded in Lin and Shoham’s logic of
knowledge and justified assumptions [Lin and Shoham,
1992], aka logic of GK. Besides showing the generality of
Lin and Shoham’s logic, which was proposed as a gen-
eral logic for nonmonotonic reasoning, this embedding

allows us to obtain a way to check in classical propo-
sitional logic whether any given two logic programs are
strongly equivalent in almost the same way as in [Lin,
2002]. It also allows us to obtain a mapping from gen-
eral logic programs to propositional circumscription in
the same way as Lin and Shoham [1992] did for map-
ping normal logic programs to circumscription. As it
turned out, this mapping, when extended to first-order
case, yields a semantics to first-order general logic pro-
grams that is similar to the one proposed recently by
Ferraris et al. [2007].

We first briefly review Lin and Shoham’s logic of GK,
Ferraris’s general logic programs, and Pearce’s equilib-
rium logic.

2 Logic of GK

The language of the logic of GK is a modal propositional
language with two modal operators, K, for knowledge,
and A, for assumption. Given a set Atom of atoms (also
called variables or primitive propositions), formulas in
the logic of GK are defined inductively below in BNF
notation:

F ::= ⊥ | p | K(F) | A(F) | ¬F | F ∧F | F ∨F | F → F,

where p ∈ Atom, and ⊥ is a constant standing for fal-
sity. Formulas without modal operators are called base
formulas.

The semantics of the logic of GK is defined through
Kripke interpretations. A Kripke interpretation M is
a tuple 〈W,π,RK , RA, s〉, where W is a nonempty set
whose elements are called possible worlds, π a func-
tion that maps a possible world to a truth assignment
on Atom, RK and RA binary relations over W repre-
senting the accessibility relations for K and A, respec-
tively, and s ∈ W , called the actual world of M . The
satisfaction relation |= between a Kripke interpretation
M = 〈W,π,RK , RA, s〉 and a formula F is defined in-
ductively as follows:
• M 6|= ⊥;
• M |= p if π(s)(p) = 1, where p ∈ Atom;
• M |= ¬F iff M 6|= F ;
• M |= F ∧G iff M |= F and M |= G;

• M |= F ∨G iff M |= F or M |= G;
• M |= F → G iff M 6|= F or M |= G;
• M |= K(F) iff 〈W,π,RK , RA, w〉 |= F for any w ∈

W , such that (s, w) ∈ RK ;
• M |= A(F) iff 〈W,π,RK , RA, w〉 |= F for any w ∈

W , such that (s, w) ∈ RA.
We say that a Kripke interpretation M is a model of a
formula F if M satisfies F . In the following, given a
Kripke interpretation M , we let

K(M) = {F | F is a base formula and M |= K(F)}
A(M) = {F | F is a base formula and M |= A(F)}.

Notice that K(M) and A(M) are always closed under
classical logical entailment. In the following, for any set
X of formulas, we let Th(X) be the logical closure of X
under classical logic.

Definition 2.1 (GK Models) Given a formula F , a
Kripke interpretation M is a minimal model of F if M is
a model of F and there does not exist another model M1

of F such that A(M1) = A(M) and K(M1) ⊂ K(M).
We say that M is a GK model1 if M is a minimal model
of F and K(M) = A(M).

Lin and Shoham showed that the logic of GK can
be used to capture Reiter’s default logic [Reiter, 1980]
and Moore’s auto-epistemic logic [Moore, 1985]. As a
consequence, normal logic programs under stable model
semantics can be captured in the logic of GK as well.
Specifically, they showed that a normal rule

r ← p1, ..., pn, not q1, ..., not qm

can be translated into the following sentence in the logic
of GK:

Kp1 ∧ · · · ∧Kpn ∧ ¬Aq1 ∧ · · · ∧ ¬Aqm → Kr. (1)

They also showed that this translation extends to dis-
junction logic programs.

In this paper, we shall show that general logic pro-
grams proposed by Ferraris [2005] can be captured in
the logic of GK as well.

3 General logic programs
Given a set Atom of atoms, general logic programs [Fer-
raris and Lifschitz, 2005] are formulas defined inductively
below in BNF notation:

F ::= ⊥ | p | F ∧ F | F ∨ F | F → F,

where p ∈ Atom. Notice that there is no negation in the
language. Instead, for any formula F , ¬F is considered
to be a shorthand for F → ⊥.

A set X ⊆ Atom of atoms can be considered as a truth
assignment in the straightforward way:

X 6|= ⊥, X |= p iff p ∈ X,

1In [Lin and Shoham, 1992], GK models are called pre-
ferred models.

and the usual definition for the logical connectives.
The stable models of a formula (general logic program)

are defined by a modified extended Gelfond-Lifschitz
transformation. Given a general logic program F , and
a set X of atoms, the reduct of F under X [Ferraris,
2005], written FX , is the formula obtained from F by
replacing each maximal subformula that is not clas-
sically satisfied by X with ⊥. Thus for example,

(¬F)X =
{
> X |= ¬F
⊥ otherwise

Now a set X of atoms is a stable model of a general
logic program F if:
(i) X |= FX ;
(ii) there is no proper subset X1 of X, such that X1 |=

FX .

Example 3.1 Consider the following three general logic
program.

P = ¬p→ q,

Q = ¬p ∨ p,

R = p→ ¬¬p,

where p, q are atoms. The maximal subformula in P that
is false under {q} is p, thus P {q} is ¬⊥ → q, which is
satisfied by {q}, but not by ∅. Therefore, {q} is a stable
model of P . On the other hand, P {p} is ⊥ → ⊥, which
is satisfied by {p} as well as its subset ∅. Therefore, {p}
is not a stable model of P . It can be seen that {q} is the
only stable model of P . Similarly, it can be shown that
Q has two stable models, {p} and ∅, and R has exactly
one stable model ∅.

4 Pearce’s equilibrium logic
Pearce’s equilibrium logic [Pearce, 1997] is based on the
logic of here-and-there, a non-classical logic. Given a set
Atom of atoms, formulas of Atom are exactly the same
as in the case of general logic programs. Thus, negation
in equilibrium logic is considered a shorthand as well.

The semantics of the logic of here-and-there is
defined in terms of HT-interpretations, which are
pairs 〈X, Y 〉 of sets atoms such that X ⊆ Y .
The HT satisfaction relation2 |= between an HT-
interpretation 〈X, Y 〉 and a formula F is defined recur-
sively as follows:
• For p ∈ Atom, 〈X, Y 〉 |= p if p ∈ X;
• 〈X, Y 〉 6|= ⊥;
• 〈X, Y 〉 |= F ∧G if 〈X, Y 〉 |= F and 〈X, Y 〉 |= G;
• 〈X, Y 〉 |= F ∨G if 〈X, Y 〉 |= F or 〈X, Y 〉 |= G;
• 〈X, Y 〉 |= F → G if

(i) 〈X, Y 〉 6|= F or 〈X, Y 〉 |= G, and
(ii) Y |= F → G.

2We overload |=, and use it to stand for satisfaction re-
lations for modal logic, classical logic, and logic of here-and-
there. Which one it stands for should be clear from the con-
text.

An HT interpretation 〈X, Y 〉 is an equilibrium model of
a formula F if X = Y , 〈X, Y 〉 |= F , and there is no
proper subset X1 of X, such that 〈X1, Y 〉 |= F . Ferraris
[2005] showed that the stable models of a formula are
essentially the same as its equilibrium models.

Theorem 1 (Ferraris) Let X be a set of atoms and
F a general logic program, X is a stable model of F iff
〈X, X〉 is an equilibrium model of F .

5 From general logic program and
equilibrium logic to the logic of GK

In this section, we present a translation from a general
logic program (also a formula in equilibrium logic) to
a formula in the logic of GK, and show that under the
translation, stable models (thus equilibrium models) co-
incide with GK models in the logic of GK.

Given a general logic program F , we define two for-
mulas FA and FGK in the logic of GK as follows:

1. FA is obtained from F by simultaneously replacing
each atom p by Ap.

2. FGK is defined inductively as follows:
• ⊥GK = ⊥;
• For p ∈ Atom, pGK = Kp;
• (F �G)GK = FGK �GGK (� is ∧ or ∨).
• (F → G)GK = (FGK → GGK) ∧ (F → G)A.

It can be shown that for a normal logic program F ,
FGK is equivalent to the translation by Lin and Shoahm
[1992] given in Section 2 under∧

p∈Atom

Kp→ Ap, (2)

and that for any formula W in the logic of GK, M is a
GK model of W iff M is a GK model of W ∧ (2).

This translation is also similar to the mapping from
formulas in equilibrium logic to quantified boolean for-
mulas given in [Pearce et al., 2001]. We shall discuss this
in more detail in a later section.

To illustrate, consider the three programs in Exam-
ple 3.1. PGK is

((¬p)GK → qGK) ∧ (¬p→ q)A,

which is equivalent (in classical logic) to

((¬pGK ∧ ¬pA)→ Kq) ∧ (¬pA → qA),

which is

(¬Kp ∧ ¬Ap)→ Kq) ∧ (¬Ap→ Aq). (3)

Now let M be a model of the above sentence. If p ∈
A(M), then (3) holds no matter what K(M) is, thus
its minimal model is K(M) = Th(∅), so cannot be a
GK model. Now if p 6∈ A(M), then (3) is equivalent
to (¬Kp → Kq) ∧ Aq. Thus q ∈ A(M). Thus if M
is a minimal model, then K(M) = Th({q}). And if
A(M) = K(M), then M is a GK model. What we have
shown here is that in any GK model M of (3), K(M) =

A(M) = Th({q}). The existence of such a model is
apparent.

It can be similarly shown that QGK is equivalent
to Ap → Kp, and that M is a GK model of QGK

iff K(M) = A(M) = Th({p}) or K(M) = A(M) =
Th({>}). And RGK is equivalent to Kp→ Ap, and that
M is a GK model of RGK iff K(M) = A(M) = Th({>}).
Thus for these three programs, their GK models corre-
spond one-to-one with their stable models. In general,
we have the following result.

Theorem 2 Let X be a set of atoms and F a general
logic program. The following three statements are equiv-
alent.
1. X is a stable model of F .
2. 〈X, X〉 is an equilibrium model of F .
3. There is a GK model M of FGK such that K(M) =

A(M) = Th(X).

Proof sketch: Given a general logic program F ,
two set of atoms X and Y such that X ⊆ Y and
a Kripke structure M such that K(M) = Th(X),
A(M) = Th(Y), by induction on the structure of F , we
have X |= FY iff M |= FGK . From this, 2 ⇔ 3 follows.
By Theorem 1, 1⇔ 2.

6 From general logic programs and
equilibrium logic to circumscription:
propositional case

Given their mapping (1) from normal logic program to
the logic of GK, Lin and Shoham [1992] showed that
stable model semantics for normal logic programs can be
captured in circumscription [McCarthy, 1986] as follows.
Given a set Atom = {p, q, ...} of atoms, let Atom′ =
{p′, q′, ...} be a new set of atoms. Given a normal logic
program F , let C(F) be the conjunction of the sentences:

p1 ∧ · · · ∧ pn ∧ ¬q′1 ∧ · · · ∧ ¬q′m → r,

for each rule

r ← p1, ..., pn, not q1, ..., not qm

in F . Lin and Shoham [1992] showed that X is a stable
model of F iff X ∪X ′ is a model of∧

p∈Atom

(p↔ p′) ∧ Circum(C(F);Atom),

where Circum(W ;Q) is the circumscription of the atoms
in Q in W (with all other atoms fixed). Lin and Shoham
also showed that this result can be extended to disjunc-
tive logic programs. Using the same idea, we can capture
the stable model semantics of general logic program and
equilibrium logic in circumscription as well.

Let Atom be a set of atoms. Again let Atom′ = {p′|p ∈
Atom} be a set of new atoms. Given any general logic
program F in the language Atom, let C(F) be the result
obtained from FGK by replacing every Kp in it by p and
every Ap in it by p′, for every p ∈ Atom.

Theorem 3 For any general logic program F in the lan-
guage Atom, any set X ⊆ Atom, the following four
statements are equivalent
1. X is a stable model of F .
2. 〈X, X〉 is an equilibrium model of F .
3. There is a GK model M of FGK such that K(M) =

A(M) = Th(X).
4. X ∪X ′ is a model of∧

p∈Atom

(p↔ p′) ∧ Circum(C(F);Atom). (4)

Proof sketch: 3 ⇔ 4 follows from the definitions of
GK models and circumscription.

Interestingly, our translation C(F) that embeds gen-
eral logic programs and equilibrium logic in circumscrip-
tion is exactly the same as the one by Pearce et al.
[Pearce et al., 2001] for embedding equilibrium logic in
quantified boolean formulas. They showed that 〈X, X〉
is an equilibrium model of a formula F in equilibrium
logic iff X ′ is a model of the following quantified boolean
formula:

F ′ ∧ ¬∃Atom((Atom < Atom′) ∧ C(F)),

where F ′ is the formula obtained from F by replacing
every atom p by p′, and Atom < Atom′ stands for∧

p∈Atom

(p→ p′) ∧ ¬
∧

p∈Atom

(p′ → p).

While propositional circumscription is also a quantified
boolean formula, it is a well studied formalism. There
are many known results about circumscription that we
can use. Mapping logic programs to circumscription
helps understanding both formalisms.

Notice that the formula
∧

p∈Atom(p↔ p′) is equivalent
to

[
∧

p∈Atom

(p→ p′)] ∧ [
∧

p∈Atom

(p′ → p)].

Thus (4) is equivalent to

[
∧

p∈Atom

(p→ p′)]∧[
∧

p∈Atom

(p′ → p)]∧Circum(C(F);Atom),

which is equivalent to

[
∧

p∈Atom

(p′ → p)]∧Circum(C(F)∧
∧

p∈Atom

(p→ p′);Atom),

as the atoms (predicates) to be minimized occur only
negatively in

∧
p∈Atom(p → p′). Putting the formula∧

p∈Atom(p→ p′) into the theory in the circumscription
is good as it can be used to simplify C(F).
Proposition 6.1 If

∧
p∈Atom(p → p′) |= C(F) ↔ W ,

then (4) is equivalent to∧
p∈Atom

(p↔ p′) ∧ Circum(W ;Atom).

Consider again the three programs in Example 3.1.
For P , C(P) is equivalent to ¬p ∧ ¬p′ → q, which is
equivalent to ¬p′ → q under (p → p′) ∧ (q → q′). Thus
for this program, (4) is equivalent to

(p↔ p′) ∧ (q ↔ q′) ∧ Circum(¬p′ → q; {p, q}),
which is equivalent to

(p↔ p′) ∧ (q ↔ q′) ∧ ¬p ∧ (¬p′ ↔ q),

which has a unique model {q, q′}.
For Q = ¬p ∨ p, C(Q) is equivalent to p′ → p. Thus

for this program, (4) is equivalent to

(p↔ p′) ∧ Circum(p′ → p; {p}),
which is equivalent to p ↔ p′, which has two models p
and ¬p.

7 From general logic programs and
equilibrium logic to circumscription:
first order case

As in [Lin and Shoham, 1992], we can extend the above
mapping to the first-order case. First of all, we extend
logic programs to first-order case. Let L be a relational
first-order language with equality, i.e. it has no proper
functions. By an atom, we mean an atomic formula in-
cluding equality atoms.

In the following, let Σuna be the set of unique names
assumptions on constants: c1 6= c2 for any two distinct
constants c1 and c2.

A first-order general logic program is a first-order sen-
tence in the following set:

F ::= ⊥ | A | F ∧ F | F ∨ F | F → F | ∀xF | ∃xF,

where A is an atom, and x a variable. Again, for any
general logic program F , ¬F is considered to be a short-
hand for F → ⊥.

Now let M be a finite model of Σuna with domain D.
Let σ be the mapping from constants to D under M .
Clearly, for any distinct constants c1 and c2, σ(c1) 6=
σ(c2). We say that M is a stable model of a first-order
general logic program F if T (M), the set of ground facts
true in M :

T (M) = {P (~u) | P a predicate, ~u ∈ PM}
is a stable model of the general logic program FM , which,
called the grounding of F on M , is obtained from F and
M in two steps:

1. First, replace every constant c in F by σ(c), every
subformula of the form ∀xW in it by

∧
u∈D W (x/u),

and every subformula of the form ∃xW in it by∨
u∈D W (x/u), where W (x/u) is the result of re-

placing every free occurrence of x in W by u. The
order by which these subformulas are replaced does
not matter.

2. In the expression obtained by the first step, replace
every equality atom u = u by >, and every u = u′

for distinct u and u′ by ⊥.

Example 7.1 Consider the following four programs:

F1 = ∃xp(x) ∧ ∃x(¬p(x)→ q),
F2 = ∃xp(x) ∧ [(∃x¬p(x))→ q],
F3 = ∃xp(x) ∧ [¬(∃xp(x))→ q],
F4 = ∃xp(x) ∧ ∀x(¬p(x)→ q).

Now consider a structure with two elements {a, b}. The
grounding of the four programs on this domain are

(p(a) ∨ p(b)) ∧ ((¬p(a)→ q) ∨ (¬p(b)→ q)),
(p(a) ∨ p(b)) ∧ ((¬p(a) ∨ ¬p(b))→ q),
(p(a) ∨ p(b)) ∧ (¬(p(a) ∨ p(b))→ q),
(p(a) ∨ p(b)) ∧ (¬p(a)→ q) ∧ (¬p(b)→ q),

respectively. So for this domain, F1 and F3 have the
same stable models, {p(a)} and {p(b)}, and F2 and F4

have the same stable models, {p(a), q} and {p(b), q}. It
is easy to see that this is the case for any given domain:
F1 and F3 have the same stable models, and F2 and F4

have the same stable models.
We now show that the stable models of first-order gen-

eral logic programs can be captured in circumscription
as well.

Let ∆ be the set of predicates in the language. Let
∆′ be a set of new predicates, one for each P in ∆ with
the same arity and denoted by P ′. Now given a first-
order general logic program F , let C(F) be the first-order
sentence defined inductively as follows.
• C(⊥) is ⊥.
• If W is an atomic formula, then C(W) is W .
• C(W1 �W2) is C(W1)�C(W2), where � ∈ {∧,∨}.
• C(∀xW) is ∀xC(W), and C(∃xW) is ∃xC(W).
• C(W1 → W2) is (C(W1) → C(W2)) ∧ (W ′

1 → W ′
2),

where W ′ is the result of replacing every predicate
P in W by P ′.

The stable models of F is then the circumscription
of all the predicates in ∆ in C(F), together with the
following axiom ∧

P∈∆

∀~x(P (~x)↔ P ′(~x)). (5)

Theorem 4 Let M be a finite model of Σuna. M is a
stable model of F iff M ′ is a model of

Circum(C(F);∆) ∧ (5), (6)

where M ′ is the conservative extension of M under (5).
Similar to Proposition 6.1, we have

Proposition 7.1 If
∧

P∈∆ ∀~x(P (~x) → P ′(~x)) |=
C(F)↔W , then (6) is equivalent to

Circum(W ;∆) ∧ (5).

Interestingly, Ferraris et al. [2007] also proposed a se-
mantics for general first-order logic programs and showed
that their semantics is equivalent to (6) when restricted
on the predicates in the original program, that is, when
all new predicates P ′ in (6) are existentially quantified.

Example 7.2 Consider the programs in Example 7.1
• C(F1) is

∃xp(x) ∧ ∃x[(¬p(x) ∧ ¬p′(x)→ q) ∧ (¬p′(x)→ q′)].

which is equivalent to ∃xp(x) ∧ (¬∃xp′(x) → q)
under ∀x.p(x) → p′(x). Therefore, under (5),
Circum(C(F1), {p, q}) is equivalent to

∃!xp(x) ∧ ((¬∃xp′(x))↔ q),

thus equivalent to

∃!xp(x) ∧ ¬q,

which can be considered to be the first-order seman-
tics of F1. If D = {a, b}, then there are exactly two
models of this sentence, {p(a)} and {p(b)}.

• C(F2) is

∃xp(x)∧(∃x(¬p(x)∧¬p′(x))→ q)∧(∃x¬p′(x)→ q′),

which is equivalent to

∃xp(x) ∧ (∃x¬p′(x)→ q)

under ∀x.p(x) → p′(x). Therefore,
Circum(C(F2), {p, q}) is equivalent to

∃!xp(x) ∧ (∃x¬p′(x)↔ q),

under (5), thus equivalent to

∃!xp(x) ∧ ((∃x¬p(x))↔ q),

which can be considered to be the first-order seman-
tics of F2. If D = {a, b}, then there are exactly two
models of this sentence, {p(a), q} and {p(b), q}.

• C(F3) is

∃xp(x)∧(¬∃xp(x)∧¬∃xp′(x)→ q)∧(¬∃xp′(x)→ q′),

which is equivalent to C(F1) under (5). Thus F1

and F3 are equivalent.
• C(F4) is

∃xp(x) ∧ ∀x[(¬p(x) ∧ ¬p′(x)→ q) ∧ (¬p′(x)→ q′)],

which is equivalent to C(F2). Thus F2 and F4 are
equivalent.

8 Strong equivalence
The notion of strong equivalence [Lifschitz et al., 2001]
is important in logic programming. For disjunctive logic
programs, research by Lin and Chen [2005] and Eiter et
al. [2006] show that interesting programs transformation
rules can be designed based on the notion.

According to Ferraris and Lifschitz [2005], two general
logic programs F and G are said to be strongly equivalent
if for any formula F1 that contains an occurrence of F , F1

has the same stable models as the formula obtained from
it by replacing an occurrence of F by G. They showed
that for any F and G, they are strongly equivalent iff F
and G are equivalent in the logic here-and-there.

As it turns out, our mapping from equilibrium logic to
logic of GK also embeds logic of here-and-there to modal
logic. Thus the problem of deciding whether two pro-
grams are strongly equivalent can be reduced to check-
ing whether certain modal logic formulas are valid, and
that, because of the special format of these modal formu-
las, can in turn be reduced to checking whether certain
propositional formulas are tautologies.

Theorem 5 Let F be a formula in equilibrium logic,
X and Y two sets of atoms such that X ⊆ Y , and
M a Kripke interpretation such that K(M) = Th(X)
and A(M) = Th(Y). We have that 〈X, Y 〉 |= F iff
M |= FGK .

Theorem 6 Let F and G be two general logic programs.
The following conditions are equivalent.
1. F and G are strong equivalent.
2. F is equivalent to G in the logic here-and-there.
3.

∧
p∈Atom(Kp→ Ap) |= (F ↔ G)GK .

4.
∧

p∈Atom(Kp→ Ap) |= FGK ↔ GGK .

5.
∧

p∈Atom(p→ p′) |= C(F ↔ G).

6.
∧

p∈Atom(p→ p′) |= C(F)↔ C(G).

Corollary 7 The problem of deciding whether two gen-
eral logic programs are strongly equivalent is co-NP com-
plete.

9 Conclusion
We showed that the logic of GK proposed by Lin and
Shoham is flexible enough to handle stable model se-
mantics of general logic programs. Because of this, the
stable model semantics of general logic programs can also
be formulated in circumscription, in both propositional
and first-order case. For future work, we plan to make
use of the expressive power of GK in other applications.

Acknowledgments
We thank Vladimir Lifschitz for stimulating discus-
sions on topics related to this paper, and for his help-
ful comments on earlier versions of this paper. This
work was supported in part by HK RGC under grant
HKUST6170/04E, and by China NSFC under grant
60496322.

References
[Eiter et al., 2006] T. Eiter, M. Fink, H. Tompits, P. Traxler,

and S. Woltran. Replacements in non-ground answer-set
programming. In KR’2006, pages 340–351, 2006.

[Ferraris, 2005] P. Ferraris. Answer sets for propositional
theories. In LPNMR, pages 119–131, 2005.

[Ferraris and Lifschitz, 2005] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming. In
We Will Show Them! (1), pages 615–664. 2005.

[Ferraris et al., 2007] P. Ferraris, J. Lee, and V. Lifschitz.
A new perspective on stable models. In Proceedings of
IJCAI’07 (this volume), 2007.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[Leone et al., 2006] N. Leone, G. Pfeifer, W. Faber, T. Eiter,
G. Gottlob, S. Perri, and F. Scarcello. The DLV system
for knowledge representation and reasoning. ACM Trans-
actions on Computational Logic, 2006. To appear.

[Lifschitz et al., 1999] V. Lifschitz, L. R. Tang, and H.
Turner. Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence, 25:369-389, 1999.

[Lifschitz et al., 2001] V. Lifschitz, D. Pearce, and
A. Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–541,
2001.

[Lifschitz, 1999] V. Lifschitz. Action languages, answer sets
and planning. In The Logic Programming Paradigm: A 25-
Year Perspective. K.R. Apt, V.W. Marek, M. Truszczynski,
D.S. Warren, eds, Springer-Verlag, 1999.

[Lin and Chen, 2005] F. Lin and Y. Chen. Discovering
classes of strongly equivalent logic programs. In Proc. of
IJCAI’95, pages 516–521, 2005.

[Lin and Shoham, 1992] F. Lin and Y. Shoham. A logic of
knowledge and justified assumptions. Artificial Intelli-
gence, 57:271–289, 1992.

[Lin, 2002] F. Lin. Reducing strong equivalence of logic pro-
grams to entailment in classical propositional logic. In
Proc. of KR’02, pages 170–176, 2002.

[Marek and Truszczynski, 1999] V. W. Marek and M.
Truszczynski. Stable logic programming - an alternative
logic programming paradigm. In The Logic Programming
Paradigm: A 25-Year Perspective. K.R. Apt, V.W. Marek,
M. Truszczynski, D.S. Warren, eds, Springer-Verlag, 1999.

[McCarthy, 1986] J. McCarthy. Applications of circumscrip-
tion to formalizing commonsense knowledge. Artificial In-
telligence, 28:89–118, 1986.

[Moore, 1985] R. Moore. Semantical considerations on non-
monotonic logic. Artificial Intelligence, 25(1):75–94, 1985.

[Niemelä; and Simons, 2000] I. Niemelä; and P. Simons. Ex-
tending the smodels system with cardinality and weight
constraints. pages 491–521, 2000.

[Niemelä, 1999] I. Niemelä. Logic programs with stable
model semantics as a constraint programming paradigm.
Ann. Math. and AI, 25(3-4):241–273, 1999.

[Pearce et al., 2001] D. Pearce, H. Tompits, and S. Woltran.
Encodings for Equilibrium Logic and Logic Programs with
Nested Expressions. In Proc. EPIA-01: 306–320, 2001.

[Pearce, 1997] D. Pearce. A new logical characterisation of
stable models and answer sets. In Non-Monotonic Exten-
sions of Logic Programming: 57–70, 1997.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Arti-
ficial Intelligence, 13:81–132, 1980.

