
Face Recognition Using a Kernel

Fractional-Step Discriminant Analysis

Algorithm

Guang Dai a, Dit-Yan Yeung a & Yun-Tao Qian b

aDepartment of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
bCollege of Computer Science

Zhejiang University
Hangzhou, 310027, P.R. China

Abstract

Feature extraction is among the most important problems in face recognition sys-
tems. In this paper, we propose an enhanced kernel discriminant analysis (KDA)
algorithm called kernel fractional-step discriminant analysis (KFDA) for nonlinear
feature extraction and dimensionality reduction. Not only can this new algorithm,
like other kernel methods, deal with nonlinearity required for many face recognition
tasks, it can also outperform traditional KDA algorithms in resisting the adverse ef-
fects due to outlier classes. Moreover, to further strengthen the overall performance
of KDA algorithms for face recognition, we propose two new kernel functions: cosine
fractional-power polynomial kernel and non-normal Gaussian RBF kernel. We per-
form extensive comparative studies based on the YaleB and FERET face databases.
Experimental results show that our KFDA algorithm outperforms traditional ker-
nel principal component analysis (KPCA) and KDA algorithms. Moreover, further
improvement can be obtained when the two new kernel functions are used.
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1 Introduction

1.1 Linear Discriminant Analysis

Linear subspace techniques have played a crucial role in face recognition re-
search for linear dimensionality reduction and feature extraction. The two
most well-known methods are principal component analysis (PCA) and linear
discriminant analysis (LDA), which are for feature extraction under the un-
supervised and supervised learning settings, respectively. Eigenface [27], one
of the most successful face recognition methods, is based on PCA. It finds
the optimal projection directions that maximally preserve the data variance.
However, since it does not take into account class label information, the “op-
timal” projection directions found, though useful for data representation and
reconstruction, may not give the most discriminating features for separating
different face classes. On the other hand, LDA seeks the optimal projection
directions that maximize the ratio of between-class scatter to within-class
scatter. Since the face image space is typically of high dimensionality but the
number of face images available for training is usually rather small, a ma-
jor computational problem with the LDA algorithm is that the within-class
scatter matrix is singular and hence the original LDA algorithm cannot be
applied directly. This problem can be attributed to undersampling of data in
the high-dimensional image space.

Over the past decade, many variants of the original LDA algorithm have been
proposed for face recognition, with most of them trying to overcome the prob-
lem due to undersampling. Some of these methods perform PCA first before
applying LDA in the PCA-based subspace, as is done in Fisherface (also known
as PCA+LDA) [2,25]. Belhumeur et al. [2] carried out comparative experi-
ments based on the Harvard and Yale face databases and found that Fisher-
face did give better performance than Eigenface in many cases. However, by
analyzing the sensitivity on the spectral range of the within-class eigenvalues,
Liu and Wechsler [12] found that the generalization ability of Fisherface can be
degraded since some principal components with small eigenvalues correspond
to high-frequency components and hence can play the role of latent noise in
Fisherface. To overcome this limitation, Liu and Wechsler [12] developed two
enhanced LDA models for face recognition by simultaneous diagonalization
of the within-class and between-class scatter matrices instead of the conven-
tional LDA procedure. More recently, some other LDA-based methods have
been developed for face recognition on the basis of different views. Ye et al.
proposed LDA/GSVD [33] and LDA/QR [34] by employing generalized sin-
gular value decomposition (GSVD) and QR decomposition, respectively, to
solve a generalized eigenvalue problem. Some other researchers have proposed
the direct LDA algorithm and variants [3,4,30,35]. These methods have been
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found to be both efficient and effective for many face recognition tasks.

For multi-class classification problems involving more than two classes, a ma-
jor drawback of LDA is that the conventional optimality criteria defined based
on the scatter matrices do not correspond directly to classification accu-
racy [10,16,23]. An immediate implication is that optimizing these criteria
does not necessarily lead to an increase in the accuracy. This phenomenon can
also be explained in terms of the adverse effects due to the so-called outlier
classes [15], resulting in inaccurate estimation of the between-class scatter. As
a consequence, the linear transformation of traditional LDA tends to overem-
phasize the inter-class distances between already well-separated classes in the
input space at the expense of classes that are close to each other leading to
significant overlap between them. To tackle this problem, some outlier-class-
resistant schemes [10,15,23] based on certain statistical model assumptions
have been proposed. They are common in that a weighting function is incor-
porated into the Fisher criterion by giving higher weights to classes that are
closer together in the input space as they are more likely to lead to misclassi-
fication. Although these methods are generally more effective than traditional
LDA, it is difficult to set the weights appropriately particularly when the
statistical model assumptions may not be valid in such applications as face
recognition where the data are seriously undersampled. Recently, Lotlikar and
Kothari [16] proposed an interesting idea which allows fractional steps to be
made in dimensionality reduction. The method, referred to as fractional-step
LDA (FLDA), allows for the relevant distances to be more correctly weighted.
A more recent two-phase method, called direct FLDA (DFLDA) [18], attempts
to apply FLDA to high-dimensional face patterns by combining the FLDA and
direct LDA algorithms.

1.2 Kernel Discriminant Analysis

In spite of their simplicity, linear dimensionality reduction methods have lim-
itations under situations when the decision boundaries between classes are
nonlinear. For example, in face recognition applications where there exists
high variability in the facial features such as illumination, facial expression
and pose, high nonlinearity is commonly incurred. This calls for nonlinear
extensions of conventional linear methods to deal with such situations. The
past decade has witnessed the emergence of a powerful approach in machine
learning called kernel methods, which exploit the so-called “kernel trick” to
devise nonlinear generalizations of linear methods while preserving the com-
putational tractability of their linear counterparts. The first kernel method
proposed is support vector machine (SVM) [28], which essentially constructs a
separating hyperplane in the high-dimensional (possibly infinite-dimensional)
feature space F obtained through a nonlinear feature map φ : Rn → F . The
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kernel trick allows inner products in the feature space to be computed en-
tirely in the input space without performing the mapping explicitly. Thus, for
linear methods which can represent the relationships between data in terms
of inner products only, they can readily be “kernelized” to give their non-
linear extensions. Inspired by the success of SVM, kernel subspace analysis
techniques have been proposed to extend linear subspace analysis techniques
to nonlinear ones by applying the same kernel trick, leading to performance
improvement in face recognition over their linear counterparts. As in other
kernel methods, these kernel subspace analysis methods essentially map each
input data point x ∈ Rn into some feature space F via a mapping φ and then
perform the corresponding linear subspace analysis in F . Schölkopf et al. [24]
have pioneered to combine the kernel trick with PCA to develop the kernel
PCA (KPCA) algorithm for nonlinear principal component analysis. Based on
KPCA, Yang et al. [32] proposed a kernel extension to the Eigenface method
for face recognition. Using a cubic polynomial kernel, they showed that ker-
nel Eigenface outperforms the original Eigenface method. Moghaddam [21]
also demonstrated that KPCA using the Gaussian RBF kernel gives better
performance than PCA for face recognition. More recently, Liu [11] further
extended kernel Eigenface to include fractional-power polynomial models that
correspond to non-positive semi-definite kernel matrices.

In the same spirit as the kernel extension of PCA, kernel extension of LDA,
called kernel discriminant analysis (KDA), has also been developed and found
to be more effective than PCA, KPCA and LDA for many classification appli-
cations due to its ability in extracting nonlinear features that exhibit high class
separability. Mika et al. [20] first proposed a two-class KDA algorithm, which
was later generalized by Baudat and Anouar to give the generalized discrimi-
nant analysis (GDA) algorithm [1] for multi-class problems. Motivated by the
success of Fisherface and KDA, Yang [31] proposed a combined method called
kernel Fisherface for face recognition. Liu et al. [13] conducted a comparative
study on PCA, KPCA, LDA and KDA and showed that KDA outperforms
the other methods for face recognition tasks involving variations in pose and
illumination. Other researchers have proposed a number of KDA-based algo-
rithms [6,14,17,19,29] addressing different problems in face recognition appli-
cations.

1.3 This Paper

However, similar to the case of LDA-based methods, the adverse effects due to
outlier classes also affect the performance of KDA-based algorithms. In fact, if
the mapped data points in F are more separated from each other, such effects
can become even more significant. To remedy this problem, we propose in
this paper an enhanced KDA algorithm called kernel fractional-step discrimi-
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nant analysis (KFDA). The proposed method, similar to DFLDA, involves two
steps. In the first step, KDA with a weighting function incorporated is per-
formed to obtain a low-dimensional subspace. In the second step, a subsequent
FLDA procedure is applied to the low-dimensional subspace to accurately ad-
just the weights in the weighting function through making fractional steps,
leading to a set of enhanced features for face recognition.

Moreover, recent research in kernel methods shows that an appropriate choice
of the kernel function plays a crucial role in the performance delivered. To
further improve the performance of KDA-based methods for face recognition,
we propose two new kernel functions called cosine fractional-power polynomial
kernel and non-normal Gaussian RBF kernel. Extensive comparative studies
performed on the YaleB and FERET face databases give the following findings:

(1) Compared with other methods such as KPCA and KDA, KFDA is much
less sensitive to the adverse effects due to outlier classes and hence is
superior to them in terms of recognition accuracy.

(2) For both KDA and KFDA, the two new kernels generally outperform
the conventional kernels, such as polynomial kernel and Gaussian RBF
kernel, that have been commonly used in face recognition. KFDA, when
used with the new kernels, delivers the highest face recognition accuracy.

The rest of this paper is organized as follows. In Section 2, we briefly review
the conventional KPCA and KDA algorithms. In Section 3, the new KFDA
algorithm is presented, and then the two new kernel functions are introduced to
further improve the performance. Extensive experiments have been performed
with results given and discussed in Section 4, demonstrating the effectiveness
of both the KFDA algorithm and the new kernel functions. Finally, Section 5
concludes this paper.

2 Brief Review of Kernel Principal Component Analysis and Ker-
nel Discriminant Analysis

The key ideas behind kernel subspace analysis methods are to first implicitly
map the original input data points into a feature space F via a feature map
φ and then implement some linear subspace analysis methods with the corre-
sponding optimality criteria in F to discover the optimal nonlinear features
with respect to the criteria. Moreover, instead of performing the computation
for the linear subspace analysis directly in F , the implementation based on
the kernel trick is completely dependent on a kernel matrix or Gram matrix
whose entries can be computed entirely from the input data points without
requiring the corresponding feature points in F .
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Let X denote a training set of N face images belonging to c classes, with
each image represented as a vector in Rn. Moreover, let Xi ⊂ X be the ith
class containing Ni examples, with xj

i denoting the jth example in Xi. In this
section, we briefly review two kernel subspace analysis methods, KPCA and
KDA, performed on the data set X .

2.1 KPCA Algorithm

Schölkopf et al. [24] first proposed KPCA as a nonlinear extension of PCA.
We briefly review the method in this subsection.

Given the data set X , the covariance matrix in F , denoted Σφ, is given by

Σφ = E
[
(φ(x)− E[φ(x)])(φ(x)− E[φ(x)])T

]

=
1

N

c∑

i=1

Ni∑

j=1

(φ(xj
i )−mφ)(φ(xj

i )−mφ)T , (1)

where mφ = 1
N

∑c
i=1

∑Ni
j=1 φ(xj

i ) is the mean over all N feature vectors in
F . Since KPCA seeks to find the optimal projection directions in F , onto
which all patterns are projected to give the corresponding covariance matrix
with maximum trace, the objective function can be defined by maximizing the
following:

Jkpca(v) = vTΣφv. (2)

Since the dimensionality of F is generally very high or even infinite, it is there-
fore inappropriate to solve the following eigenvalue problem for the solution
as in traditional PCA:

Σφv = λv. (3)

Fortunately, we can show that the eigenvector v must lie in a space spanned
by {φ(xj

i )} in F and thus it can be expressed in the form of the following
linear expansion:

v =
c∑

i=1

Ni∑

j=1

wj
i φ(xj

i ). (4)

Substituting (4) into (2), we obtain an equivalent eigenvalue problem as fol-
lows: (

I− 1

N
1

)
K

(
I− 1

N
1

)T

w = λw, (5)

where I is an N × N identity matrix, 1 is an N × N matrix with all terms
being one, w = (w1

1, . . . , w
N1
1 , . . . , w1

c , . . . , w
Nc
c )T is the vector of expansion

coefficients of a given eigenvector v, and K is the N ×N Gram matrix which
can be further defined as K = (Klh)l,h=1,...,c where Klh = (kij)

j=1,...,Nh
i=1,...,Nl

and

kij = 〈φ(xi
l), φ(xj

h)〉.

6



The solution to (5) can be found by solving for the orthonormal eigenvectors
w1, . . . ,wm corresponding to the m largest eigenvalues λ1, . . . , λm, which are
arranged in descending order. Thus, the eigenvectors of (3) can be obtained
as Φwi (i = 1, . . . , m), where Φ = [φ(x1

1), . . . , φ(xN1
1 ), . . . , φ(x1

c), . . . , φ(xNc
c )].

Furthermore, the corresponding normalized eigenvectors vi (i = 1, . . . , m) can
be obtained as vi = 1√

λi
Φwi, since (Φwi)

TΦwi = λi.

With vi = 1√
λi

Φwi (i = 1, . . . , m) constituting the m orthonormal projection
directions in F , any novel input vector x can obtain its low-dimensional feature
representation y = (y1, . . . , ym)T in F as:

y = (v1, . . . ,vm)T φ(x), (6)

with each KPCA feature yi (i = 1, . . . , m) expanded further as

yi =vT
i φ(x) =

1√
λj

wT
i Φφ(x)

=
1√
λj

wT
i (k(x1

1,x), . . . , k(xN1
1 ,x), . . . , k(x1

c ,x), . . . , k(xNc
c ,x)). (7)

Unlike traditional PCA which only captures second-order statistics in the
input space, KPCA captures second-order statistics in the feature space which
can correspond to higher-order statistics in the input space depending on the
feature map (and hence kernel) used. Therefore, KPCA is superior to PCA
in extracting more powerful features, which are especially essential when the
face image variations due to illumination and pose are significantly complex
and nonlinear. Nevertheless, KPCA is still an unsupervised learning method
and hence the (nonlinear) features extracted by KPCA do not necessarily give
rise to high separability between classes.

2.2 KDA Algorithm

Similar to the kernel extension of PCA to give KPCA, the kernel trick can also
be applied to LDA to give its kernel extension. KDA seeks to find the optimal
projection directions in F by simultaneously maximizing the between-class
scatter and minimizing the within-class scatter in F . In this subsection, we
briefly review the KDA method.

For a data set X and a feature map φ, the between-class scatter matrix Sφ
b
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and within-class scatter matrix Sφ
w in F can be defined as:

Sφ
b =

c∑

i=1

Ni

N
(mφ

i −mφ)(mφ
i −mφ)T (8)

and

Sφ
w =

1

N

c∑

i=1

Ni∑

j=1

(φ(xj
i )−mφ

i )(φ(xj
i )−mφ

i )
T , (9)

where mφ
i = 1

Ni

∑Ni
j=1 φ(xj

i ) is the class mean of Xi in F and mφ = 1
N

∑c
i=1

∑Ni
j=1 φ(xj

i )
is the overall mean as before.

Analogous to LDA which operates on the input space, the optimal projection
directions for KDA can be obtained by maximizing the Fisher criterion in F :

J(v) =
vTSφ

b v

vTSφ
wv

. (10)

Like KPCA, we do not solve this optimization problem directly due to the
high or even infinite dimensionality of F . As for KPCA, we can show that any
solution v ∈ F must lie in the space spanned by {φ(xj

i )} in F and thus it can
be expressed as

v =
c∑

i=1

Ni∑

j=1

wj
i φ(xj

i ). (11)

Substituting (11) into the numerator and denominator of (10), we obtain

vTSφ
b v = wTKbw (12)

and
vTSφ

wv = wTKww, (13)

where w = (w1
1, . . . , w

N1
1 , . . . , w1

c , . . . , w
NC
c )T , and Kb and Kw can be seen as

the variant scatter matrices based on some manipulation of the Gram ma-
trix K. As a result, the solution to (10) can be obtained by maximizing the
following optimization problem instead:

Jf (w) =
wTKbw

wTKww
, (14)

giving the m leading eigenvectors w1, . . . ,wm of the matrix K−1
w Kb as solution.

For any input vector x, its low-dimensional feature representation y = (y1, . . . , ym)T

can then be obtained as

y = (w1, . . . ,wm)T (k(x1
1,x), . . . , k(xN1

1 ,x), . . . , k(x1
c ,x), . . . , k(xNc

c ,x))T .
(15)

Note that the solution above is based on the assumption that the within-class
scatter matrix Kw is invertible. However, for face recognition applications,
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this assumption is almost always invalid due to the undersampling problem
as discussed above. One simple method for solving this problem is to use
the pseudo-inverse of Kw instead. Another simple method is to add a small
multiple of the identity matrix (εI for some small ε > 0) to Kw to make it non-
singular. Although more effective methods have been proposed (e.g., [26,19]),
we keep it simple in this paper by adding εI to Kw where ε = 10−7 in our
experiments.

3 Feature Extraction via Kernel Fractional-step Discriminant Anal-
ysis

3.1 Kernel Fractional-step Discriminant Analysis

The primary objective of the new KFDA algorithm is to overcome the ad-
verse effects caused by outlier classes. A commonly adopted method to solve
this problem is to incorporate a weighting function into the Fisher criterion
by using a weighted between-class scatter matrix in place of the ordinary
between-class scatter matrix, as in [7,8,10,15,23]. However, it is not clear how
to set the weights in the weighting function appropriately to put more em-
phasis on those classes that are close together and hence are more likely to
lead to misclassification. Our KFDA algorithm involves two steps. The first
step is similar to the ordinary KDA procedure in obtaining a low-dimensional
subspace and then the second step applies the FLDA procedure to further
reduce the dimensionality by adjusting the weights in the weighting function
automatically through making fractional steps.

As in [7,8,10], we define the weighted between-class scatter matrix in F as
follows:

Sφ
B =

c−1∑

i=1

c∑

j=i+1

NiNj

N2
w(dij)(m

φ
i −mφ

j )(m
φ
i −mφ

j )
T , (16)

where the weighting function w(dij) is a monotonically decreasing function of

the Euclidean distance dij = ‖mφ
i − mφ

j ‖ with mφ
i and mφ

j being the class
means for Xi and Xj in F , respectively. Apparently, the weighted between-

class scatter matrix Sφ
B degenerates to the conventional between-class scatter

matrix Sφ
b if the weighting function in (16) always gives a constant weight

value. In this sense Sφ
B can be regarded as a generalization of Sφ

b . According to
the FLDA procedure in [16], the weighting function should drop faster than
the Euclidean distance between the class means for Xi and Xj in F . As a result,
the only constraint for the weighting function w(dij) = d−p

ij , where p ∈ N, is
p ≥ 3. Moreover, it is easy to note that dij in F can be computed by applying
the kernel trick as follows:
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dij = ‖mφ
i −mφ

j ‖

=

√√√√√

 ∑

xi1
∈Xi

φ(xi1)

Ni

− ∑

xj1
∈Xj

φ(xj1)

Nj




T 
 ∑

xi2
∈Xi

φ(xi2)

Ni

− ∑

xj2
∈Xj

φ(xj2)

Nj




=

√√√√
∑

xi1
,xi2

∈Xi

ki1,i2

N2
i

+
∑

xj1
,xj2

∈Xj

kj1,j2

N2
j

− ∑

xi1
∈Xi,xj2

∈Xj

ki1,j2

NiNj

− ∑

xi2
∈Xi,xj1

∈Xj

kj1,i2

NiNj

,

(17)

where ki1,i2 = k(xi1
i ,xi2

i ) = 〈φ(xi1
i ), φ(xi2

i )〉, kj1,j2 = k(xj1
j ,xj2

j ) = 〈φ(xj1
j ), φ(xj2

j )〉,
ki1,j2 = k(xi1

i ,xj2
j ) = 〈φ(xi1

i ), φ(xj2
j )〉, and kj1,i2 = k(xj1

j ,xi2
i ) = 〈φ(xj1

j ), φ(xi2
i )〉.

Based on the definition of Sφ
B in (16), we define a new Fisher criterion in F as

Ĵ(v) =
vTSφ

Bv

vTSφ
wv

. (18)

Again, we can express the solution v =
∑c

i=1

∑Ni
j=1 wj

i φ(xj
i ) and hence rewrite

the Fisher criterion in (18) as (see Appendix A.1) 1

Ĵf (w) =
wTKBw

wTKww
, (19)

where

w = (w1
1, . . . , w

N1
1 , . . . , w1

c , . . . , w
Nc
c )T , (20)

KB =
c−1∑

i=1

c∑

j=i+1

NiNj

N2
w(dij)(mi −mj)(mi −mj)

T , (21)

Kw =
1

N

c∑

i=1

Ni∑

j=1

(kj
i −mi)(k

j
i −mi)

T , (22)

with

1 Since the term Kw is the same as that in classical KDA, Appendix A.1 only
provides the derivation for KB in (21).
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mi =


 1

Ni

Ni∑

h=1

k(x1
1,x

h
i ), . . . ,

1

Ni

Ni∑

h=1

k(xN1
1 ,xh

i ), . . . ,

1

Ni

Ni∑

h=1

k(x1
c ,x

h
i ), . . . ,

1

Ni

Ni∑

h=1

k(xNc
c ,xh

i )




T

, (23)

mj =


 1

Nj

Nj∑

h=1

k(x1
1,x

h
j ), . . . ,

1

Nj

Nj∑

h=1

k(xN1
1 ,xh

j ), . . . ,

1

Nj

Nj∑

h=1

k(x1
c ,x

h
j ), . . . ,

1

Nj

Nj∑

h=1

k(xNc
c ,xh

j )




T

, (24)

kj
i = (k(x1

1,x
j
i ), . . . , k(xN1

1 ,xj
i ), . . . , k(x1

c ,x
j
i ), . . . , k(xNc

c ,xj
i ))

T . (25)

The solution to (18) is thus the m leading eigenvectors w1, . . . ,wm of the
matrix K−1

w KB.

For any input vector x, its low-dimensional feature representation z = (z1, . . . , zm)T

can thus be given by (see Appendix A.2)

z = (w1, . . . ,wm)T (k(x1
1,x), . . . , k(xN1

1 ,x), . . . , k(x1
c ,x), . . . , k(xNc

c ,x))T .
(26)

Through the weighted KDA procedure described above, we obtain a low-
dimensional subspace where almost all classes become linearly separable, al-
though some classes remain closer to each other than others. In what follows,
an FLDA step is directly applied to further reduce the dimensionality of this
subspace from m to the required m′ through making fractional steps. The
primary motivation for FLDA comes from the following consideration [16]. In
order to substantially improve the robustness of the choice of the weighting
function and avoid the instability of the algorithm brought by an inaccurate
weighting function [10], FLDA introduces some sort of automatic gain control,
which reduces the dimensionality in small fractional steps rather than inte-
gral steps. This allows the between-class scatter matrix and its eigenvectors
to be iteratively recomputed in accordance with the variations of the weight-
ing function, so that the chance of overlap between classes can be reduced.
Therefore, in the output classification space, FLDA can increase the separa-
bility between classes that have small inter-class distances in the input space
while preserve the high separability between classes that are already far apart.
Furthermore, unlike some other techniques [10,15,23], FLDA computes the
weighting function without having to adopt any restrictive statistical model
assumption, making it applicable to more general problem settings including
face recognition tasks with high variability between images.

Figure A.1 summarizes the KFDA algorithm for feature extraction which is
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used with the nearest neighbor rule for classification. In the next section, we
propose a further extension of the KFDA algorithm by introducing two new
kernel functions.

3.2 New Kernel Functions

Kernel subspace analysis methods make use of the input data for the compu-
tation exclusively in the form of inner products in F , with the inner products
computed implicitly via a kernel function, called Mercer kernel, k(x,y) =
〈φ(x), φ(y)〉, where 〈·, ·〉 is an inner product operator in F . A symmetric func-
tion is a Mercer kernel if and only if the Gram matrix formed by applying this
function to any finite subset of X is positive semi-definite. Some kernel func-
tions such as the polynomial kernel, Gaussian RBF kernel and sigmoid kernel
have been commonly used in many practical applications of kernel methods.
For face recognition using kernel subspace analysis methods in particular [6–
8,13,17,29,31,32], the polynomial kernel and Gaussian RBF kernel have been
used extensively to demonstrate that kernel subspace analysis methods are
more effective than their linear counterparts in many cases. While in principle
any Mercer kernel can be used with kernel subspace analysis methods, not all
kernel functions are equally good in terms of the performance that the kernel
methods can deliver.

Recently, the feasibility and effectiveness of different kernel choices for ker-
nel subspace analysis methods has been investigated in the context of face
recognition applications. Chen et al. [5] proposed a KDA-based method for
face recognition with the parameter of the Gaussian RBF kernel determined
in advance. Yang et al. [26] proposed using a kernel function for KDA by
combining multiple Gaussian RBF kernels with different parameters, with the
combination coefficients determined to optimally combine the individual ker-
nels. However, the effectiveness of combining multiple kernels is still implicit
for KDA, since the conventional Fisher criterion in F is converted into the
two-dimensional Fisher criterion at the same time. Liu et al. [14] extended
the polynomial kernel to the so-called cosine polynomial kernel by applying
the cosine measure. One motivation is that the inner product of two vec-
tors in F can be regarded as a similarity measure between them. Another
motivation is that such measure has been found to perform well in practice.
Moreover, Liu [11] extended the ordinary polynomial kernel in an innovative
way to include the fractional-power polynomial kernel as well. However, the
fractional-power polynomial kernel proposed, like the sigmoid kernel, is not
a Mercer kernel. Nevertheless, Liu applied KPCA using the fractional-power
polynomial kernel for face recognition and showed improvement in perfor-
mance when compared with the ordinary polynomial kernel.
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Inspired by the effectiveness of the cosine measure for kernel functions [14],
we further extend the fractional-power polynomial kernel in this paper by in-
corporating the cosine measure to give the so-called cosine fractional-power
polynomial kernel. Note that the cosine measure can only be used with non-
stationary kernels such as the polynomial kernel, but not with isotropic kernels
such as the Gaussian RBF kernel that only depend on the difference between
two vectors. To improve the face recognition performance of the Gaussian
RBF kernel, we also go beyond the traditional Gaussian RBF kernel by con-
sidering non-normal Gaussian RBF kernels, kRBF (x,y) = exp(−‖x−y‖d/σ2)
where d ≥ 0 and d 6= 2. According to [28], non-normal Gaussian RBF kernels
completely satisfy the Mercer condition and hence are Mercer kernels if and
only if 0 ≤ d ≤ 2.

In summary, the kernel functions considered in this paper are listed below:

• Polynomial kernel (poly):

kpoly(x,y) = (γ1x · yT − γ2)
d with d ∈ N and d ≥ 1. (27)

• Fractional-power polynomial kernel (fp-poly):

kfp−poly(x,y) = (γ1x · yT − γ2)
d with 0 < d < 1. (28)

• Cosine polynomial kernel (c-poly):

kc−poly(x,y) =
kpoly(x,y)√

kpoly(x,x)kpoly(y,y)
. (29)

• Cosine fractional-power polynomial kernel (cfp-poly):

kcfp−poly(x,y) =
kfp−poly(x,y)√

kfp−poly(x,x)kfp−poly(y,y)
. (30)

• Gaussian RBF kernel (RBF):

kRBF (x,y) = exp(−‖x− y‖2/σ2). (31)

• Non-normal Gaussian RBF kernel (NN-RBF):

knn−RBF (x,y) = exp(−‖x− y‖d/σ2) with d ≥ 0 and d 6= 2. (32)
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4 Experimental Results

4.1 Visualization of Data Distributions

We first compare the distribution of data points after applying FLDA, KDA
and KFDA, respectively. For visualization sake, we reduce the dimensionality
to 2. Two databases are used for this set of experiments. They are the image
segmentation database from the UCI Machine Learning Repository 2 and the
YaleB face database. 3

The instances in the image segmentation database are drawn randomly from a
database of seven outdoor images. Each instance is represented by 19 continuous-
valued features extracted from a 3×3 region, and the corresponding class label
is obtained by manual segmentation into seven classes: brick-face, sky, foliage,
cement, window, path and grass. The database consists of 30 instances for
each of the seven classes, summing up to a total of 210 instances for the
whole database. Since the dimensionality of the instances in the image seg-
mentation database is relatively low, FLDA can be applied to the instances
directly. We also follow the suggestion of [16] to set the number of fractional
steps to 30 in our experiments. Figure A.2(a)-(c) depict the distributions of
data points based on the two most discriminant features after applying FLDA,
KDA and KFDA, respectively. For KDA and KFDA, the Gaussian RBF ker-
nel k(x1,x2) = exp(−||x1 − x2||2/104) is used. Moreover, following [16], the
weighting functions in both FLDA and KFDA are set to w(dij) = d−12

ij . We
can see from Figure A.2(a) that most classes still remain nonseparable even af-
ter applying FLDA. For KDA, Figure A.2(b) shows that many classes become
more linearly separable. However, some classes (such as brick-face, foliage,
cement and window) are so closely clustered together that they cannot be
perfectly separated. On the other hand, Figure A.2(c) shows that all classes
are very well separated and are more equally spaced when KFDA is applied.

We further do some experiments on the YaleB face database [9]. The YaleB
face database contains 5850 face images of 10 subjects each captured under 585
different viewing conditions (9 poses × 65 illumination conditions). To facili-
tate visualization, we select a subset of 240 face images from the database with
30 images for each of eight humans. All images have been manually cropped
and then normalized to a size of 46 × 56 with 256 gray levels. Figure A.3
shows the 30 images of one individual used in the experiments. Since the face
patterns are high-dimensional, we use DFLDA [18] in place of FLDA [16]
for this set of experiments. Figure A.4(a)-(c) depict the distributions of data
points based on the two most discriminant features after applying DFLDA,

2 http://www.ics.uci.edu/∼mlearn/MLRepository
3 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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KDA and KFDA, respectively. For KDA and KFDA, the Gaussian RBF kernel
k(x1,x2) = exp(−||x1 − x2||2/109) is used. As above, the weighting functions
in both DFLDA and KFDA are set to w(dij) = d−12

ij . The findings are similar
to those for the image segmentation data above. While KDA gives classes that
are more compact than those obtained by DFLDA, the classes obtained by
KFDA are both more compact and well separated from each other, as shown
in Figure A.4(c).

4.2 Face Recognition Experiments

In this subsection, we study the face recognition performance of KFDA with
the different kernel functions given in Section 3.2 and compare it with two
other kernel methods, KPCA and KDA. We use the FERET face database for
these experiments. 4

The FacE REcognition Technology (FERET) face database [22] is from the
FERET Program sponsored by the US Department of Defense’s Counterdrug
Technology Development Program through the Defense Advanced Research
Projects Agency (DARPA), and it has become the de facto standard for eval-
uating state-of-the-art face recognition algorithms. The whole database con-
tains 13,539 face images of 1,565 subjects taken during different photo sessions
with variations in size, pose, illumination, facial expression, and even age. The
subset we use in our experiments includes 200 subjects each with four different
images. All images are obtained by cropping based on the manually located
centers of the eyes, and are normalized to the same size of 92×112 with 256
gray levels. Figure A.5 shows some sample images used in our experiments.

In the following experiments, the images for each subject are randomly parti-
tioned into two disjoint sets for training and testing. More specifically, three
images per subject are randomly chosen from the four images available for each
subject for training while the rest for testing. For each feature representation
obtained by a dimensionality reduction method, we use the nearest neigh-
bor rule with Euclidean distance measure to assess the classification accuracy.
Each experiment is repeated 10 times and the average classification rates are
reported. We set γ1 = 10−9 and γ2 = 1 for the first four non-stationary kernels
presented in Section 3.2 and σ2 = 109 for the last two isotropic kernels.

We first compare KFDA with KDA using different non-stationary kernels:
polynomial kernel (poly), fractional-power polynomial kernel (fp-poly), cosine
polynomial kernel (c-poly), and cosine fractional-power polynomial kernel (cfp-
poly). As in [16], we set the weighting function for KFDA as w(dij) = d−12

ij .
The only remaining parameter in the different non-stationary kernels is the

4 http://www.itl.nist.gov/iad/humanid/feret/
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exponent d. For simplicity, we only study the polynomial (poly) and cosine
polynomial (c-poly) kernels with exponents d = {1, 2} and the fractional-
power polynomial (fp-poly) and cosine fractional-power polynomial (cfp-poly)
kernels with exponents d = {0.8, 0.6, 0.4}. We have also tested the polyno-
mial and cosine polynomial kernels with d = {3, 4, 5} but the results are
similar to those for d = 2. Hence, we do not include their results in the com-
parison. Figure A.6 compares KDA and KFDA on different non-stationary
kernels. We have also tried KPCA but its results are very poor compared
with KDA and KFDA and hence are not included in the graphs for compar-
ison. Figure A.6(a)-(c) show the performance of KDA on the four different
non-stationary kernels. The fractional-power polynomial kernel outperforms
the polynomial kernel and the cosine fractional-power polynomial kernel can
achieve further improvement. The performance of KFDA on different non-
stationary kernels shows a similar trend, as we can see in Figure A.6(d)-(f).
Finally, Figure A.6(g) and (h) show that KFDA outperforms KDA because
KFDA can resist the adverse effects due to outlier classes.

We next compare KDA and KFDA on different isotropic kernels, which include
the Gaussian RBF kernel (RBF) and the non-normal Gaussian RBF kernel
(NN-RBF). Figure A.7 shows the results. The weighting function for KFDA
is still set to w(dij) = d−12

ij as before and the non-normal Gaussian RBF
kernel is tested on exponents d = {1.5, 1.6, 1.8}. Figure A.7(a) and (b) show
that the non-normal Gaussian RBF kernel generally gives better results than
the Gaussian RBF kernel for both KDA and KFDA. In Figure A.7(c), we
can see that KFDA significantly outperforms KDA when the Gaussian RBF
kernel is used. This is also true for the non-normal Gaussian RBF kernel,
as shown in Figure A.7(d). This shows that KFDA can successfully resist the
adverse effects due to outlier classes and hence can improve the face recognition
accuracy significantly. We have also performed some experiments for both
KDA and KFDA on the non-normal Gaussian RBF kernel with d > 2. Except
for a few cases, the recognition rates are generally far lower than those for the
Gaussian RBF kernel. A possible explanation is that the kernel is no longer a
Mercer kernel when d > 2.

We further try KFDA on some other weighting functions w(dij) = {d−4
ij , d−6

ij , d−8
ij , d−10

ij }
as recommended by [16]. Table A.1 shows the results comparing KFDA on dif-
ferent weighting functions w(dij) = {d−4

ij , d−8
ij , d−12

ij } with KPCA and KDA. We
can see that KFDA is superior to KPCA and KDA on different kernels for
all weighting functions tried. A closer look shows that the cosine fractional-
power polynomial kernel and the non-normal Gaussian RBF kernel can effec-
tively boost the performance of KFDA. Specifically, KFDA with the cosine
fractional-power polynomial kernel for d = 0.4 and the weighting function
w(dij) = d−12

ij achieves a recognition rate of 90% using 62 features. Using the
non-normal Gaussian RBF kernel with d = 1.8 and the weighting function
w(dij) = d−12

ij , it gives a recognition rate of 91.65% using only 46 features. On
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the other hand, KPCA requires a lot more features for all kernels and yet the
results are not satisfactory. Except for the non-normal Gaussian RBF kernel,
KDA using other kernels also requires many more features than KFDA to
attain the highest recognition rates and yet it is still inferior to KFDA.

To sufficiently evaluate the overall performance of KFDA, we follow the sug-
gestions of [17,18] to also report the average percentages of the error rate of
KFDA over those of both KPCA and KDA on different kernels. Under our ex-
perimental settings, the average percentage of the error rate of KFDA over that
of another method can be calculated as the average of (100−αi)/(100−βi) (i =
5, . . . , 198), where αi and βi are the recognition rates in percentage of KFDA
and another method, respectively, when i features are used. The correspond-
ing results are summarized in Table A.2, where, as recommended by [16], the
weighting functions w(dij) = {d−4

ij , d−8
ij , d−12

ij } are used for KFDA. It is clear
from the results that the weighting scheme in KFDA can bring about perfor-
mance improvement over KDA.

5 Conclusion

In this paper, we have proposed a novel kernel-based feature extraction method
called KFDA. Not only can this new method deal with nonlinearity in a disci-
plined manner that is computationally attractive, it can also outperform tra-
ditional KDA algorithms in resisting the adverse effects due to outlier classes
by incorporating a weighted between-class scatter matrix and adjusting its
weights via making fractional steps in dimensionality reduction. We then fur-
ther improve the performance of KFDA by using two new kernel functions:
cosine fractional-power polynomial kernel and non-normal Gaussian RBF ker-
nel. Extensive face recognition experiments based on the YaleB and FERET
face databases show that KFDA significantly outperforms KPCA and is also
superior to KDA for all the kernel functions tried. Moreover, the new kernels
outperform the polynomial kernel and Gaussian RBF kernel.
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A Detailed Derivations

A.1 Derivation of Equation (21)

For clarity, let us denote Φ = (φ(x1
1), . . . , φ(xN1

1 ), . . . , φ(x1
c), . . . , φ(xNc

c )). Then
we have v = Φw.

Based on the relationship between (18) and (19), we have KB = ΦTSφ
BΦ.

To derive (21), KB above can be expanded as

KB =ΦT




c−1∑

i=1

c∑

j=i+1

NiNj
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T .

Since mφ
i = 1
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∑Ni
h=1 φ(xh

i ), the term ΦTmφ
i can be expanded as
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T
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Similarly, the term ΦTmφ
j can be expanded as
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ΦTmφ
j =


 1
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T

.

For clarity, we denote the expansion of ΦTmφ
i by mi and the expansion of

ΦTmφ
j by mj.

Thus,

KB =
c−1∑

i=1

c∑

j=i+1

NiNj

N2
w(dij)(mi −mj)(mi −mj)

T .

Hence we can obtain equation (21).

A.2 Derivation of Equation (26)

Let Φ = (φ(x1
1), . . . , φ(xN1

1 ), . . . , φ(x1
c), . . . , φ(xNc

c )) and vi = Φwi (i = 1, . . . , m).

Thus, vi = Φwi (i = 1, . . . , m) constitute the discriminant vectors with re-
spect to the Fisher criterion Ĵ(v) in (18).

Then, the low-dimensional feature representation z = (z1, . . . , zm)T of the
vector x can be calculated as

z= (v1, . . . ,vm)T φ(x)

= (w1, . . . ,wm)TΦT φ(x)

= (w1, . . . ,wm)T (φ(x)T φ(x1
1), . . . , φ(x)T φ(xN1

1 ), . . . , φ(x)T φ(x1
c), . . . , φ(x)T φ(xNc

c ))T

= (w1, . . . ,wm)T (k(x1
1,x), . . . , k(xN1

1 ,x), . . . , k(x1
c ,x), . . . , k(xNc

c ,x))T .

Equation (26) can thus be obtained.
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Training

Input: A set of training images X = {xj
i |xj

i ∈ Rn, i = 1, . . . , c, j =
1, . . . , Ni}.
Output: A set of low-dimensional feature vectors Y = {yj

i |yj
i ∈ Rm′

, i =
1, . . . , c, j = 1, . . . , Ni} with enhanced discrimination power.

• Calculate the weighting function value w(dij) for all pairs of classes by
(17).

• Calculate the matrices KB and Kw by (21) and (22), respectively.
• Project all training examples in X to a lower-dimensional subspace by

(26) to obtain {zj
i ∈ Rm}.

• Apply FLDA to further reduce the dimensionality of {zj
i ∈ Rm} from

m to m′. Let Ξ denote the transformation matrix to transform the
m-dimensional vectors to m′-dimensional vectors in the final output
subspace.

• Apply Ξ to each zj
i as yj

i = Ξzj
i to obtain the set of low-dimensional

feature vectors Y .

Classification

• Given any test example x, its low-dimensional feature representation
y can be computed as y = Ξz, with z obtained by applying (26) to x.

• Apply the nearest neighbor rule to assign y to the same class as the
nearest neighbor of y in Y .

Fig. A.1. Summary of KFDA algorithm.
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Fig. A.2. Distributions of 210 instances from the image segmentation database plot-
ted based on the two most discriminant features obtained by three dimensionality
reduction methods: (a) FLDA; (b) KDA; (c) KFDA; (d) magnification of region A
in (b).
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Fig. A.3. Thirty sample images of one subject from the YaleB face database used
in the experiments.
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Fig. A.4. Distributions of 240 images from the YaleB face database plotted based
on the two most discriminant features obtained by three dimensionality reduction
methods: (a) DFLDA; (b) KDA; (c) KFDA; (d) magnification of region A in (b).
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Fig. A.5. Some sample images from the FERET face database used in the experi-
ments.
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Fig. A.6. Comparison of KDA and KFDA on different non-stationary kernels.
(a) KDA on polynomial kernel (poly) and fractional-power polynomial kernel
(fp-poly); (b) KDA on cosine polynomial kernel (c-poly) and cosine fractional-power
polynomial kernel (cfp-poly); (c) KDA on non-cosine kernels (poly and fp-poly)
and cosine kernels (c-poly and cfp-poly); (d) KFDA on polynomial kernel (poly)
and fractional-power polynomial kernel (fp-poly); (e) KFDA on cosine polynomial
kernel (c-poly) and cosine fractional-power polynomial kernel (cfp-poly); (f) KFDA
on non-cosine kernels (poly and fp-poly) and cosine kernels (c-poly and cfp-poly);
(g) KDA vs. KFDA on polynomial kernel (poly) and fractional-power polynomial
kernel (fp-poly); (h) KDA vs. KFDA on cosine polynomial kernel (c-poly) and cosine
fractional-power polynomial kernel (cfp-poly).
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Fig. A.7. Comparison of KDA and KFDA on different isotropic kernels. (a) KDA
on Gaussian RBF kernel (RBF) and non-normal Gaussian RBF kernel (NN-RBF);
(b) KFDA on Gaussian RBF kernel (RBF) and non-normal Gaussian RBF kernel
(NN-RBF); (c) KDA vs. KFDA on Gaussian RBF kernel (RBF); (d) KDA vs. KFDA
on non-normal Gaussian RBF kernel (NN-RBF).

29



Table A.1
Best recognition rates (%) and corresponding numbers of features (·) for KPCA,
KDA and KFDA on different kernels.

Algorithm KPCA KDA KFDA

Weighting function w(dij) d−4
ij d−8

ij d−12
ij

poly d = 2 69.40(292) 83.30(198) 84.55(55) 86.70(59) 87.90(50)

poly d = 1 69.70(267) 82.45(199) 84.25(50) 86.45(56) 87.35(59)

c-poly d = 2 69.60(241) 84.20(199) 85.20(86) 87.40(75) 88.50(58)

c-poly d = 1 69.60(196) 82.90(197) 84.90(55) 86.85(53) 87.95(64)

fp-poly d = 0.8 69.70(269) 82.95(199) 84.85(59) 87.20(62) 88.15(53)

fp-poly d = 0.6 69.65(265) 84.05(199) 85.30(57) 87.45(63) 88.25(55)

fp-poly d = 0.4 69.65(267) 84.20(199) 86.65(81) 88.20(59) 89.70(63)

cfp-poly d = 0.8 69.65(208) 83.40(198) 85.30(55) 87.25(62) 88.25(56)

cfp-poly d = 0.6 69.70(292) 84.55(199) 86.00(51) 87.75(73) 88.60(51)

cfp-poly d = 0.4 69.70(292) 85.40(198) 86.95(67) 88.75(59) 90.00(62)

RBF d = 2 69.60(290) 84.80(199) 85.55(90) 87.85(55) 88.60(58)

NN-RBF d = 1.8 69.00(271) 86.65(38) 88.85(32) 90.65(61) 91.65(46)

NN-RBF d = 1.6 68.05(296) 87.80(27) 89.20(36) 90.70(31) 91.50(46)

NN-RBF d = 1.5 67.90(297) 87.90(37) 89.05(32) 90.05(38) 90.50(44)
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Table A.2
Average error percentages (%) for KPCA and KDA when compared with KFDA on
different kernels.

Algorithm/algorithm KFDA/KPCA KFDA/KDA

Weighting function w(dij) d−4
ij d−8

ij d−12
ij d−4

ij d−8
ij d−12

ij

poly d = 2 52.36 48.32 46.37 88.74 81.79 78.37

poly d = 1 54.50 50.58 48.98 90.08 83.56 80.63

c-poly d = 2 50.39 46.28 44.42 88.90 81.51 78.09

c-poly d = 1 53.51 49.43 47.68 90.56 83.53 80.44

fp-poly d = 0.8 52.82 48.93 47.39 90.47 83.62 80.84

fp-poly d = 0.6 50.72 46.86 45.45 90.30 83.25 80.62

fp-poly d = 0.4 46.66 43.68 42.29 90.93 84.93 81.99

cfp-poly d = 0.8 50.58 48.49 46.85 87.76 83.95 80.95

cfp-poly d = 0.6 49.46 45.94 44.57 90.41 83.82 81.16

cfp-poly d = 0.4 45.29 42.26 40.87 91.07 84.76 81.75

RBF d = 2 48.53 44.49 42.77 88.59 81.10 77.79

NN-RBF d = 1.8 39.64 34.45 32.25 82.66 71.78 67.06

NN-RBF d = 1.6 39.79 34.20 32.48 84.41 73.90 70.00

NN-RBF d = 1.5 39.31 35.61 34.06 90.23 81.71 78.10
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