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Abstract

Automatic recognition of on-line mathematical expressions is di$cult especially when there exist errors. In this paper,
we incorporate an error detection and correction mechanism into a parser developed previously by us based on de"nite
clause grammar (DCG). The resulting system can handle lexical, syntactic and some semantic errors. The recognition
speed for 600 commonly seen expressions is quite acceptable, ranging from 0.73 to 6 s per expression on a modest
workstation. In addition, we propose a performance evaluation scheme which can be used to demonstrate the
e!ectiveness of both the symbol recognition and structural analysis stages by a single measure. � 2001 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the recent advances in pen-based computing
technologies, we already have all the necessary hardware
to provide an input device for entering mathematical
expressions into computers in a natural way, i.e., we
simply write the expressions on an electronic tablet for
the computer to recognize automatically. The key prob-
lem that remains is the automatic recognition of math-
ematical expressions, which is more on the software side.
Mathematical expressions are in general two-dimen-

sionally structured patterns. Typically, they consist of
special symbols and Greek letters in addition to English
letters and digits. Moreover, characters and symbols may
appear in various positions, possibly of di!erent sizes. All
these together make the recognition process very com-
plicated even when all the individual characters and
symbols can be recognized correctly.

However, in practice, we cannot expect that all the
input expressions contain no errors. Error detection and
correction are important steps, especially in parsing.
A good error handler should report the presence of errors
clearly and accurately. After recovering from each error,
it should still be able to detect subsequent errors. At
the same time, it should not signi"cantly slow down
the processing of correct expressions. Ideally some errors
should even be corrected. Moreover, correct parts should
not be treated mistakenly as errors and altered improperly.
With errors taken into consideration, di!erent existing

mathematical expression recognition systems may have
very di!erent performance. How should we rate a system
as good? What criteria should we use to evaluate its
performance?
Both symbol recognition and structural analysis have

been extensively studied for decades. Mathematical ex-
pression recognition, which features both of them as the
two major stages of the process, is a good subject for
studying the integration of the two areas. However,
the research area had not attracted too much attention in
the past. It is only until recently that more researchers
have started to pay more attention to this area. Detailed
review of the literature can be found in Refs. [1,2].
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In this paper, we will mainly focus on issues related to
error detection, error correction and performance evalu-
ation in on-line mathematical expression recognition.
First, we will describe the di!erent types of common
errors that usually occur in mathematical expressions.
Then, we will show how the errors can be detected
and corrected. Afterwards, we will discuss some existing
schemes and propose some new schemes for evaluating
the performance of mathematical expression recognition
systems. Finally, we will provide and discuss some ex-
perimental results which will then be followed by some
concluding remarks.

2. An e7cient syntactic approach to structural analysis
of on-line handwritten mathematical expressions

Due to the complexity of mathematical expressions,
systems used for recognizing them are better built based
on some explicit grammar rules so that a clear and
concise form is available for formal veri"cation as well as
subsequent extension. In addition, to ensure that a math-
ematical expression recognition system is useful in prac-
tice, its recognition speed is also an important factor to
consider.
In Ref. [3], an approach, called hierarchical decompo-

sition parsing, was proposed for obtaining the syntactic
structures of mathematical expressions automatically.
Hierarchical decomposition parsing is implemented
in de"nite clause grammar (DCG), in terms of a set of
replacement rules for parsing mathematical expressions.
With DCG, we are not only able to de"ne the replace-
ment rules concisely, but their de"nitions are also in
a readily executable form. Besides, the proposed method
uses three major ideas, namely, left-factoring, binding
symbol preprocessing, and hierarchical decomposition,
to make parsing more e$cient. Experiments done on
some commonly seen error-free mathematical expres-
sions show that the method can achieve quite satisfactory
speedup.
In the following section, we will extend the parser

developed by us in Ref. [3] to handle erroneous math-
ematical expressions as well. In particular, we will show
how error detection and correction can be performed
easily and e!ectively during parsing. Most importantly,
all the procedures are clearly de"ned in the form of
formal replacement rules.

3. Incorporating error detection and correction into
mathematical expression recognition

Although error detection and correction are important
steps, very few papers in the mathematical expression
recognition literature have addressed these issues.

Dimitriadis et al. [4] put extra e!ort to detect and
correct errors as, according to them, no attempts were
made previously in this aspect. However, the error detec-
tion and correction methods used were quite simple. For
example, some warning messages, such as `the root sym-
bol should cover all of its termsa, may be given when
the error is not fatal. However, some other errors, like
`the function tan does not have argumentsa, require the
user to correct the input before the editor can proceed.
Lee and Wang [5] used some heuristic rules to correct

recognition errors. For example, the expression
`x"5in �a will be converted to `x"sin �a due to the
similarity between &5' and &s'. Other heuristic rules are
also used, such as

� For every binary operator P, there must exist two
operands that will generally be of the same typeface
and size.

� There are no symbols in the subscript position of
a numeral.

� Symbols in the same operand generally possess the
same properties.

3.1. Types of errors in handwritten mathematical
expressions

During the analysis of a mathematical expression, er-
rors sometimes occur. In general, there are four types of
errors:

� lexical errors (e.g., poorly written symbols),
� syntactic errors (e.g., an arithmetic expression with
unbalanced parentheses),

� semantic errors (e.g., an operator applied to an incom-
patible operand), and

� logical errors (e.g., 1#1"3).

Very often, error detection and correction are mostly
centered around the parsing stage.
Quite a few strategies are available for correcting er-

rors, such as panic-mode recovery, phrase-level recovery,
error-correcting parsing, and global correction [6].
Panic-mode recovery is simple to use, but a considerable
amount of input would be skipped without checking it
for additional errors. Phrase-level recovery may replace
part of the remaining input by some string to allow the
parser to proceed when an error is detected. However,
some misplaced strings may lead to in"nite loops. Also,
this method is not able to cope with situations in which
the actual error has occurred before the point of detec-
tion. Theoretically, global correction can make as few
changes as possible in processing an incorrect input
string. The problem is that the time and space require-
ments of this approach are often too high for practical
use. Although error-correcting parsing may lead to in"-
nite loops too, the problem can be avoided by paying
special attention when designing the grammar rules.
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Fig. 1. Tree structures generated as a result of parsing with more
hierarchical decomposition on the expression (6x#4y)/
2"3x#2y.

Hence, we decided to use error-correcting parsing
techniques for detecting and correcting errors in the
structural analysis stage.

3.2. Error-correcting parsing

The main idea of error-correcting parsing is to extend
the grammar to include all the expected errors into its
productions (i.e., grammar rules). As a result, the new
grammar will cover not only the correct sentences, but
also all the possible erroneous sentences that could oc-
cur. This method is applicable only when it is possible to
anticipate the common errors that we may encounter.
Since the domain of mathematical expressions in our
research is well de"ned and limited, it is feasible to design
an error-correcting parser for handling all the correct
and incorrect expressions.
According to Ref. [7], there are three types of syntactic

errors for string grammars, namely, substitution errors,
deletion errors, and insertion errors. As a result, three
types of transformation are suggested to correct the
errors, as follows:

Let � be a "nite alphabet and �H be the closure of �.
For two strings x, y3�H, a transformation is de"ned as
a mapping ¹ :�HP�H such that y"¹(x):

1. Substitution error transformation:

�
�
a�

�
�
¹

� �
�
b�

�
for all a, b3�, aOb.

2. Deletion error transformation:

�
�
a�

�
�
¹

��
�
�

�
for all a3�.

3. Insertion error transformation:

�
�
�

�
�
¹

��
�
a�

�
for all a3�,

where �
�
,�

�
3�H.

When we incorporate the error-correcting mechanism
into our existing parser, these types of transformation
will be implicitly included into the grammar rules.
Error-correcting parsing is relatively easy to imple-

ment in our parser since we use DCG as the underlying
formalism. Any extension added to the grammar can be
put into use immediately without any extra e!ort.

3.3. Parsing with more hierarchical decomposition

The purpose of performing hierarchical decomposition
is to partition an expression into sub-expressions. As
a result, we can then parse all the sub-expressions separ-
ately. One advantage is to reduce the overhead of
backtracking. Since the sub-expressions are much small-

er in size when compared with the original expression,
the time for backtracking can usually be greatly reduced.
Another advantage is to maximize the structure obtained
even when errors are encountered during parsing. As we
know, parsing may fail entirely if the structure is not
well-formed with respect to the grammar speci"ed. In
other words, nothing may be returned by the parser even
when there exists only one simple error in the structure.
By parsing all the sub-expressions separately, the e!ect
can be kept local even when failure occurs. After obtain-
ing all the sub-structures, we can then compose the "nal
structure from a set of sub-structures. This is in the same
spirit as the divide-and-conquer paradigm for problem
solving.
The decomposition can often be applied hierarchically.

For example, an expression can be divided into a list of
smaller sub-expressions, and a smaller sub-expression
can be further divided into a list of even smaller sub-
expressions. Fig. 1 shows the resulting sub-structures for
the expression (6x#4y)/2"3x#2y.

3.4. How to correct errors

Since the domain of mathematical expressions in our
research is limited, it is, in principle, feasible to list all the
possible errors and correct them one by one. In case some
errors are overlooked, it is still possible and quite easy to
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Fig. 2. Overview of the recognition process after incorporating
the error detection and correction mechanism.

Fig. 3. Examples of lexical errors caused by poor segmentation:
(a) resulting character does not look like any valid character, (b)
resulting character looks like a valid but incorrect character.

make subsequent changes to the grammar due to the
high extensibility of our DCG parser.
As mentioned in Section 3.1, there are mainly four

types of errors, i.e., lexical errors, syntactic errors, seman-
tic errors, and logical errors. Here, we do not attempt to
tackle all of them. Instead, our focus is mainly on correct-
ing lexical, syntactic and some semantic errors. How
to correct logical errors will be left to our future work.
Fig. 2 summarizes the recognition process after incorpor-
ating the error detection and correction mechanism.
More details about the symbol recognition process can
be found in Ref. [8].

3.4.1. Lexical errors
In general, there are two types of lexical errors. The
"rst type is related to poor handwriting quality. It may be
due to the writing style or the quality of the input device.
Such errors are hard to correct. Even if we can do so,
there is no guarantee that the `correctiona is indeed
correct.
Another type of lexical errors is often due to poor

segmentation. In general, we are often required to seg-
ment all the symbols before the recognition stage. The
most common action in segmentation is to group over-
lapping strokes together to form a symbol. However, we
may sometimes be required to combine some completely
separated strokes into a symbol. Theoretically, it is pos-
sible that a single character is incorrectly segmented into

two or more units. This is unlikely to occur in our system,
though, since the window size used for segmenting sym-
bols is set to be bigger than the average size of all symbols
in the expression.
When the writing is not neat enough, segmentation

errors can easily occur. Such segmentation errors often
lead to lexical errors. In other words, the character and
symbol recognition module is not able to "nd a good
match. However, in some cases, the resulting pattern may
look like some other characters. Fig. 3 shows two such
examples.
For the "rst case, we can simply repartition the charac-

ter and perform the recognition process on the resulting
characters. For the latter case, we have to add some
postprocessing steps to distinguish between valid and
invalid results. As shown in Fig. 3(b), the &R' does not
look like a normal one. By checking the di!erence in
y-coordinate between the two endpoints of the strokes,
we should have enough con"dence to reject it. After
rejection, it becomes an unmatched character. As a result,
the same process we have just mentioned for the "rst case
can also be applied.

3.4.2. Syntactic errors
One of the problems in parsing is that the whole

process will fail if the input sentence is not well-formed
according to the speci"ed grammar. However, if we have
pretty good ideas about the possible errors that may
occur, we may simply extend the grammar to cover all
possible correct and erroneous sentences. That is why we
decided to use error-correcting parsing to detect and
possibly correct errors in our system.
Syntactic errors may occur in di!erent forms, for

example, missing an argument after a function name,
missing an operand, invalid implicit operator, and miss-
ing part of a binding or fence symbol. In the following, we
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Fig. 4. An expression that has a missing argument after a func-
tion name and a missing operand.

Fig. 5. Examples of expressions with and without an invalid
implicit operator.

Fig. 6. An expression that contains two misclassi"ed left par-
enthesis symbols.

will discuss these errors in detail and propose ways to
correct them.
Missing function arguments or operands: Sometimes we

may forget to write some parts of an expression. If the
missing part is the only element after a function name, in
between two operators, or after the last operator, we will
get syntactic errors. Fig. 4 shows an example with an
argument and an operand missing.
To remedy this problem, we only need to add an epsilon

symbol denoting an empty symbol into the structure.
Invalid implicit operators: One of the common charac-

teristics of a typical mathematical expression is that it
consists of some implicit operators. The common ones
are for implicit multiplication, subscripting and exponen-
tiation. Others are for the base of a function (e.g., log

�
N)

and the exponent of a function (e.g., cos� A). However,
not all the implicit operators can appear anywhere in an
expression. Fig. 5 shows examples of some valid and
invalid expressions.
Missing part of a binding or fence symbol: Binding

symbols usually bind some other characters and symbols
within their regions. What if nothing is found in the
region? One simple example is an empty square root

symbol, i.e., &� '. In this case, we can simply treat the
symbol just like a variable and report it in the output
expression.
Fence symbols are often in pairs. If one of the two fence

symbols forming a pair is missing, we will encounter
a syntactic error. A simple way to recover from this kind
of errors is to treat the unpaired fence symbol as a vari-
able, just like the above case. However, in some cases, we
may be able to correct the error by looking for some
potentially misclassi"ed characters or symbols. For
example, when we "nd a single right parenthesis symbol
without a corresponding left parenthesis, we can try to

scan through the list of characters before it to "nd a pos-
sible left parenthesis that has been misclassi"ed. If we can
see some characters, like &C' or &L', there is a good chance
that one character should in fact be the left parenthesis.
Fig. 6 shows such an example.
This is certainly just a heuristic and does not guarantee

to work in all cases. However, in practice, this method
can correct many such errors.

3.4.3. Semantic errors
Mathematical expressions consist of characters and

symbols. However, these elements cannot be put in arbit-
rary positions. Certain rules and conventions have to be
followed. When some rules are violated, we may encoun-
ter ill-formed expressions.
With error-correcting parsing, we not only can parse

correct expressions but can also parse incorrect expres-
sions. In some cases, when we analyze the ill-formed
structure, we may use those rules as heuristics to perform
error correction after parsing. In the following, we will
show some examples.
In general, we always write the constant coe$cient

before the variables. When we encounter an expression
like `y 1 xa, we should have enough con"dence to believe
that the &1' in the expression should in fact be the division
symbol &/'.
Some people do write the character &t' in a way that

looks very similar to the symbol &#'. Hence, an expres-
sion like `tan �a may sometimes be recognized as
`#an�a. Since the resulting structure of `#an�a is
rather unusual, we may choose to transform it back to
`tan �a.
Again, both of the above two cases use heuristics and

have no guarantee that they will always work correctly.
However, such heuristics do help to correct some erron-
eous expressions. Fig. 7 shows how error correction can
be done for the two examples mentioned above.

4. Performance evaluation in mathematical expression
recognition

It is only until recently that mathematical expression
recognition has attracted more attention from the
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Fig. 7. Examples of error correction after parsing: (a) transform `y 1 xa into `y / xa, (b) transform `# an�a into `tan �a.

research community. In the past, some researchers
put their emphasis purely on the theoretical aspects
without any experimental results reported. For those
who did conduct experiments, their performance evalu-
ation methods can roughly be grouped into three major
categories:

1. Performing the test on a set of expressions and cat-
egorizing the results according to whether the expres-
sions are correctly or incorrectly recognized [9].

2. Performing the test on a set of expressions and paying
attention only to the symbol recognition rate
[4,5,10}12].

3. Performing the test on some typical expressions
[13,14]. Such expressions are usually written neatly by
one or just a few writers. As a result, all the expres-
sions can be recognized correctly.

4.1. Evaluation methods

Since mathematical expression recognition primarily
consists of two major stages: symbol recognition and

structural analysis, the evaluation methods are also
based on these two stages.

4.1.1. Recognition of expressions
This method is simple and has been used by at least

one researcher [9]. The recognition result will only fall
into one of two categories, according to whether the
expression is correctly or incorrectly recognized. The
recognition rate is simply the ratio of the number of
correctly recognized expressions to the total number of
expressions tested:

R
�
"

Number of correctly recognized expressions

Total number of expressions tested
.

However, with this method, a system that is able to
recognize an expression with only one misclassi"ed char-
acter will be treated the same as another system that is
unable to recognize even one character for the same
expression. Such limitation calls for measuring accuracy
at a "ner granularity.
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Fig. 8. Transforming an expression into its corresponding struc-
ture tree.

Fig. 9. One of the characters in a function name is misclassi"ed.

4.1.2. Recognition of symbols
This is currently the most common method used to

evaluate the performance of mathematical expression
recognition systems. Focus is put only on the symbol
recognition part. The recognition rate is the ratio of the
number of correctly recognized symbols to the total
number of symbols tested:

R
�
"

Number of correctly recognized symbols

Total number of symbols tested
.

However, this method does not take the structural
analysis performance into account, although structural
analysis is known to be a crucial part of mathematical
expression recognition. Hence, it again does not show the
complete picture.

4.1.3. Recognition of operators
One of the potential applications of mathematical ex-

pression recognition is to add a natural interface to some
existing mathematical software such as Mathematica and
Maple. In order to achieve this purpose, we must be able
to recognize not only all the characters and symbols in an
expression, but also its structure. However, to the best of
our knowledge, no scheme has so far been proposed to
evaluate performance in this aspect.
In mathematical expressions, there exist two kinds of

operators, i.e., explicit and implicit operators. Common
operators, such as arithmetic operators, are explicit oper-
ators that are denoted by distinct symbols. Unlike ex-
plicit operators, implicit operators do not have any phys-
ical form, but are re#ected only by some spatial relation-
ships between neighboring characters and symbols (i.e.,
operands) a!ected, for example, implicit multiplication,
subscripting and exponentiation.
It is very common to represent the structure of a math-

ematical expression in the form of a structure tree that
has operators as its internal nodes and characters as its
leaves. Recognition of the structure of an expression can
be viewed as a process of transforming the expression
into its corresponding structure tree. Fig. 8 shows an
example.
The recognition rate here is the ratio of the number of

correctly recognized operators to the total number of
operators tested:

R
�
"

Number of correctly recognized operators

Total number of operators tested
.

Sometimes, it is quite di$cult to count the number of
operators simply from the expression due to the possible
existence of implicit operators. An easier alternative is to
count the number of internal nodes in its corresponding
structure tree.
During the recognition of mathematical expressions,

problems from an earlier stage may a!ect a later stage.
For example, when one of the characters in a function

name is misclassi"ed, we have almost no way to con-
struct such a function in the structure. Fig. 9 shows such
an example.
Since the misclassi"cation has been counted in the

symbol recognition phase, it is unfair and unreasonable
to doubly penalize by counting the subsequent errors
caused by the initial misclassi"cation. Hence, after the
symbol recognition stage, whether the resulting structure
is correct will depend on the results of symbol recogni-
tion. In the above example, when tan is misclassi"ed as
`t a ha, we will treat those characters as `t a ha in the
structural analysis phase and check if the resulting
structure is consistent with this fact. In other words, the
structure returned for `t a ha should usually be
`(t * a) * ha.

4.1.4. Integrated performance measure
Using two di!erent recognition rates, i.e., separate

recognition rates for symbols and operators for the
evaluation of mathematical expression recognition sys-
tems, is somewhat troublesome.Moreover, both the sym-
bol recognition and structural analysis stages are equally
important. Hence, we propose to combine the two per-
formance measures into a single integrated measure. The
proposed integrated recognition rate is the ratio of the
number of correctly recognized symbols and operators to
the total number of symbols and operators tested:

R
�
"

Number of correctly recognized symbols and operators

Total number of symbols and operators tested
.

In order to obtain high overall recognition rate, a sys-
tem must be able to do both symbol recognition and
structural analysis well.
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Fig. 10. Examples of mathematical expressions collected from di!erent writers: (a) two nicely written expressions, (b) two regularly
written expressions, (c) a poorly written expression.

5. Experimental results and discussions

In this experiment, we perform tests on a number of
di!erent expressions which were extracted from a com-
monly referenced mathematical handbook [15]. Expres-
sions are grouped into four domains, namely, elementary
algebra, trigonometric functions, geometry and inde"nite
integrals. In each domain, we categorize the expressions
into three di!erent sizes, i.e, small, medium and large.
Each size consists of "ve di!erent expressions. There are
10 di!erent writers. Totally, there are 600 expressions.
The writers were told to write the expressions in their

usual style with the only condition that all the characters
and symbols should be separated from each other. How-
ever, no constraints were imposed on the order of writ-
ing. In other words, a writer could even choose to write
an expression backward as long as all the characters and
symbols do not overlap each other.
As a result, most expressions turn out to be somewhat

neat. However, due to some particular writing styles and
unfamiliarity with the hardware, some expressions are
not well written. One of the most common problems is
that the center line of an expression is tilted. Fig. 10
shows some examples of the expressions collected.
Initially, the input is simply a sequence of points. After

some segmentation steps, we then use the character
recognition method proposed by us in Ref. [8]. All the
characters and symbols recognized are represented as
objects with associated attributes, including location,
size, and identity. Note that the objects can be put in an
arbitrary order for our subsequent processing.

The next step is to group the objects. Here we use a
method similar to the one used in Refs. [16,17]. It mainly
makes use of the idea of operator dominance [18]. For
complex mathematical expressions, the techniques may
have to be applied recursively. Afterwards, we perform
hierarchical decomposition parsing along with some er-
ror detection and correction mechanism to obtain the
"nal structure.

5.1. Detecting and correcting errors

The purpose of this experiment is to see how well we
can perform error correction with the proposed method.
Since it would become too tedious to report all cases here
in detail, we decided to show only those typical ones with
respect to their categories. They are listed as follows:

1. To correct lexical errors, we will focus on those with
incorrect grouping of strokes.

2. To correct syntactic errors, we will cover those with
part of the parenthesis symbols missing.

3. To correct semantic errors, we will report those with
a &#'-like symbol in the function name &tan'.

Errors may occur in di!erent forms. Some are very
common while others may rarely be seen. Table 1 shows
the frequencies of occurrence for some of the common
error cases.
Almost one third of the expressions can be recovered

by error-correcting parsing. About 5% of the symbols are
segmented incorrectly. And very surprisingly, nearly half
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Table 1
Frequencies of occurrence for some of the common error cases

Error case Type Total Number Error
of number of error rate
unit of units cases (%)

Parsing of
mathematical

Expression 600 196 32.67

expressions
Incorrect group-
ing of strokes

Character 11190 534 4.77

Missing part of
parenthesis

Pair of 550 260 47.27

symbols
symbols

&#'-like
symbol in tan

Function
name

100 12 12.00

Table 2
Some results of the error correction process

Error case Total Number of Recovery
number of cases recovered rate (%)
error cases or corrected

Parsing of
mathematical
expressions

196 196 100.00

Incorrect grouping
of strokes

534 532 99.63

Missing part of
parenthesis

symbols

260 254 97.69

&#'-like symbol
in tan

12 12 100.00

Table 3
Recognition results in R

�
for 10 di!erent writers

Recognition rate for each
expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 100.00 100.00 100.00 100.00
Minimum 80.00 75.00 65.00 73.33
Average 95.50 92.00 78.50 88.67

Table 4
Recognition results in R

�
for 10 di!erent writers

Symbol recognition rate for
each expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 100.00 100.00 100.00 100.00
Minimum 98.92 98.53 97.81 99.24
Average 99.72 99.63 98.85 99.40

of the parenthesis symbols are not well written so that
they are misclassi"ed as some other characters and sym-
bols. Also, it is not uncommon to have the &t' in tan
written like a &#' symbol.
Our proposed methods for error detection and correc-

tion seem to be quite e!ective, at least in this experiment.
As shown in Table 2, some of the error cases can be fully
recovered while the recovery rates for others are above
97%.

5.2. Diwerent schemes for performance evaluation

The purpose of this experiment is to explore how
di!erent schemes can e!ectively deliver the above results.
In addition, we also show how di!erent types of errors
may occur in practice.

5.2.1. Recognition of expressions
Table 3 summarizes the recognition results for all

expressions written by 10 di!erent writers. There are only
two possible results, correctly or incorrectly recognized.

The mean is 88.67% and the medium is 89.17%, which
are quite close to each other. On the average, only one
error occurs in each expression and the highest number
of errors in a single expression is four.

5.2.2. Recognition of symbols
Table 4 shows the recognition results of all symbols in

the expressions written by 10 di!erent writers. Notice
that the result varies from writer to writer. The recogni-
tion rate ranges from almost 98}100%. Fig. 11 shows
some examples of the misclassi"ed cases.
Through analyzing some error cases, it is quite obvious

that some characters are more likely to cause problems
than others. The best example is the character &C' (or &c').
As we can easily notice, the di!erence between the
appearances of &C' and &c' is very small, especially for
handwritten ones. If we do not check their neighboring
characters, it may not be possible to distinguish between
them. In fact, it is easy for the writer to write them in an
ambiguous style such that they cannot be distinguished
easily, unless the writer pays special attention to the
di!erence in size between the two characters when writ-
ing them. Fig. 12 shows such an example. The expression
is supposed to be the following:

tan
(B!C)

2
"

b!c

b#c
tan

(B#C)

2
.
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Fig. 11. Examples of some misclassi"ed characters.

Fig. 12. An example illustrating that the characters &C' and &c'
can easily become indistinguishable.

Fig. 13. Is it an &H' or &1 #' ?

Fig. 14. The subscript &1' looks more like a left parenthesis
symbol after normalization.

However, all the C's look pretty much the same. As
a result, we may have to treat them either as all C's, or all
c's.
As shown in Section 3.4.1, some lexical errors caused

by poor segmentation can be recovered. However, this is
not always the case. Fig. 13 shows an example in which
the recognized character itself is rather ambiguous.
One of the characteristics and hence di$culties of

mathematical expressions is that characters and symbols
can be of di!erent sizes. One common way to preprocess
them before recognition is to "rst normalize their size.
While some characters looked all right before normaliz-
ation, their appearance may seem to be di!erent after
the process has been applied even when the aspect ratio
is kept the same as in our system. Fig. 14 shows one
example in which &1' looks more like a left parenthesis
symbol after normalization.

5.2.3. Recognition of operators
Table 5 shows the recognition results of all operators

in the expressions written by 10 di!erent writers.
Note that the recognition rates are comparatively higher
that those of symbol recognition. Fig. 15 shows some
examples of misclassi"cation in operator recognition.
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Fig. 15. Examples of some misclassi"cation cases in operator recognition: (a) `x
�
a, recognized as `x 0a, (b) `x�a, recognized as `x 2a,

(c) `(a�!x�)�a, recognized as `(a�!x�) 3a.

Table 5
Recognition results in R

�
for 10 di!erent writers

Structural recognition rate for
each expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 100.00 100.00 100.00 100.00
Minimum 98.33 99.50 98.67 98.83
Average 99.67 99.82 99.67 99.72 Fig. 17. An example with misclassi"cation errors in both sym-

bol and operator recognition.

Fig. 16. `a�!x�a, recognized as `a���
�a.

In some cases, the writing direction may a!ect the
correct recognition of operators. Fig. 16 shows an
example in which misclassi"cation of operators occurs
due to the tilted writing direction. In that particular
expression, the subexpression `a�!x�a is misclassi"ed
as `a���

�a.

5.2.4. Integrated performance measure
Sometimes we may encounter errors in both symbol

and operator recognition. Fig. 17 shows such an example.
Instead of having two di!erent measures, we can sim-

ply use our integrated measure to evaluate the perfor-
mance as follows:

R
�
"

26#16

27#18
"

42

45
"93.33%.

Table 6 shows the overall recognition results of the
expressions written by 10 di!erent writers using the in-
tegrated performancemeasure de"ned above. Notice that
the rates can e!ectively show similar distribution as those
of symbol and operator recognition.

5.3. Recognition performance before error correction

In the previous section, we used four di!erent evalu-
ation schemes to show the recognition performance of
our system. In particular, our proposed integrated per-
formance measure is able to show the e!ectiveness of
both the symbol recognition and structural analysis
stages by a single measure.
Now, we will use the same measure to show the recog-

nition performance before error detection and correction.
Table 7 shows the overall recognition rates for 10 di!er-
ent writers when no error detection and correction are
included.
As mentioned above, parsing may fail when there

exists even only one simple error in the structure. If there
is no error detection and correction, the recognition rate
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Table 9
Time required for recognizing di!erent expressions

Expression Time in seconds required for recognizing mathematical expressions
domain

Small size Medium size Large size

Min. Med. Max. Min. Med. Max. Min. Med. Max.

Elementary 0.73 1.11 1.83 1.03 1.60 2.35 2.07 3.46 6.00
algebra

Trigonometric 0.80 1.15 1.70 1.22 1.99 2.87 1.92 2.71 3.98
functions

Geometry 0.75 1.05 1.42 1.17 1.79 2.53 1.67 2.62 3.70
Inde"nite 0.60 1.12 1.93 1.42 2.08 2.70 2.30 2.96 4.37
integrals

Table 7
Overall recognition rates in R

�
for 10 di!erent writers when

there are no error detection and correction

Overall recognition rate for
each expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 97.97 88.64 72.61 84.94
Minimum 82.24 42.86 19.70 54.19
Average 90.94 69.02 45.93 68.63

Table 6
Overall recognition rates in R

�
for 10 di!erent writers

Overall recognition rate for
each expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 100.00 100.00 100.00 100.00
Minimum 98.73 98.87 98.19 98.60
Average 99.70 99.70 99.14 99.51

Table 8
Overall recognition rates in R

�
for 10 di!erent writers when

error recovery without correction is performed

Overall recognition rate for
each expression size

Overall
recognition

Small
(%)

Medium
(%)

Large
(%)

rate (R
�
)

(%)

Maximum 99.72 98.09 97.84 98.07
Minimum 94.71 90.35 89.69 91.64
Average 97.48 95.18 93.19 95.29

will then become zero whenever syntactic errors occur.
Hence, some of the rates shown are indeed very low.
Actually, we may perform error detection without sub-

sequent correction. The main idea is to replace the erron-
eous part by other legal token to allow the parser to
proceed. For example, we can convert an unmatched left
parenthesis and treat it as a variable so that the parsing
process can be completed. However, for this experiment,
we will not perform other error correction techniques
mentioned in Section 3.4, such as repartitioning the un-
classi"ed symbol in order to "nd some possible matches,
looking for missing part of fence symbols, or checking the

resulting structure after parsing for possible error correc-
tion. Table 8 shows the overall recognition rates for 10
di!erent writers when error recovery without correction
is performed.
Note that error recovery alone can already increase the

recognition performance quite signi"cantly. The main
reason is that partial structures may be returned even
with the erroneous cases. As the average number of
errors in each expression is not high, the resulting recog-
nition rate is often above 80%. As a result, the overall
recognition performance with error recovery is much
better. When using more error correction techniques, the
recognition performance is then further improved.

5.4. Recognition speed

In order to demonstrate the potential of our system for
practical use, we tabulate the time taken for recognizing
expressions of di!erent sizes in di!erent domains. Our
recognition system implemented in Prolog runs on a Sun
SPARC 10 workstation. The timer starts after the se-
quence of points is read by the system and ends when the
"nal structure is returned. In other words, the time taken
includes segmentation, symbol recognition, grouping of
symbols, parsing and error correction. Table 9 summar-
izes the result.
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5.5. Discussions

After recognizing 600 expressions in the experiment,
we summarized the results with four di!erent schemes
above. Here are some observations:

1. The writing quality di!ers very much from writer to
writer. Apparently, it is easier to achieve high recogni-
tion rates with neat writing. Hence, for more extensive
evaluation, we should try to perform the tests on as
many writers as possible.

2. The longer the expression is, the lower the overall
recognition rate becomes. This is shown in Table 3 as
small expressions get the highest recognition rates.
The same pattern is generally also found in Tables
4}6, especially if we consider the number of perfect
classi"cation cases in each class. At the symbol recog-
nition level, the observation makes sense when we
consider that the number of characters and symbols in
longer expressions is much more than that of shorter
expressions. As a result, the chance to have misclassi-
"ed cases is also getting bigger. Although we do nor-
malize it by the total number of characters and sym-
bols in the expression to reduce the e!ect, the trend for
the longer expressions to get lower recognition rates
still exists. At the structural analysis level, it is
speculated that people tend to write more neatly when
the expression is short.

6. Conclusion

Recognition of handwritten mathematical expressions
is not trivial as characters and symbols of di!erent sizes
and with subtle spatial relationships are often found in
such expressions. The task becomes even more di$cult
when there exist errors.
In this paper, we incorporate some error detection and

correction mechanism into an existing parser. It helps us
to minimize the chance of parsing failure for erroneous
input and at the same time increase the overall accuracy.
Besides handling some lexical and syntactic errors, our
system, in some cases, can also perform error correction
after parsing to correct semantic errors. As a result, it can
achieve fairly high recognition rates on some neatly writ-
ten expressions. At the same time, the recognition speed
for 600 commonly seen expressions is also quite accept-
able, ranging from 0.73 to 6 s on a modest workstation by
today's standard.
In addition, we propose a simple performance evalu-

ation scheme which can show the e!ectiveness of both
the symbol recognition and structural analysis stages by
a single measure.
Although our current system only works on on-line

mathematical expressions, it is not hard to modify the
system to handle o!-line data as well. However, some

issues in mathematical expression recognition have not
yet been addressed in this paper, such as resolving
ambiguities, using more contextual information in error
detection and correction, handling logical errors, etc.
These are topics of our future research.
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